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Abstract: 

 In this paper a two dimensional numerical simulation have been applied using 
MATLAB program for generating Fraunhofer diffraction pattern from different 
apertures. This pattern is applied for three types of apertures, including, circular, 
square, and rectangular functions, and it's could be generated any wavelength in the 
visible light. The studying demonstrated the capability and the efficiency of optical 
imaging systems to observe a point source at very long distance. The circular 
aperture shows better results across the shape of Fraunhofer pattern and optical 
transfer function (otf). Also, the minimum values of the normalized irradiance of 
different diffracted apertures have been computed at different dimensions of these 
apertures, and found that the smallest value belongs to the circular aperture and 
equal to (1.0×10-8) at radius (R=60 pixel).  
Keywords: Fraunhofer diffraction, Fourier transform, and optical physics. 

  

  محاكاة حیود فرانهوفر للموجات المستویة باستخدام فتحات مختلفة

  عدي عطیوي جلود 

  العراق ,بغداد، جامعة بغداد ،كلیة العلوم، والفضاء قسم الفلك

  

  :الخلاصة
طبقت محاكاة عددیة ذات بعدین باستخدام برنامج الماتلاب لتولید نموذج فرانھوفر للحیود  بحثال افي ھذ

یمكن تولیده والمستطیل و، المربع، وال الدائرةھذا النموذج لثلاث فتحات تتضمن دطبق . ولفتحات مختلفة
ت الدراسة القدرة والكفاءة لانظمة التصویر البصریة لرصد مصدر بین. لاي طول موجي في الضوء المرئي

شكل نموذج فرانھوفر ودالة التحویل  عبراظھرت الفتحة الدائریة افضل النتائج . نقطي عند مسافة بعیدة جداً 
ً عن ذلك حسبت اقل قیمة للشدة المعایرة لحیود الفتحات وعند ابعاد مختلفة ووجد ان اق. البصریة ل فضلا

  .  بكسل  (R=60)عند نصف قطر  (8-10×1.0)قیمة تعود للفتحة الدائریة وتساوي 
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1. Introduction: 
In order to obtain a high resolution image in different fields such as astronomy, optical physics, and 

the high resolution object identification [1]. It should be taken in accounts several basic principles, but 
the most important principle is the diffraction which is build upon the shape and size of the aperture of 
imaging systems. There are many theories that explain diffraction phenomena; the simplest one is the 
Huygens – Fresnel theory. This theory assumes that a wavefront may be considered to emit secondary 
wavefronts as passing through the aperture. These secondary wavefronts were postulated by Christian 
Huygens in 1678 in Holland. Many years later, in 1815 in France, Agoustin Arago Fresnel considered 
that Huygens wavefronts must interfere with their corresponding phase when arriving at observing 
screen [2]. Diffraction could be tackled by starting with Helmholtz equation and then converting it to 
an integral equation using Green's theory [3]. 

Many other theories have been postulated to improve the diffraction. The best of them is the scalar 
diffraction theory that could be utilized when the wavelength of the wave is larger than of the aperture 
size for the optical imaging systems [4]. There are two approaches of the scalar diffraction theory 
which is classified into near and far field approximations according to the distance between the source 
and the observation plane. If this distance is infinitely large, so, the waves that arrive the aperture are 
considered plane waves. This is called far field approximation; therefore, the Fraunhofer diffraction 
pattern has been happened. The mathematical representation of far field approximation and Fraunhofer 
diffraction integral are the same. In contrast, the distance is large but finite; the mathematical 
equations of near approximation and Fresnel diffraction integral are the same [5]. Plenty of studies in 
the literatures that interest of this problem, which are adopting of the Fraunhofer diffraction patterns 
shape [6, 7].  

In this paper, the mathematical equations that compute Fraunhofer diffraction integral have been 
studied and simulated in order to demonstrate the essential features of this pattern due to used different 
apertures. The minimum values of the normalized different diffracted apertures have been calculated 
to illustrate the ability of these apertures to resolve the point source. The optical transfer function (otf) 
has been simulated that is associated with different diffracted apertures in order to determinate the 
quality of the optical imaging system. 
 

2. Theoretical Considerations: 
Assuming distant quasi monochromatic waves of a point source of unity magnitude that is 

presented by [8]: 
),(),(),(  ieAU                                                                                                                        (1) 

where A is the amplitude of the wave,  ,  is the spatial variables, consider the point source generates  
plane waves that pass in a  homogenous medium without any perturbations, this means that the phase 
of the wave ),(  = 0 and ),( U =1. When a plane wave passes through the aperture of imaging 
system the diffraction phenomena occurs. The theory of the diffraction is built on the assumption, that 
incidents the wave is transmitted without change at points within aperture. According to this 
assumption U ),(   and ),( f are complex wave and could be written as [9]: 

),(),(),(  pUf                                                                                                                      (2) 

where                                              
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p  is called the aperture function, but here the phase forms associated with an optical imaging system 
could be a function of transverse positions  ,  as given by [10]: 





  )(

2
exp),( 22 

z
kj                                                                                                            (4) 

where (

2

k ) is the wave number, λ is the wavelength and z is the propagation direction.  

All apertures of the optical imaging systems are shift-invariant because of the invariance of free 
space to displacement of the coordinates system. A linear shift-invariant system is characterized by it's 
impulse response function. Impulse response function is the response of the system to an impulse or a 
point at the input plane. The impulse response function in far field approximation is given by [10]: 





  )(

2
exp)exp(),( 22 




z
kj

zj
jkzh                                                                                            (5) 

The Fourier transform of above equation is called transfer function and could be written as [10]: 

 )(exp),( 22 yxzjeyxH jkz  
                                                                                                    (6) 

the x & y are variables at the output plane. The transfer function is the factor by which an input 
function is multiplied with it's to yield the out function. 
Now, the result in the Fraunhofer diffraction expression is obtained as [10]: 
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This equation could be obtained by applied Fourier convolution theory as: 
   ),(),(),( 1  fhyxg                                                                                                    (8) 

where  1 is the inverse Fourier transform,  is the Fourier transform.  
Therefore, one could be writing above equation as: 
 ),(),(),( yxFyxHyxg                                                                                                                (9) 

where   is convolution operator, ),( yxH  and ),( yxF  are complex Fourier transform respectively 
of impulse response function ),( h  and exit wave from the aperture ),( f . Equations (8) and (9) 
are equivalent and representing convolution equation. Equation (7) could be written in terms of Bessel 
function as [10]: 
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where w is the dimension (length or radius) of square, rectangular, and circular apertures. 1J  is the 
Bessel function of first order, equation (10) could be derived from Henkel transform.  

3. Simulated Results: 
The aperture function has been simulated in different shapes (circular, square, and rectangular) in 

size of 256 by 256 pixels with phase form as given in equation (4). Firstly, the most basic shape 
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aperture of the optical system is a circular function that has unity magnitude of radius (R) equal to (20) 
pixels according to the following equation [11]: 

                
otherwise  0

)()-(  if   1),(
22

c





  Rp c

c


                                                                                 (11)                      

( c , c ) is the center of a two – dimensional array. Secondly, the square function of length (L) equal 
to (20) pixels has unity magnitude that is given by [12]: 

                
otherwise  0

&  if   1
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                                                                                                   (12) 

Finally, the rectangular function has been taken in account in order to demonstrate the difference of 
the diffraction pattern with these apertures. The rectangular function has unity magnitude of length (a) 
that is equal to (20) pixels with wide equal to (a/2)   according to the equation [13]: 

                
otherwise  0

2/&  if   1
),(



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
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
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                                                                                                (13) 

A wave U ),(  that given in equation (1) is transmitted through these apertures, that have 
amplitude transmittance as given in equations (11, 12, and 13), generating a complex wave as equation 
(2). Now, the Fraunhofer diffraction pattern that given in equation (7) have been computed in these 
different apertures with the following parameters (λ = 450 nm) the green light (or could be taken any 
wavelength in the visible light), and k = 2π/λ. In our simulations, the normalized intensity distribution 
of this pattern computed by taken the fast Fourier transform of these apertures then multiplied by 
impulse response function according to equation (7). The impulse response function should be taken in 
the same size of the aperture function. The results have been simulated that are demonstrated in 
figures -(1, 2, and 3). 
The minimum value of the normalized intensity distribution inside the aperture could be calculated via 











)0,0(
),(),( min g

yxgMinyxg                                                                                                                (14) 

where )0,0(g  is the maximum value of the ),( yxg which is located at the center of the array. The 
above equation has been applied for three different diffracted apertures at different dimensions (radius 
or length 20, 40, and 60 pixels) of these apertures. 
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a                                                   b 

 

     

c                                                     d 

Figure 1- (a) Circular aperture, b-Fraunhofer diffraction pattern for (a), c- Central cross –section   through (b), 
and d- Surface plot of (b). 

 

       

  a                                                        b                                  
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Figure 2- (a)  Square aperture, b - Fraunhofer diffraction pattern for (a), c – Central cross – section  through (b), 
and d - Surface plot of (b). 

 

    

   a                                                  b 

 

  

c                                                    d 

Figure 3- (a) Rectangular aperture, b- Fraunhofer diffraction pattern for (a), c- Central cross – section  through 
(b), and d- Surface plot of (b). 
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In order to examine the efficiency of the optical imaging system, the optical transfer function (otf) 
has been simulated. otf is a measure of the imaging quality and represents how each spatial frequency 
components in object intensity that is transferred to the image. The normalize otf is given by [14]:  

                

),(

),(),(
),( 2


 
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
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ddp

ddfvfupp
vuotf

                                                                      (15) 

where f is the focal length of these lenses of the optical imaging system and the symbol   indicate to 
the complex conjugate function. This equation is applied in the same three different diffracted 
apertures using convolution equation between these apertures and their complex conjugate apertures. 
Then normalized to their maximum values and absolute values are taken for otf at the same dimension 
which equal to 20 pixels. The results are illustrated in figure (4).  

 

    

   a                                                    b 

     

   c                                                       d 
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  e                                                       f 

 

Figure 4- (a) Normalized otf for diffracted circular aperture, b- Central line through (a),c- Normalized 
otf for diffracted square aperture, d- Central line through (c), e -Normalized otf for diffracted  
rectangular aperture, and f- Central line through (e). 
It should be pointed out here that the central line through the normalized otf functions for  different 
diffracted apertures at the minimum and the best dimensions which equal to (20 and 60 pixels) 
respectively are simulated, as illustrated in figures (5 & 6). 

 

Figure 5 - Central lines of the normalized otf for different diffracted apertures at the same dimension  of (20 
pixels) 
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Figure 6 - Central lines of the normalized otf for different diffracted apertures at the same dimension  of (60 
pixels) 

4. Conclusions: 
Several important points could be concluded from the results of this studying:- 
 

1. The circular aperture makes the high frequency components vanish approximately to zero. 
This means that all information that belongs to the point source entered the aperture, while the 
others apertures (square & rectangular) truncated these frequency components as 
demonstrated in figures (1, 2, and 3). 

2. The minimum values of the normalized irradiance increases with increases the dimension of 
these apertures, but the smallest values have been calculated refers to the circular aperture 
(according to equation (14)) and equal to (3.1×10-7) at (R = 20 pixels) ,  while equal to 
(1.0×10-8) at (R = 60 pixels).  

3. otf plays an important rule that control on the efficiency of the optical imaging systems where 
the smoothness of the otf is directly proportional to increase the dimension of the apertures, 
but otf for the circular aperture more smooth than the others. This means that the high 
resolution of the circular aperture. 

4. otf is sharply decline with increases the dimensions of these apertures, but otf for the circular 
aperture becomes lower than another apertures. This gives advantage for the circular aperture 
in a high resolution image, as shown in figures (5 and 6).  
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