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Abstract

The effect of fear, the hunting cooperative process, and Allee's impact on the
behavior of an ecological system are investigated and discussed. The impact of the
delay of the prey's response to the predation risk is included. The Leslie-Gower
growth is used to describe the growth of the predator population. Firstly, the solutions'
existence, positivity, and boundedness within the limits of a suitable region in the
parametric space for all time are studied. The stability of all equilibrium points under
the surrounding environmental effects is established. Moreover, the occurrence of a
Hopf bifurcation is discovered. The stability of the bifurcating periodic dynamic and
their dynamical properties are studied. Finally, the obtained theoretical results are
confirmed and validated utilizing numerical simulation. It is observed that the system
possesses a bi-stable behavior and a Hopf bifurcation.

Keywords: Time delay, Fear, Allee effect, hunting cooperation, Leslie-Gower, Bi-
stability.
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1. Introduction

In ecology and evolutionary biology, the interaction of prey and predator has been modeled
using nonlinear differential equation systems. Numerous ecologists and mathematicians have
developed an interest in interactions that are directly related to population density impacts, such
as predation, fear, refuge, competition, etc. throughout the past few decades, see [1-4] and the
references therein. According to several experimental research, fear causes behavioral changes
that physiologically tax prey species and negatively affect their capacity for reproduction and
long-term survival. In fact, numerous analytical research demonstrated the destabilizing effects
of the manipulative philosophy of fear on ecological demographics [5-8].

The iconic "Allee effect” is one of fear's harmful effects. Other reasons include genetic
predispositions, sadness, a bad economy, and trouble finding the perfect mate [9,10]. To
investigate the relationship between a species' growth and density, Allee [11] proposed in 1931
that if the population is too sparse, the population size will drop. The isometric linear function
given by Bazykin [12] was used in the following formula to explain the Allee effect of prey:

2 p(1-H -

This model is stated to have a strong Allee effect when 0 < A < k and a weak Allee effect
when A < 0. Numerous researchers have looked at the effects of their influence on the behavior
of dynamic systems in light of the physiological connection between the term Allee and the fear
effect. For instance, Liyun et al [13] looked at how fear and additive Allee affected the prey-
predator model's structure and found bifurcation points. The dynamic behavior of each of the
one-species and two-species models was examined by Sourav [14], who discovered that the
cost of fear can significantly limit per-capita growth and contribute to the creation of numerous
Allee effects. The authors examined the stability of the interaction of an ecological model with
a substantial Allee effect and functional Sokol-Howell predation [15].

The methods employed to kill individual prey are numerous and varied; current research has
concentrated on cooperative hunting behavior displayed by some predators and how it affects
the stability of the prey population. Duarte et al. [16] examined all the dynamics of cooperative
hunting, its effects on the stability of a three-species food chain model, and the probability of
extinction owing to a chaotic crisis. Both Alves and Hilker [17] provided a biological model
that incorporated cooperative predator hunting with the Allee effect and described how to
maintain the system's equilibrium in the event of a rapid collapse of the predator community.
Using theoretical and numerical models of predator-prey interaction, Pal et al. [18] investigated
the effects of the cooperative attack on members of the prey community and its contribution to
raising anxiety among their numbers. Recent research by Pal et al. [19] examined a modified
Leslie-Gower prey-predator model with the existence of fear as a result of predator cooperation
during hunting. They found periodic trajectories across the Hopf bifurcation and an oscillation
in system stability. The impacts of fear, shelter, collaboration, and harvesting on the dynamic
behavior of autonomous and non-autonomous models were examined and analyzed by Mondal
et al. [20]. But up to the time, this article was being written, no studies had been done on the
phases of a delayed modified Leslie-Gower model under the combined influence of fear,
cooperative attacking, and the Allee effect. The dynamics of ecosystems between stability and
instability are directly impacted by temporal delays, which make systems more pragmatically
and physiologically rich. Review the books [21-23] for more details.

The modified Leslie-Gower system is created in this study. It includes a variety of unique
biological phenomena such as fear, the Allee effect, and hunting cooperation along with their
effects on both species' inhabitants' daily lives. The mathematical architecture of the problem
was represented using the delayed differential equations. This article is divided into the
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following sections. The pragmatic interpretation of the system technique is prepared in section
2. The existence, positivity, and boundedness of each proposed model trajectory were shown
in section 3 to be true. The system's equilibrium and response to various biological factors are
covered in section 4. The stability of the delay system and the favorable circumstances for the
Hopf bifurcations are covered in sections 5 and 6, respectively. Using the center manifold
theorem, section 7 examines the direction and stability of the bifurcating periodic trajectories.
The delayed system numerical simulation results, which confirmed the theoretical predictions,
were presented in detail in section 8. A discussion and conclusions are included in the final
portion.

2. Model Formulation

In order to comprehend the true dynamic behavior in the environment, and to maintain the
diversity and balance of the ecosystem, this research proposes and studies a delayed ecological
system that comprises a prey-predator and incorporates many actual biological elements. The
following adopted hypotheses explain that fear of predators, cooperation during hunting
processes, as well as the Allee effect, which arises from lack of interbreeding among individuals
of the prey, are the biological components incorporated in the proposed system:

1. Both the populations are assumed to grow logistically so that the density of the prey species
at time t denoted by x(t) grows logistically with intrinsic growth rate r, and carrying capacity
ko, while the density of the predator species at time t denoted by y(t) grows logistically with
intrinsic growth rate r; and carrying capacity proportional with consumed prey and is given by
k4 in the absence of the prey.

2. The existence of the predator imposes fear with the discrete delay 7 > 0 in the growth of

prey so that the fear function utilized Troy D’ where § represents the fear rate.

3. Due to the existence of fear in the prey population, the interbreeding among individuals of
the prey decreases, and hence the Allee effect is represented by (x —m) multiplying by the
growth rate, where m > 0 stands for the Allee effect constant.

4. The transmission of consumed prey to the predator is done by utilizing the Lotka-Volterra
type of functional response with a search rate (attack rate) a > 0, and since the predator
population is assumed to have the capability of cooperative hunting then the functional response
will be modified to (a« + S y)x, where § > 0 represents the cooperative hunting coefficient.

According to the above hypotheses, the dynamic of the described prey-predator model can
be written using the following set of nonlinear first-order differential equations.

%: (%) (1—%0)(x—m)—(a+ﬁy)xy=F1(x.3'),

dy _ _ y _
ac - Y (1 k1+a(a+ﬁy)x) = R0y),

where all parameters of the system (1) are positive and described in Table (1).

1)
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Table 1: Biological interpretation of system parameters

Parameter Description
o The growth rate of the prey population
) The fear rate.
T The time taken by prey to respond to predation risk.
ko Carrying capacity of the prey population.
m Allee effect constant.
a The search rate of the prey by a predator.
B A cooperative hunting coefficient.
n The growth rate of the predator population.
kq Carrying capacity of predator in the absence of the prey.
o The conversion rate of prey biomass to predator biomass.

The initial conditions of the system (1) are taken as follows:

x(60) = 1(8), y(8) =9,(0), -t < 6 <0, )
where ¥ = (Y, 9¥,)T € C, such that ;(8) =0, i =1,2. Here, € =C([-7, 0],R2)
represents the Banach space of continuous functions defined by the interval [—t, 0] into R%
with |||l = sup_; <9 <o {Y1(0)], 1Y, (6)]}. For biological mechanisms, it is assumed that
Y;(0) >0, i=1,2.

3. Properties of the solution

Obviously, the functions in the right-hand side of the system (1) are continuous and satisfy
the local Lipschitz condition on C, then according to the fundamental theory of functional
differential equations [24], the solution (x(t), ¥(t)) to the system (1) starting with any initial
conditions satisfies (2) exists and is unique on [0,n), where 0 < n < o. Moreover, it is well
known that a model's positivity and boundedness ensure that the model is properly posed
biologically. In reality, the solutions' positivity proves that there is a population, and their
boundedness shows how growth is naturally constrained by the availability of resources. As a
result, theorem (1) is established for the positivity of the system (1), and theorem (2) is
introduced for the boundedness.

Theorem 1. Every solution to the system (1) with the initial conditions (2) remains positive
forall t > 0.
Proof. Let X(t) = (x(t), y(t)) T € R2 be any solution to system (1) with initial conditions
(2). Then system (1) can be written in the vector form as
L0 = FX(©),X(t - 1), 3)
where
_(FR&@®), X -1) >

x[ro(1-5) G =m) (G330m5) — (@ + B x|

146 y(t—1)

y )
y [rl ( 1- o (a+By) x+kq )]
with X(t —7) = (x(t — 1), y(t—1)) 7.
Thus, by integrating both sides of the system (3) from 0 to ¢, it is obtained that
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x(t) = x(0) ef(f[ro(1—%5)))(x(s)_m) (5569)~(@+B¥() ¥()]as

t (s)
y(®) = y(0) ef"[rl O oo
Therefore, x(t) > 0and y(t) > 0 forall t > 0. n

Theorem 2. All solutions to the system (1) with the initial conditions (2) are uniformly
bounded.

Proof. Let (x(t),y(t)) be any positive solution of system (1) under the initial conditions (2).

Case I: If x(0) < kg, then x(t) < k, forall t > k,.
Assuming it is not true, then there exist t; and t, such that x(t;) = k, and x(t) > k, for all
t € (t;,t,). Thus,

x(t) = x(0)exp {fot?-"(x(s),y(s —1),y(5)) ds}
where T(x(s),y(s — T),y(s)) =1 (1 — @) (x(s) —m) (m) (a + B y(s)) y(s)

can be written as follows:

x(t) = x(0)exp {fotl F(x(s),y(s —1),y(s)) ds + f:lz F(x(s),y(s —1),¥(s)) ds}

= x(t)exp{[” F(x(s), y(s = 0),y()) ds} < x(t),
because F(x(s),y(s —1),y(s)) <0 forall ¢ € (ty,t,) which is a contradiction. Therefore,
x(t) <k, forall t > 0.

Case Il: If x(0) > k,, then tlim sup x(t) < k,.

Suppose it is not true, then x(t) > k, forall ¢ > 0 and F(x(s), y(s — 1), ¥(s)) < 0. Thus, we
have

t

x(t) = x(0)exp {fo ?'(x(s),y(s - T),y(s)) ds} < x(0).
Hence, from cases | and Il, we have

x(t) < max{x(0),k,} = M, forall t > 0.
From, the predator equation of system (1), we have
d
djt] = J’(k1 +oaM; — (1 — o My)y)

ki+oaMq

Hence, th_)nclx) supy(t) < {y(O),TﬁMl}
Biologically, predators' survival and persistence are impossible without the need to hunt prey,
therefore it is necessarytobe 1 —o g M; > 0. [

4. Existence of equilibrium points

An investigation of the equilibrium points of system (1) shows that system (1) has a number
of nonnegative equilibrium points described as follows:
i. The vanishing equilibrium point E, = (0, 0) always exists.
ii. The prey-free equilibrium point E; = (0, k;) always exists.
iii. The predator-free equilibrium point can be obtained by determining the roots of the
following equation.

x% = (kg +m)x+kym=0.

Clearly, this equation has two positive roots, which are given by x; = k, and x, = m. Hence,
system (1) has two predator-free equilibrium points E,; = (k,,0) and E,, = (m,0).
iv. Finally, the interior equilibrium point is denoted by E* = (x*, y*), where
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" *+k
while x* is the positive root of the following fifth-order polynomial equation
AxS + Ayxt + Agx® + Ayx? + Asx + Ag = 0, (5)

where

A = 3031y > 0,

A, = =3B%0%ry —mpB303ry — B303kyry <0,

As = [a?0%ky + aBolkok, (B — ad) + 3Bory + 3mPB2a?r,

+3B%0%kyry + mB3a3kyry,
A, = —a’cky — 2a%8ckok, + Bokok? (B — 2a8) — 1y — 3mpPBor,
—3B0kyry — 3mpB2a?kyry,,

As = —akyk, — Bkok? — aSkok? — BSkok3 + mry + kory + 3mpBok,ry,

Ag = —mkyry < 0.

Note that, the interior equilibrium point of the system (1) exists provided that there is a positive
point (x*,y*) that represents the intersection of the two isoclines given in system (1).
Obviously, from equation (4), y* > 0 if and only if the following condition is met.

Xt < é (6)
However, equation (5) has at least one positive root. In fact, it has a unique positive root if and
only if the following set of conditions holds.

3Borg+3mpB2org+3B2%a’koro+mB3aikyry

’8 T [a202kg+aBo?kokq] <ad ) (7)

mry + kot + 3mBokyry < akoky + Bkok? + adkok? + BSkoks
It has three or one positive root and hence there are three or one interior equilibrium point
provided that one set of the following sets of conditions holds.

A; > 0,4, <0,A5 <0

A3 < 0,4, > 0,45 <0

A3 < 0,4, < 0,45 >0 o

A;>0,4,>0,4: >0 [ (8)

A; > 0,4, > 0,45 <0

A3 < 0,4, > 0,45 >0 J
However, equation (5) has five, three, or one positive root and hence the number of interior
equilibrium points will be the same as the number of roots if the following set of conditions
holds.

A;> 0,4, < 0,45 > 0. 9)

5. Stability Analysis
An investigation of the local stability of the system (1) close to the feasible equilibrium
points is accomplished in this section. Let E = (%, 7) be any equilibrium point of the system
(1), or their equivalent vector form system (3), and let x(t) = x,(t) + X and  y(t) = y,(t) +
¥, where X, (t) = (xl(t),yl(t))T be the small perturbation vector, then the linearized system
of system (1) at £ can be written as follows:
S =2 = MX(£) + NX, (t — 1), (10)

dt
oF oF . : -~
where M = ( aX(t))E and N = ( 5% (t_T))E_. Thus the Jacobian matrix of the system (1) at E can

be written as:

J =M+ Ne ™, (11)
where A fulfills the characteristic equation:
|l =M — Ne=*| = 0, (12)
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where
2ro(ko+m)% _ o rom3(R2)e? _ -
M= k0(1+5)7) (a+ ﬁy)y 1+67 (a-}-Zﬁy)x
r1 0 52 (a+By) r [1 5 2k1+0X(a+By)
[ki+ox%(a+B¥)]? 1 [ki+ox(a+B¥)]2

0 (rom+(;—g)f2) ox _ To(k0+m) 5x~2
N = (1+69)2 ko(1+69)2 |-
Accordingly, the local stability analysis of the boundary equilibrium points of the system (1)
can be summarized in the following theorem.

Theorem 3.

(1) The vanishing equilibrium point of system (1) is a saddle point for all T > 0.

(2) The prey-free equilibrium point of system (1) is unconditionally stable for all T > 0.
(3) Both the predator-free equilibrium points of system (1) are unstable for all T > 0.
Proof. (1) Substituting the equilibrium point E, = (0, 0) in the equation (11) shows that

jE =TT )

Hence, the roots of the characteristic equation (12) will be given by:

Aor = —tom < 0and Ay, =1, > 0.
Therefore, the vanishing equilibrium point of system (1) is a saddle point for all T > 0.
(2) Substituting the equilibrium point E; = (0, k;) in the equation (11) shows that

rom
J(E) = (_ [1+8k1 +(a+ Bl kl] 0 )
ro(a + Bky) -1
Hence the roots of the characteristic equation (12) will be given by

111 = - I:IT;ZI + (a + ﬁkl) kl] < 0 and 112 = —T1 < O

Therefore, the prey-free equilibrium point of system (1) is unconditionally stable for all T > 0.
(3) Substituting the equilibrium points E,; = (ky,0) and E,, = (m,0) in equation (11),
respectively, shows that

J(Ea) = (UM 0 Tako),

0 7
rom(1l — E) —am

J(Ez) = ( ’ ko )

1
Hence, the roots of the characteristic equation (12) will be given as follows:
FOI‘ E21: 1211 = To(m - ko) and 1212 =n > 0.
FOI’ Ezz: 1221 = rom(l - kﬂ) and 1222 == T‘l > 0

0

Accordingly, for m > k,, then E,;is an unstable node while E, is a saddle point for all T >
0. However, for m < k,, then E,; is a saddle point while E,, is unstable node for all T > 0.
Finally, when m = k,, then E,; and E,, are nonhyperbolic unstable points. [ ]
Now, the stability of the interior equilibrium point is denoted by E* = (x*, y*) is discussed in
the following theorem.
Theorem 4. Suppose that system (1) has a unique interior equilibrium point. Then it is
asymptotically stable for = = 0 if and only if the following conditions are met.
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T %2
219(kg+m)x* €\ % r0m+3(i)x )
sy <@t Byt — s —
« 2k1+ox*2a+By™)
L <Y o arpy ( (13)
(rom+(;—g)x*2) ox* 7o (ko+1m) Sx*2
(1+68y*)?2 ko(1+6y*)2 J

However, there exists a positive delay value 7 at which the interior equilibrium point becomes
unstable for T > t* provided that in addition to the set of conditions (13) the following condition
holds.

P? < PZ, (14)
where all the new symbols are given in the proof.

Proof. According to equation (11), the Jacobian matrix of the system (1) at E* can be written

as
. a;1 Qg2 _2z(0 b
JCED) = (a21 azz) te (O 62)' (15)
where
21(kg+m)x* £ r0m+3(;—°)x*2
M1 == sy (a+ By )y —(1+—6y°*),
a;, = —(a+2By")x",
don = T o y*? (a+By*)
217 [kyto xt (@t By sgy
« 2k1+ox*(2a+By*
22 =T [1 -y [k1+ax*(a+ﬁy*)]2]’
b = (r0m+(£—g)x*2) ox* _ ro(ko+m) Sx*2
12— (1+68y*)2 ko(1+8y*)2
Then, the characteristic equation (12) at E* becomes:
A2+PA+P,+P;e 4 =0, (16)
where

Py = —(ay1 + az2),

Py = a1103; — Q12051

P3 = —ay1by,.
The characteristic equation (16) is a transcendental equation, thus it is obvious that applying
the Routh-Hurwitz criterion to it will be hard. Therefore, the following two scenarios are
discussed in order to specify the sign of the real parts of the equation’s (16) roots.

First: At 7 = 0, the equation (16) becomes

A2 +P A+ (P,+P;)=0. (17)
Under the following requirements P; > 0 and P, + P; > 0, which are easily satisfied if and
only if the set of conditions (13) is met, system (1) has an equilibrium E* that is asymptotically
stable and all roots of equation (17) have negative real parts according to the Routh-Hurwitz
criterion.
Second: At t > 0, itis claimed that E* is unstable for a positive delay value t*, then the roots
of equation (16) must cross the imaginary axis [25], which means it is necessary to find pure
imaginary such as A = i, with 9 > 0 satisfies the equation (16).
Now, substituting A = i into the equation (16) yields:

— 9% + P, + Py cos(97) + i [P, — Py sin(¥71)] = 0. (18)
By separating the real and imaginary components of equation (18), it is obtained that:
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Py cos(97) = 92— P,

— P;sin(91) = — P9 } (19)
By squaring and adding to each other the equations in (19) yields

9t + (PE—2P)9%+ (P2 — P$) =0 (20)
Substituting 92 = V, then equation (20) becomes:

V2 + (P? —2P,)V + (P? — P}) =0. (21)

By Descartes’ rule of signs, equation (21), and hence (20), has one positive root 9, if and only
if the condition (14) is met. Thus, for T > t*, the characteristic equation (16) has roots with
positive real part and hence E* becomes unstable. [

According to the above theorem, E* is asymptotically stable for all T € [ 0,7*) and loses its
stability once the eigenvalues cross the imaginary axisat T = t*.

6. Hopf bifurcation Analysis

This section computes the value of t* before investigating the long-term behavior of the
system (1) solution under conditions (13) and (14) for T > 7*. The system (1) experiences a
Hopf bifurcation under conditions (13) and (14) for t > t*, as will be proved in the following
theorem.

Theorem 5. Assume that conditions (13)-(14) hold, then there exists t > 0 such that the
equilibrium point E* of the system (1) remains asymptotic stable for 0 < 7 < t* and unstable

fort > 1*, where

. 1 93P,
% = min {— (arccos (0—2
Yo P3

) + Znn)};n =0,1,.. (22)

Furthermore, the system (1) undergoes the Hopf bifurcation at E* when t = 7* provided that
the following condition holds.
2P; < 29§ + PZ. (23)

Proof. According to the theorem (4), under the given conditions, there is a unique positive
root, namely 9, that satisfies the equation (20) when t = t*. Thus, the characteristic equation
(16) has a pair of purely imaginary roots given by A(t*) = + i,. Otherwise, A(t) = p(7) +
i, forallt € (t* —¢,1t" + ¢).
Now, from the equation (19) with 9 = 9,, it is obtained that
% 1 95—P,
Ty =— (arccos (P—) + Znn),n =012.. (24)

T 9 s

It is a function of 9,, and 7* can be selected as follows:
™ =mint,, n=0,1,2,..
Now, since the system (1) has a pair of purely imaginary eigenvalues when t = t*, then the

system (1) undergoes the Hopf bifurcation if the transversality condition % [Re {A(r)}]| L F

=T
0, where Re {A(7)} = p(7), is verified. So, by deriving the equation (16) with respect to t [26],
it is obtained that:

24+ Py — Pyre )L = py2e .
Further simplification gives that:

(d_)t)‘ T 21+ Py T
dt T A (P2+ PyA+Ps) A

Then, to verify the transversality condition, it is clear that
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sign {% [Re {A(T)}]}F - Sigm {Re (Z_i)_ 1 }A=i190

= sign {ke (3 (rtrers - )
PZ+2(9¢-p3)
P? 9%+ (93-P3)"
Clearly, — [Re {A()}] > 0 due to condition (23). Hence, the system (1) undergoes the
Hopf- blfurcatlon at T = ‘L'T [

203+ P? —2P3]

= sign [ = sign [

7. Direction and stability of Hopf bifurcation

Based on the center manifold and normal form theory given in [26], the direction of the
Hopf bifurcation, and the stability of bifurcating periodic trajectories are discussed in the
present section.

Theorem 6. The stability and direction of the bifurcating periodic solution can be specified
under the foIIowing determined fixed quantities.

190212 )
C;(0) = <g11920 (2 |g111% + g%)) + &

Re{C1(0)}
Re{dld(r )} ’. (25)
P, = 2 Re{C,(0)}

Im {C1(0)} + N, Im{d’l(’ )}

M, = — a
2 190'[* j

N2:

Then, the physical properties of the Hopf bifurcation for system (1) around E* at critical
pointT = t* are given below:

1. If N, >0 (N, < 0), then direction of the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic trajectories exist for t > 7* (7 < 17).

2. If P, <0 (P, > 0), then the bifurcating periodic trajectories are stable (unstable).

3. If M, >0(M, <0), then the period of the bifurcating periodic trajectories increase
(decrease).

Proof. Utilizing the linear transformation u, (t) = x(t) — x*, u,(t) = y(t) -y, u =1t — 17,
where ¢ € R, and then rescaling the time delay using t = f the system (1) yields the following
functional differential equation in C = C([—1,0], R?). Obviously, the value u = 0 leads to the

Hopf bifurcation point * that is defined in equation (22), and the periodic trajectories of system

(1) are equivalent to the trajectories of the following resulting system.
du(t)

dt = Lu(ut) + f(,u, ut)1 (26)
where u(t) = u, = (ul(t),uz(t))T €R? and L,:C — R?, and f: R x C — R?, with
— (x . (©1(0) L(P1(—1)
Lulp) = (" + ) [M <‘P2(0)) N (‘Pz(—l))]’ @7

D (€Y a a
M* = (7100 Jo1o :( 11 12)
(2) 2 Az1  QAz2)’
01

v (0 fo%z) (O bo)
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and

Zi+j+k22ﬁ flﬁ) ¢1(0) 2 (0) P5(-1)
o Sy 91(0) 91 (0)

with @) = (p:(v), (1) €C, ve[-1,0], while FD(p1,p,05). (102,
]jf?(pi(O) ©1(0) p%(-1), and fl(z)<p;(0) ®3(0) are given as follows:

_ ro(ko+m) xy_T0 )2
(@142~ romATOE T 1 +2) 721 +x")? |

fo) = (" +w (28)

Ditjz2T

@® =
f ((le 902' (p3) 1+6(P2(P3+5y* ,

—(p1 + x)[a(@y +y) + Boa(@2 + 2y*) + By*?]

2 _ * _ (p2+y7)
f ((p:l' (pZ) rl ((pZ + y ) [1 k1+0((p1+X*)[a+ﬂ((P2+y*)] 1

f(l) ai+j+k f(1)
Uk ™ 50 o) ok !
?192931(01,02,03)=(0,0-1)
f(z) 9itJ f(z)
- T .
90192 L(p1,02)=(00)

Moreover, direct computation gives the following higher derivatives:

) (3r° 2_protkotm) ., m) )
@ _ @ _ 5% Kk om) () _
110 — ((l + 2:33’ ) f101 - . (1+6y3)2 011 0
W _ Ty px, FO = 26%° (ox*- —m(];co;m)x*” m)
200 1+6y* » Jo20 T »Joo2 ™ (1+6y*)3 o (29)
@ _ . oy* [By* Y2+2(a+ﬁy*)(1 Gﬁx*y*Y)] (2) _ _ ny?Yo(at+By)?
1 — 1 - Y4
P Kook 2 2 _ 2p2
2) _ riofx*y*+2riofx*y*Y rlaﬁx Y2-r0%B%x*2y* Y,Y _ k1 + ax*(a + ,By*)-j

Y4
According to the Riesz representation theorem [27], there exists a 2 x 2 matrix given by
n(v, u) whose inputs are bounded variation functions such that

Ly = f_ol[dn(v.u)]tp(v), forp € C. (30)
In truth, it is possible to select:

® D
1) = (& + ) ( o ;é‘i) 50~ (0 Fot)ow+1) | @31)
10 01
where § (v) denotes the Dirac delta function and is defined as
5(v) = {1, v=20
— Lo, v£E O
For ¢ € C*([—1,0], R?), define that
2, € [-1,0)
Aweoe) =4 & : (32)
2, dno,p) 9(0); v=0
and
0; e [-1,0)
R - { 33
We) = f(u,qo) v =0 (33)
Thus, system (26) corresponds to
0 = AW w + R4 uy, (34)

dt
where, u,(v) = u(t + v) for v € [—1,0]. Furthermore, for ¢ € c1([0,1], (R?)*), define
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IOV s € (0,1]
apis) =4 5 , (35)
J_, [dn" (&, )] (= t); s =0
where nT represents the transpose matrix n. For ¢ € C1([—1,0], R?) and y € C1([0,1], (R?)*),
in order to normalize the eigenvectors of operator A and adjoint operator A*, the following
bilinear inner product is defined below

W(s), )) =(0) ¢(0) - f_°1 S, (e —v)dn(v) p(e) de, (36)
where, n(v) = n(v,0). Obviously, A = A(0) and A* = A*(0) are adjoint operators, then it is
obtained that (i, Ap) = (A*Y, ).

Now, since the system (26) undergoes the Hopf-bifurcation near equilibrium point E*. Then
system (26) has two pure imaginary eigenvalues + i9,7*of A, which are also eigenvalues of A*.

Now, by a simple calculation, the eigenvectors of A(0) and A* associated with the eigenvalues
+ iY,t* are computed, respectively, as follows:

— T ,i9yT v
qw) = (1,q)7e o } @a7)
q'(s) = D(1,q7) e %07
where
_ /)
U= "0
€) (38)
. (Floo+ ) |
01 = —TJ
10
Moreover, determine the parameter value of D, such that:
(q°(s),q()) = 1,(q"(s),q(v)) = 0. (39)

According to equation (36) itis observed that

(q"(s),q)) = D(1,q;) (1, q)" - J jp(1 @) e~ dn()(1,q,) el de

-1 €=0
=D (1 +q.q; + T*(q1 0(012) wot*).
Therefore, due to (39), it is obtained that

D = (1 + qlﬁ +T (Ch f001) w()t*)_l

o 1
D= (1 +q1q; + T*(ﬁfooll) e 1ot )
Moreover, from the adjoint property (¥, Ap) = (A*y, @), it is follows that (g*(s), g(v)) = 0.

(40)

Next, using a similar technique as in [27] , the properties of the bifurcating periodic
trajectories of the system (26) can be discussed and analyzed. The coefficients g;; that
determine the direction and stability of the Hopf bifurcation are given below

920 =27 D(Ry + q; Rs)
g1 =T E(Rz + ERe)

9oz =21 D(Rs + q; R;)
921 =27 D(R, + q; Rg)

(41)

where
1 * 1 1 1)  —2i9.t*
R =q1 1(13 tqq 1(01) ot > 2 (2(03 C11 0(23 tq1 f(oz) e 200t )’

1 1 1 1
R, = 2(03 tq1q1 ( 0(23 + fo(oz)) +(q1 + 1) ( 1(13 + f1(o1))
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R3 =1q; ( 1(113 + f(o11) e 119ot*) +% ( 2(013 + q_f( o(zlg + f(olz) € lﬁot*)),
Ry = Bu fiso + B2 fios + B foon + B fong +3 Bs foo

Rs =q, f(z) ( D+ g3 f(z)),

Re = 20 +CI1Q1 foz + (‘h + ‘h)fll ,

R; =q; 1(12) + 2( 2(02) +qi 0(22))1

Rg = B, f(Z) + B f(z) + B fo(zz),

with,
1___
By =21 Wyo) (0) + a1 W, (0) + W, (0) +5 W, (0),
B, :% (1)(0) e iot” 4 Q Vl/l(l)(o) e~ idot” + M/l(lz)(_l) +% VVZ(OZ)(_l)'
1
Bs == Wy (0) + W, (0),
Bys=q1 (5 Wz(ol)(o) + W1(11)(0)) = q1Bs,

1 - . * ) *
By = (G Wy (—1) e % + g WP (—1) e 90"),
Bs = 1 Wiy (0) + 2q, W, (0).
Clearly, the values of g,4, 911, and g, can be determined from the above findings, while g,
needs to determine W,,(v) and W;;(v). So, performing certain arithmetic procedures and

solving for W,,(v) and W, (v) yields:

Wao(v) = :;Z%q(O) e 100t 4 315111 G(0) e~ 100t 4 | ¢ 2i%0t"w

. . ot , (42)
Wii(v) = — 522 (0) e 0™ + 22 G(0) e ™0tV +

T
where, E; = (Ei(l),Ei(z)) € R? for i = 1,2 are constant vectors, which can be determined
from the following equations:

By 1 1 1
20— fioa  —(faio+ food €2%)] [
2 . (2) E(Z) 2 (43)
10 2190 — fo
(1 @® €Y 1
— J100 ( o0 T fo01) Ez() _[R2 (44)
2) ) @ [Re)
10 — fo1 E; o
As aresult, using Cramer’s rule, it is obtained that
(1) _ det(An) (2) _ det(Alz) (1) _ det(A21) (2) _ det(Azz)
B~ = det(A)’ E™ = det(A;)’ E," = det(A,) E,” = det(A,) (45)
where
; 1 1 1 .
_ [2“90 - 1(03 ( 0(13 + f(oi g 2100t )]
1= )
(2) ; (2)
10 2099 = fo1
[ ® (1) Iot*
A= Ry ( o10 T foo1 © g 200t )]
1= )
| R5 2“90 - 0(12)
o | 20 - - R,
10 Rs
(1) (1 €y
~ J100 ( 010 T f001)
AZ_ )
(2) _r@
10 01
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[ 1 1
A= R; _( o0 T f001)
21— (2) ’
L Re —Jo1
(1)
Aoo= — J1oo0 R,
22— _ ) R '
| 10 6

Therefore, it becomes easy to find the value of both W,,(v) and W;;(v) in equation (42) using
the obtained results from equation (45). Hence, the value of g,; in equation (41) can be
determined. Finally, utilizing the determined value of g;;, the value of the fixed quantities in
equation (25) is obtained, then all the properties of the bifurcating Hopf bifurcation follow and
the proof is completed.

8. Numerical Simulations

In the present section, the obtained theoretical results are verified utilizing numerical
simulation. The influence of time delay and all other parameters on the system's (1) dynamical
behavior is studied in detail using numerical solutions of the system depending on the following
hypothetical Dataset of biologically feasible parameters set. System (1) is solved numerically
utilizing Matlab code with version R2021a.

ro=4ky=158=2m=1a=02578=0.1 (45)
r, =05k; =1,0=051t=0.1.

The numerical solution of the system (1) is determined and represented in the form of a phase
portrait and their time series as shown in Figure (1) using the Dataset (45) and starting from
different initial points.
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Figure 1: The trajectories of the system (1) using the dataset (45) and different initial points.
(a) Approach asymptotically to E* = (7.61, 3.13). (b) The trajectories of x and y versus time.
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(c) Bi-stable between E; = (0,1) and E* = (7.61, 3.13). (d) The trajectories of x and y versus
time for bistable case.

According to Figure (1), the obtained theoretical results are verified as a system (1) has
unconditional stable prey-free equilibrium point. So once the initial points fall within their basin
of attraction it will subsequently approach it. Moreover, since the interior equilibrium point
exists and is stable the system (1) presents a bi-stable behavior. Further, the influence of r, on
the dynamic of the system (1) is investigated in Figure (2).
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Figure 2: The trajectories of the system (1) using the dataset (45) and different initial points
with different values of ry,. (a-b) The phase portrait and their time series for r, = 2.5 approaches
E; = (0,1). (c-d) The phase portrait and their time series for r, = 3.5 exhibit bi-stable between

E; and periodic dynamics.

According to Figure (2), as the parameter r, increases the solution to the system (1) is
transferred from the prey-free equilibrium point to the periodic in the interior of the first
quadrant and then to the interior equilibrium point. The bi-stable behavior is still observed
depending on the position of the initial points. Moreover, since E; is totally stable, the system
exhibits bi-stability whenever using the initial points fall in the basin of attraction of Ej.
Therefore, from now onward single initial point is used to understand the influence of the other
parameters.

The influence of time delay is investigated and the obtained numerical results are shown in
Figure (3).
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Figure 3: The trajectories of the system (1) using the dataset (45) with different values of 7. (a-
b) The phase portrait and their time series for T = 7, = 0.188 exhibits a Hopf bifurcation. (c-
d) The phase portrait and their time series for T = 0.2 exhibit small periodic dynamics. (e-f)
The phase portrait and their time series for 7 = 0.5 exhibit large periodic dynamics. (g-h) The
phase portrait and their time series for T = 1.27 exhibit asymptotic stable E;.

Figure (3) shows that the interior equilibrium point becomes unstable and the system (1)
undergoes the Hopf bifurcation at 7, = 0.188. Then the period starts increasing with the value
of 7, and then the system loses its persistence and approaches Ej;.

The influence of k, on the system's (1) dynamic is studied numerically and presented in Figure

(4).
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Figure 4: The trajectories of the system (1) using the dataset (45) with different values of k.
(@) The phase portrait for k, = 4.9 approaches to E;. (b) The phase portrait for k, =5
approaches to E*. (c) The phase portrait for k, = 15.5 exhibits periodic dynamics. (d) The
phase portrait for k, = 20 approaches to E;.

From Figure (4), it is observed that the behavior of the system (1), as increases k, transfers
from E; to E™, then to periodic, and finally returns back to E;. Now, the impact of varying
on the dynamics of the system (1) is presented in Figure (5).
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Figure 5: The trajectories of the system (1) using the dataset (45) with different values of §. (a-
b) The phase portrait and their time series for § = 2.1 exhibit periodic dynamics. (c-d) The
phase portrait and their time series for § = 2.9 approaches E;.
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According to Figure (5), as increasing ¢ the system undergoes periodic due to the instability of
E*. Then as the parameter increases further the system approaches E;. Now the effect of varying
B on the system’s (1) dynamic is studied numerically and the results are presented in Figure
(6). However, the effect of varying r; is shown in Figure (7).
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Figure 6: The trajectories of the system (1) using the dataset (45) with different values of g.
(a-b) The phase portrait and their time series for f§ = 0.05 approaches E*. (c-d) The phase
portrait and their time series for § = 0.11 exhibit a periodic dynamics. (e-f) The phase portrait
and their time series for § = 0.115 approaches Ej;.
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Figure 7: The trajectories of the system (1) using the dataset (45) with different values of r;.
(a-b) The phase portrait and their time series for r; = 0.1 approaches E;. (c-d) The phase
portrait and their time series for r; = 0.3 exhibit periodic dynamics.

It is observed from Figure (6) that g has a similar effect as that of § on the system’s
(1) dynamic. On the other hand, Figure (7) shows that as decreases r; the interior equilibrium
point becomes unstable and a periodic dynamic occurs. Then decreasing this parameter further
makes the system approaches E;.
Finally, the numerical simulation shows that the parameters m, «, o, and k; have a similar
influence on the system’s (1) dynamics as that shown in §.

9. Conclusions

A delayed prey-predator model involving fear, cooperative hunting, and the Allee effect is
proposed and studied. The properties of the solution were studied. It was obtained that there
exist four boundary equilibrium points. There is at least one interior equilibrium point. The
stability analysis of system (1) was investigated. It is obtained that the vanishing equilibrium
point of system (1) is a saddle point for all = > 0. While the prey-free equilibrium point of
system (1) is unconditionally stable for all T > 0. However, Both the predator-free equilibrium
points of system (1) are unstable for all T > 0. The interior equilibrium point is locally stable
for T € [0, 7y) and unstable for 7, < t. However, the system undergoes the Hopf bifurcation at
To. The stability and direction of the bifurcating periodic dynamics were investigated using
normal form theory and center manifold theory. Numerical simulation is used to verify the
obtained finding and understand the influence of parameters on the system’s (1) dynamics.

According to the numerical simulation, it is observed that increasing the growth rate of the
prey population has a stabilizing effect on the system’s (1) dynamics. However, increasing the
time prey takes to respond to predation risk (delay) has a destabilizing effect on the system's
dynamic (1) up to a specific value and then the prey goes to extinction. Decreasing the carrying
capacity of the prey population causes extinction in the prey population while increasing it
destabilizes the interior equilibrium point first and periodic dynamics occur, then at a critical
value, the system approaches a prey-free equilibrium point. Decreasing the growth rate of the
predator population destabilizes the system.
It is obtained that, increasing the fear rate and a cooperative hunting coefficient destabilize the
system’s (1) dynamic. Similarly, as the fear rate and a combined hunting coefficient, the other
parameters (Allee effect constant, the search rate of the prey by a predator, the conversion rate
of prey biomass to predator biomass, and carrying capacity of predator in the absence of the
prey) influence the system’s (1) dynamics. Finally, since the prey-free equilibrium point is
unconditionally asymptotically stable that means it has won a basin of attraction then the system

3919



Al-Jubouri and Naji Iraqi Journal of Science, 2024, Vol. 65, No. 7, pp: 3901-3921

undergoes a bi-stable behavior either between the interior point and the axial point or between
periodic dynamics and the axial point.
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