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Abstract

The goal of this research is to define the convergent sequence in A-random
approach space and sequentially convergent are discussed and the cluster point, open
and closed ball and linear transformation. We are going to explain a new structure of
Random approach normed space via Banach space in and discussed all the relations
between metric space in this research.
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1. Introduction

A. N. Serstnev in [1] who was illustrated Random (probabilistic) normed spaces via
means of a definition that was closely modeled on the theory of normed spaces which is
classical, A. N. Serstnev employed to study the issue of preferable approximation in statistics.
In the sequel, we shall take on usual terminology, notation, and conventions of the theory of
random normed spaces, as in [2], [3], [4]. The distance between points and sets in a metric
space were studied by sue R. Lowen in [5].In topological space one analogously has that the
distance between points and sets are given by the closure operator. The measures of Lindelof
and separability in approach spaces were studied via R. Baekeland and B. Lowen in [6].The
development of the fundamental theory of approximation was studied R. Lowen in [7].There
are two types of Cauchy structures, approach Cauchy structure and ultra-approach Cauchy
structure, according to R. Lowen and Y. Jin Lee in [8]. R. Lowen and M. Sioen introduced
the definitions of separation axioms in approach spaces and determined their relation to each
other in and [9], [10]. An approach groups spaces, semigroup spaces, and uniformly
convergent are acquainted via R. Lowen and B. Windels in [11]. In [12], R. Lowen, M. Sioen
and D. Vaughan acquainted a complete theory for all approach spaces with an underlying
topology that agrees with the usual metric completion theory for metric spaces. Approach
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vector spaces are studied via R. Lowen and S. Verwuwlgen,in [13]. The relationship between
Functional ideas and Topological theories are found via R. Lowen, C. Van Olmen and T.
Vroegrijk in [14]. In [15], G. C. Brimmer and M. Sion sophisticated abicompletion theory
for the category of approach spaces in sense of Lowen [16] which extends the completion
theory obtained in [11]. In [17], A. Roldan, J. Martinez-Moreno and C. Roldan acquainted
the notion of Fuzzy approach spaces generalization of Fuzzy metric spaces and proved some
properties of Fuzzy approach spaces. R. Lowen and C. Van Olmen [18] discussed some
notions and relations in approach theory. The notion of cocompleteness for approach spaces
and proved some properties in cocompleteness approach space were studied via G. Gutierres
and D. Hofmann in [19] . A new isomorphic characterizations of approach spaces, pre-
approach spaces were given K. Van Opdenbosch in [20], convergence approach spaces,
uniform gauge spaces, topological spaces and convergence spaces, topological spaces, metric
spaces, and uniform spaces. In R. Lowen and S. Sagiroglu [21]. And in B. Y. Hussein and R.
K. Abbas [22] through which you can find out Normed approach space , so Banach approach
space. In B. Y. Hussein and S. Saeed [23] defined the distance between two different sets in
approach normed space , topological approach Banach space . In this paper the concepts of
random and approach were combined by a relationship explained in the research throughout
which the concepts random approach vector space, random approach normed space, random
approach Banach space and based.

This paper is divided into five sections: Section one introduces the introduction of the
research. In section two, new results in convergent sequences in a-random approach spaces
are proved. We also explain the relationship complete and  complete in a-random approach
space. In section three, we introduce the definition of a-random approach normed space and
prove some results in a-random approach normed space. In section four, a new result in &-
contractions on a-random approach normed spaces.

2. Convergent results in a-random approach space.
In this section, we define the convergent of sequence in a-random approach (or shortly,
appr.) space by the following definitions:

Definition 2.1: Let (Q,dy) be a metric space, then a sequence { a,}n=; in £ is said to be a
right Cauchy sequence if forall € > 0 there exists k € Z* such that

dr(ay,,by,) < €for m,n < k,m > n . Left Cauchy sequence if foralle > 0 there
exists k € Z*such that dg(a,,b,,) < € forallm,n < k,m = n. If a sequence is left
and right Cauchy is called Cauchy sequence.

Definition 2.2: A set N € 2%s said to be a cluster point in an a-random appr. space
(Q, 6g) if there exists disjoint sequence { a,}n=; in Q such that ilellg 6r{a, L,N) =
X!

K,(0), which is written by { a,}o=; — N. We denoted the set of all cluster point in A-
random appr. space ¥(Q) .

Definition 2.3: A sequence { a,}n=, in Q is said to be Cauchy sequence in A-random appr.

space &z — Cauchy if for every cluster point N, lim inf 6z({a, }, N) = K,(0) sequence
Nn=>%0 xeN
{a o=, In Q is said to be §z- convergent sequence in A-random appr. space if there

existx € Q for all
N eWY(Q), 6r({a,},N) =Ky(0)

Proposition 2.4: Let(Q, 6z) be a-random appr. space, then the following are equivalent:
1) {a,}n=; bedisjoint §z- Convergent sequence in a-random appr. space.
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2) lim 1215 6r({a, },N) = Ky(0) and lim sup 8z({a, },N) = K,(0)
n—->oo x n—-oo XEN
Proof: Let { a,},—, be disjoint §z- convergent sequence in A-random appr. space. Then

thereexistx € QforallN e ¥(Q): dzx({a,},N) =K,(0)
Forall N e ¥(Q): lim inf 6g({a, },N) = Ky(0) and sup Sz({a,}, M) = K,(0)
n—=0 xeN XEM

Forall N e W¥(Q) : lim inf §z({a, },N) = K,(0)
n—-0 yeN
And lim sup 6z({a, }, N) = K,(0)
n—-oo

XEN

Conversely, suppose the condition (2) is true. lim 12{/ 6r({a, },N) = K,(0) and
n—-oo Xx
lim sup 6x({ a, }, N) = K,(0).
Nn—=%0 xeN
Then N is cluster point, that is . 1215 6r({a, L,N) = K,(0)
X!

Then there exists x € QforallN € ¥(Q) : g({a, }, N) = K,(0)
Thus { a,, }n=1 be 8z- convergent sequence in a-random appr. space.

Remark 2.5:Every - convergent sequence is 8 — Cauchy( Cauchy A-random appr.space ).

Proposition 2.6: If (£2,6z) isa-random appr. space then following are equivalent:
1) { a, }n-1 IS 8z- convergent sequence in A-random appr. space;

2) sup inf 6r({an },{x}) = Ko(0).
Ne¥(Q) xeN

Proof: Suppose that { a,,},~; is disjoint §z- convergent sequence in a-random appr. space.
There exist x € Q for all
Ne¥(Q): or({an },N) = Ko(0).
And 1215 6r({a, },N) = K,(0), then lim 1215 6r({a, },N) = Ky(0).
X n—-oo Xx
And sup 6x({a, },N) = K,(0) that is lim sup §z({a, }, N) = K,(0).
XEN n—=0 yeN

Then, sup inf 6x({a, },{x}) = K,(0).

N ew(Xx) X€EN
Conversely, it is clear.

Proposition 2.7: If (Q,6z) is a-random appr. metric space and {a,},—, be disjoint
sequence in Q, then it is Cauchy sequence in (£, 6g) if and only if is §z- Cauchy sequence
in (Q,6g) .

Proof:

Let {a,}n=, be Cauchy sequence in (£, ;) , then we have that ;2{] 6r({a, },N) = K,(0)

;2{, Sr({an b {am}) = ;2{] Sr({ an }{am}) = Ko(0).

Thatis 6z ({ an},{am}) = Ko(0).

Then {a, },-, is left Cauchy sequence.

Thatis 6z ({ am}, {a,}) = Ky(0). Then {a,},-, is right Cauchy sequence.

Thus, {a,}n=1 is Cauchy sequence in (£, 6g) .

Conversely, if {a,},=; isa Cauchy sequence in (Q,dz) .

Then it is left and right Cauchy sequence, for all £ < 0, hence there exists k € Z* such that
Sr {am}{an}) <e,forallmyn < N,m=>n and for all € <0 there existsk € Z* such
that 6z ({ an}, {an}) <e,forallm,n < N,n> m.

Hence {a,}.=; is 8z- Cauchy sequence in a-random appr. space.

Theorem 2.8: Let (Q,6;) be an a-random appr. space, {(a,) and (b,) be 8§z — converge

Sequence in (Q,8z) to a, b Respectively, then:
1) (a, + by)is an 6z —converge to a + b.
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2) (wa,) isan dp —converge to wa.

3) (a,.b,) isan by —converge to a.b.

The proof is clear .

Theorem 2.9: A-random appr. topological space is a topological space (£, Tr) that associated
with natural a- Random appr. space, we define a function

Sp: 02 x2% > V*by:

K, (0) if x € CL(B)
6r, (x,B) =

Ko(o) if x & CL(B)

forallx € 2, ,B € 2%, (Q, Tg,67,) fortopology Tg on 2 is called a topological a-random
appr. space, and &7, is called topological 67, -distance.

Definition 2.10 : Let (Q,5z) be a-random appr. space. For x € Q the center at x and of
radius r > Oistheset H,(x) ={s € Q,dz(s,{x}) > r}, where the set H,. is called 55
— open ball.

Definition (2.11): Let Q A-random appr. vector space on field F.A topological A-random
appr. vector space Q with an induced topology T, satisfy two axioms:

1) Themap+: Q X Q - Q,(a,b) - a+ b isdi —contraction .

2) Themap: F X Q — Q is §z —contraction.

When it is written as (12, Tq).

Proposition 2.12: Let (22, T,) be a topological space, then the function
S ) x29 vyt
(
K, (0) if x €CL(B)
definedby: 67, (x,B) =

Ky(0) if x & CL(B)

is 8z -distance on (.

Proof: We prove that &5 is indeed a distance
1) Since x € CL (B) then 6y (x,B) = K,(0)
2) we know that CL(Q) = @, thendg (@ ,B) = Ky()
3) Forall H,B € 2%, since CL (x,B U H) = CL(B) U CL(H) =
min {8z (x,B),6g (x,H)} = min{CL (B),CL(H)} = min{CL (B),CL (H)}=
min {6 (X,B), 6 (X,H)}.
4) Forall B € 2%ndforall g(t) € V* ,We have BI® = CL (B) and B¥o(*) =
Q
this gives us 8 (X,B) = &g (X,Bg(t)) + g(t)
Hence 67, (x,B) is 6z — distance on (.

Theorem (2.13) : Let (Q, 8g,,) be a-random appr. vector space , B be Closed a-random appr.
sub space of Q. Then (Q/B, SRQ/B ) is a-random appr. vector space , and we define

6RQ/B : Q/B x 2%/B - v+ asfollows:(SRQ/B (x,U) = 8 (x + B,U+B) = 6z(x,U)
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Proof: We will prove §; satisfy distance condition:
1) 6x (x + B,U+B) = 8z(x,U)
2) If U=0 ,6r (x + B,0) =6z (x,0) = Ky(o0) ,If U# @then 8 (x,U) =
K,(0),x € U
8 (x + B,U+B) =6z(x,{x+B}) = 8z (x,U) = K,(0)
3) g (x + B, U+BUN+B) =68 (x,UUN)
= min{6zg(x,U),6(x,N) }
4) Sp(x +B,U+M) = S (x,U) = 8z (x,U9®) +g(t)
=08g (x + B,UI® + B) + g(t)

Definition 2.14 : Let (Q,6;z) be a-random appr. space a sequence {a,} iS convergent

sequence in the a-random appr. space to N < Q if lim inf 6z ({a,},N) = K,(0) and
n=0  geN

lim sup 6z ({a,},N) = K,(0).

n—=0  geN

Definition 2.15 : Let (Q, 8z) and (E, &%) are a-random appr . spaces. The function & : Q —
E is called sequentially contraction if lim 6z ({§(a,)},&(N)) = K,(0) Whenever
n—->oo

lim &g ({an}, N) = Ko (0).

Definition 2.16 : Let Q and E be two a-random appr. vector spaces on A-random appr over
the same field F, a mapping: TI':02 — E is said to a-random appr. linear transformation if the
following hold :

1) T'(a+ b) = I'(a) * T'(b).

2) T'(Aa) = AI'(a) forall A € ¥, foralla,b € Q.

Definition 2.17 : LetI': 2 — E be a a-random appr. linear transformation. Then the set 6 —
ker () ={B<c Q:T(B) ={0} } = I''1({0}) is called the a-random appr. kernel of T.

Theorem 2.18 : Let (2,Tq,8z) and (E,Tg, 6z)be a topological a-random appr. vector
spaces. And the approach linear map I': 2 — E is contraction then that is ker(T") is closed .

Proof: Suppose T is the §z-contraction.
To prove Ker(T') is closed set, let {an} be a disjoint sequence that convergent to a in Ker(I')
such that lim inf 6z ({a,},N) =K,(0) andlim sup &z ({a,},N) = K,(0)

n=0  geker (T) n=%  geker (T)
Since T is 8g- contraction, that is 6z (T({a,}),T(N)) = 6x({an},N).
Then,

Ko(0) = lim inf g ({an},N) 2 lim inf Sr(T({an}),T(N)) =
lim sup ?R( I'{a,}),T(N)) = ﬁm sup 6gr({a,},N) = K,(0) .
N=%0 xeN

n—=>0 xeN

lim sup SR( r'{a,}), F(N)) = K,(0) and lim inf SR( F({an}),F(N)) = K,(0).
N=%0 xeN

n=% xeN

(T({an}) = Ko(0), lim 6p(T({an}), T(N)) = Ko(0) thenT({a}) = K,(0),a € Ker ().
Now, suppose Ker (') is closed set, let {a,} be disjoint sequence convergent to A in 8y -
Ker (I'), to prove I'({a,}) convergent to I'({a}) , since 6 — Ker (') is closed, x € 6 —
Ker (T) , assume that T'({a,}) iS not convergent to r{opin N, that is
I' is not 6z —contraction
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Then lim sup  6x(T'({a,}),T(N)) # K,(0) or le mf Sx(T'({a,}),T(N)) # K,(0).

If llm su;; Sx(T({a,}),T(N)) # K,(0) or llm Lnf 6R( I'{a,}),T'(N)) =Ky(0)
® xeN ® xeN
llm inf &g ({ay},N) > llm Lnf 5 ( F({an}) I'(N))

xeN

then Sx(T'({a,}),T(N)) < KO(O) this impossible
If limsup  8x(T({a,}),T(N)) = Ky(0) or llm Lnf Sp(T({a,}),T(N)) # K,(0)

n—->0o xeN

0= llm sup 6x({a,},N) = lim sup 6R( F({an}),F(N)) K,(0) which is
® xeN n=% xeN

|mp053|ble
If limsup S8x(T({ay}),T(N)) # K,(0) and llm Lnf Sr(T({a, ), T(N)) # K,(0)But,

N—=%0 xeN
I'{a,}) € 6 — Ker(') then llm sup SR(O F(N)) # K,(0) and
© xeN
Lim inf 8z(0,T(x)) that is 6R(0 I'(x)) # 0,T(x) # Ko(0)
@ xeN
So a & 6p —Ker (£) this impossible. Hence I' sequentially contraction, then T is

&g —contraction.
3. Structure of a-random approach normed space

Definition 3.1: A triple (Q,0,T) is said to be a-random normed space, where E be a non-
empty vector space, ¥ is continuous t-norm and ¢ is mapping from E into V* such that the
following condition hold.

1. AR1) o0,(r) =Ky(r) if and only if x =0 , for any r > 0.

2. AR2) 0,,(r) =0, (|r7|) , where , forall x € Q.
3. AR3) /{irr%) 0, (r) =Ky(r) .
4. AR4)0,,y(r+e) =Y (ax(r),ay(e)) , forany x,y €Q , r,e = 0.
5. ARS5) 6g(r,B) = sup inf o,_,(r).
X €Q a€B
Proposition 3.2 : Every a-random appr. normed space is a-random normed space.

Remark 3.3:A-random normed space is not necessary a-random appr. normed .

Definition 3.4: A-random appr. Banach space is 6z —complete a-random appr. normed
space .

Proposition 3.5 : Let Q be finite §z-dimensional A-random appr. normed space is
dr-complete and consequent A-random appr. Banach space.

Proof: : Assume dim(Q) =n > 0,{n.,n2, ..., na} is basis of Q, Q is finite §z-dimensional

A-random appr. normed space

Let{a,,}i—-1 be a 8z —Cauchy sequence inQ, lim inf, c4 6r({xm 1, A) =
n—-oo

Ko(0). forxm = ZiLi 0 @5, ¥i = i 0l

Ky(0) = rlll—tg) infz’i;l W MjEA Sr(Zitq Qim1)j, A)

= lm infyn o, infyea d(EL; GmnjA)

— . . . n
= lm infsn | o iMfyen dogl izt Qi) ¥ )

5622



Kream and Hussein Iragi Journal of Science, 2024, Vol. 65, No. 10, pp: 5617-5628

= lim infon o 0 infyes dogin(Zisg Gmij, Zizg i )
= Tlll_‘l;go infz?=1 U njinfyeA ||Z?=1 Qim?)j » i1 ocimj” ;that isZiL, |laim — aiill = K (0) .

Then {aim} is Cauchy sequence in real field R or complex field ¢ , since real field R or
complex field ¢ are complete , therefore ; for all I there exists a; € F such that lim a;,, =
n—-oo

o, put x = XiLioi1; .
There exists x € Afor all A€2?, lim inf 6&x(Z; aimnj,A) = Ko(0). Thus Qis
n—-oo n

i=10(ii77jEA

6gr — complete .
This can be deduced from the fact that both R and c are complete .

Definition 3.6 : An a-random appr. normed space is called §z-complete if every 6 —Cauchy
sequence is dz-convergent in (£, 6z).

Theorem 3.7 : An a-random appr. normed (£, ) is 5g-complete space if and only if
(Q,ds,) is complete.

Proof: Let { x,},=, be a Cauchy sequence in (£, 6g) , then it is §z- Cauchy sequence in
(Q,8z) since (Q,6z) is complete, there exists x € B for all B € W(B) ,such
that 8z({x, },B) = K,(0) ,W(B) the set of all cluster point in a-random appr. space.

sup inf dg({ xp},{x}) = Ko(0) thends,(x,,x) = 0. Thatis (Q,ds,) is complete.
MeT(X) ;CCEIXI

Conversely, Let { x,}n=; be &z- Cauchy sequence in (Q, d5R). Hence, The sequence
{xn}n=1 is left and right sequence in (€, ds,).
(Q,ds,) is complete that is lim ds,(x, ,x) =0
n—-oo
thatis lim inf 6z({a,}, B) = K,(0) and lim sup 6z({a, },B) = K,(0)
n—oo xeB n—ow ,ecp

Sr({an },B) = sup inf ds,({ An}, {x}) = K,(0), that is there exists x € X and for all
Be¥ () x€eB

B € ¥(Q) ,6r({an},B) =Ky(0)
Hence { x, },=1 IS convergent in a-random appr. space (£, 6z).

Example 3.8 : Let (£, ||. |[z)be a Linear normed spaces . Define a mapping
0,ift<0
ax(t) = t .
— , ift>0
e Y
Then (Q, 8) is a-random appr. normed space
Proof:
1) 0, (t) = 1 then, PP

the conversely , it is clear

= 1 therefor, ||x|| = 0 hence,x =0

t ot t

2) 0,.(t) = = = =o,(t
) 02x(t) t+HAxl T e+Alllxll eIl x()t
3) limo,,(t) = lim = lim =-=1 ,t>0 = lima,,(t) =K,(t
) A0 2x(t) A—o Al Ao e+l e ) L A0 2x(t) = Ko (1)
S S
— = < = =
4 Tp(0x(0),0:9)) = - o P R I i A L PPN T+t +5)

now ,show (RN5)
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K,(0) ,ift<0

6p(x,N) = ) t .
RN SupxeﬂlnfaeNm , ift>0

Now to prove 6z (x, N) is a-random approach

. . t

1. ift>0,6r(x,{x}) = supxegmfae{x}m = 1,then 6z (x, {x}) = Ky(r).
. . t

2. if N=0,8:(x,0) = supreainfaeo 7y —ar = Koo (1)-

3. LetN,B € 2%, 6,(x, NUB) = supxeﬂinfae,\,ugm =

. . t . t .
min {supseainfoen ey SUPxea i facs ey} = Min(8:x,N), 65, B)).
4. Sx(x,N) = SR(x, Nh(r)) + h(t) ,for any h(r) € V*.

4. New Results of §z-Contractions on a-random approach normed spaces
Proposition (4.1): If Q, and £, are a-random appr . normed vector space, and

@ Q; — Q,issurjective linear function, Then the qualities listed below are equivalent:
1) ¢: (Q,6r, ) = (9,,8g,) is 8z — contraction.

2) (Q2,6r,)is 6z, — complete space whenever (Q, , 8g, ) is 6z, — complete .

Proof:

DIf o: Q - Q,is 6z — contraction . Then for every x € , and each subset
Mc

8, (@ (A),f (M) = bg, (A, M) if (Q,8g, ) is a-random appr. Banach space.
To prove (Q,,8z,) is &g, — complete space.

Let {y,,} be a &g, — caushy sequence in Q, then there exists {x,} such that

90({xn}) ={wn}

lim inf 8p,({yn}, M) = Ko(0) then lim inf ,8p, (@ ({xa}), EN)) = Ko(0),
n—0 x.. eM n-o x,eN

where (N) =M .
Since ¢ is 8 — contraction .
0= lim inf &g, (@ {x ), 0(N)) > Lim xinejjw 8y (fxn}, M).

n—00 x, EN

n-oo

Hence, lim inf 6g,({xn},M) = K(0). Thatis {x,} is 8 — caushy sequence in Q;,
XmEM

Q, is 6z — complete app- space. There exists € N , for all N < Q;. Such that
lim - inf &, ({xa}, N) = Ko(0).

8ry (@ (), @ (N)) < g, ({x3, N)
lim sup &g, ({xn}, M) = Ko(0) and lim irgl 6r, ({xn}, M) = K, (0)

lim sup &g, (¢ ({xn}), @ (M) < lim sup &, ({xn}, M) = Ko(0)
Lim - inf Sg, (@ (D)o (MD) 2 lim - inf Sg, ({xn}, M) = Ko (0)
lim sup S, (¢ {xaD), @ (N)) < Ky (0)

lim - inf &g, (¢ ({xa}) 9 (M) = Ko (0)

lim sup &, (@ ({(xa), (M) = K,(0)
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Then (Q,, 8g,) is 8z, —complete space

Conversely, suppose ¢ is not § —contraction

Or, (o)), () = 6r,({xn}, N). Let {x,} be a & — convergent sequence in

That is {x,,} is dz — caushy sequence in Q;, {¢ ({x,,})} be 8z — caushy sequence in Q,

The condition hold then there is {¢ ({x,})} in Q,. There exists y = ¢ (x) € @ (N) =M €
2%, Such that &g, (@ ({xn}), @ (N)) = Ko(0). That is &g, ({x,},N) <Ky(0), this
impossible.

Proposition 4.2 :An a-random appr. normed space (£, 6g, || |l5,) is 6z-complete if and only
if a metric approach space (€, ds,) is 6g- complete.

Proof: Let Q be a-random appr. normed space. and &y is generated by the ||. |5, .
Let {a,}n=, cauchy sequencein (Q,dg). Then we have ds, ({an},{4,}) =0 for all
m,n € Z*.This implies that 6 ({a, },M) = sup 1nefM ds, ({an},{An}) =0.That is

an€s Am

AinEfM 0r ({4 1, M) = Ky(0).Then {a, };-; is Og- cauchy sequence in (€, &g, [l. |s,)-

Since Q is 65- complete, this implies that there exist A € M forall M € 29,6z ({ a,}, M) =

Ko(0) foralln € Z*, dy, ({xn}, {x}) = inf Sr({n},{x}) = Ko(0) thatis { x,} converge
X

to .

Conversely, suppose that (Q, daR) IS 8z- complete, and Let {a,},—,; IS 6gz-Cauchy sequence

in (6, Il ls, ). thenKo (0) = inf S ({ an}, M)

= inf sup inf 064 4 ()
Me2Q an€Q amEM

=inf sup inf ds, ({an}{am})

Me2Q an€S apmeEM

dsy ({An}{Amb =inf inf Sp({ an}{An})

Me2& aneEM

=inf inf inf Sr({an}{amn}) =Ko(0)

Me2®  xeM ap€eEM
ds, ({An},{An}) — 0asn — oo Thatis {a,},-; is 6g- cauchy sequence in (Q, ds,)
(Q,ds,) is 8g- complete, therefore { a,,} is converge sequence,
There exists x € Q such that lim {x,} = {x}.
n—oo
ds, {x 3 {xD=inf inf Sp({x,},{x}) = Ko(0).There exists x € M forall € 2%,
AmEM

Me2®
xiEAi

such that 6x({ x,}, M) =inf sup inf ds, ({xn},{x}) =0, hence (Q,5, |l ls,) is Sr-
Me2Q x,€X XxeEM
complete.

corollary 4.3: A A-random appr. normed space is A-random appr. Banach space if and only
if (Q,ds,) is Banach space.

Proof: As a result of Remark 3.3 .

Proposition 4.4: Let (9,6, |l.ll5s,) be a a-random appr. normed space then the following
are equivalent:

(1)(Q, 6g, |l ll5,) is an A-random appr. Banach space.

(2)(Q, 8R) is complete .

The proof is clear by corollary 4.3.
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Proposition (4.5): Let (Q, &g, || lls;,) be an A-random normed space . then we have:
(1)The function @: (x,y) = x + y is §z — contraction.
(2)The function ¢ : (a,y) = ax is §z — contraction.

Proof:
()Let {(x,,y)} be a convergent sequence in Q. There exists x,y,€ Q forall M,N €
¥ (Q)(respectively), such thatdz ({x,},M) =0,8;z ({y,},N) = 0.Since 6z(x,, M) =
sup inf oy, ()
X €Q aeEM

= i’lei)}? 1\}125( dsg (xnx) =0

Sy, M) = sup inf o, _, (1)
x €Q) beEM

= supinf da (yn.y) = 0

6R ((p({xn} ’ {yn}): (p(Mr N)) = SR ({xn + Yn }:M + N)

= Su inf o (r
X.ye% MpNcQ  Xntyn—a p(1)

< sup Mil{llgnllxn—x||+ sup Mi,{,lgxo'J/n—b(r)

x,YEQ vy
< . )
" yen winfy, dop (e + b {x +yh) =0.

Then « is sequentialy contraction , and therefor ¢ is §z —contraction .
(2) Let {(a,,x,)} be a convergent sequence inF x Q, then let x € X, forallM €

¥ (Q). Such that 8z ({x,}, M) = 0, 8g(@({x, D), f(M))) = g (afx, }, aM)
= Sup A}Irég( Oax,—aa (r)

xXeX
= il"g? I\}Irég( Oax, - axn+axn—aa(r) = K, (0) .

Thus @ ({a, x}) = {ax} is sequentialy 6z —contraction
Remark 4.6: Let M = (Q,ds,) a-random appr. metric space , then M is a Hausdorff space

Proof: Leta,b € Q:a + b.

Then from distinct points in a-random appr. metric space have disjoint open Balls exists open
€ — balls D¢ (a)and D¢ (b) which contain, respectively, a and b in disjoint open sets.Hence
the result by the definition of Hausdorff space.

Theorem 4.7: Every uniform a-random appr. normed space (€, &, || lls,) is a Hausdorff
space.

Proof: Suppose that Q* be atopological duall of 0 . That is

Q" ={:(Q Td,sR )= (R, Ts) | ¢ is linear and continuous functionals }.

Let T is the set of all non-negative closed unit ball in Q*,s0Tqg ={p € Q" : p(x) < 1}
and the norm on duall is defined by

loll. = inflloCo) I

Itis clear that (Q*, || || ,) is Banach space.

The duall of (", ||¢ || ) is called biduall of X which is denoted by Q**.
Let ¢ be non- empty subset of Q" the functional ||x || ,: @ — R as followes:
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lx || = sup |@(x)| is a semi norm on Q. We have Mg ={ |[x |l ,: ¢ < Tq } and
£€@

No-={d x| ,: ¢ < Ty} Then a basis for the weak topology §(£2, %) on Q) is given by :
{{beX: forall f€ @:|f(x—b)| <e:0+¢ cQ'e>0}forx € Q}. Define &g :
Ox 28 -sv+
by
Org- (x,N)= sup inf a,_,(r).

@ CTgx €N
It is clear &g, satisfies the conditions of approach distance, is said to be weak distance or
weak approach distance. Since 6g. is the uniform a-random appr. normed space generated
by No+ ,An app-basis for the Tq is My- ={ [|x |[ ,: ¢ < Tq } equall a basis for a weak
topology £(Q2, Q") isgiven as:
{{beX:forall fe p:|f(x—Db)| <e: 0+ ¢ c Q' e>0}forx € Q}that is equally
a basis for weak topology &(Q,Q" is Hausdorff, then the a-random appr. normed space is
Hausdorff space.

5.Conclusion

In this paper we study the convergent sequence in a-random approach space and
sequentially convergent are discussed and the cluster point, open and closed ball and linear
transformation. We are going to explain a a-random approach normed space . Every a-
random approach normed space is a-random normed space, an a-random approach normed
(Q, 8g) is 6g-complete space if and only if (Q,ds,) is complete. A-random approach normed
space is a-random approach Banach space if and only if (Q,ds,) is Banach space.  Every
uniform a-random appr. normed space (€, 6, Il. |l5,) is a Hausdorff space.
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