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Abstract

The aim of this paper is to study the convergence of an iteration scheme for
multi-valued mappings which defined on a subset of a complete convex real
modular. There are two main results, in the first result, we show that the
convergence with respect to a multi-valued contraction mapping to a fixed point.
And, in the second result, we deal with two different schemes for two multivalued
mappings (one of them is a contraction and other has a fixed point) and then we
show that the limit point of these two schemes is the same. Moreover, this limit will
be the common fixed point the two mappings.
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1-Introduction and Preliminaries
The notion of modular spaces was introduced by Nakano [1] in 1950 as a generalization of metric

spaces and then redefined and modified by Musielak and Ortiz [2] in 1959. Many results about fixed
points in these spaces were considered such as [3- 6]. Further and the most complete development of
these theories are due to Orlicz, Mazur, Musielak, Luxemburg,Turpin [7] and their collaborators. In
the present time the theory of modular and modular spaces is extensively applied, in particular, in the
study of various Orlicz spaces [8], which in their turn have broad applications[9]. Recently, Abed [10]
defined the best approximation and proved results about proximinal set, Chebysev set and existence
invariant best approximation. see also [11] Now, recall the following
Definition 1.1[3] Let M be a linear space over F(= R or ¢). A functiony:M — [0, ] is called
modular if
(i) y ) =oifandonlyifv = 0;

(i) y(av) =a(v) for a €F with || =1, forall « € M;

(iii)  y(av+ pu) <yW)+yWiffa,p =0, forallu,v € M.
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If (iii) replaced by
(iii) y(av + pu) < ay(w)+py), fora,p =0, a + p =1, forall v,.uem,
Then M, is called convex modular.
Definition 1.2 [3] A modular y defines a corresponding modular space,i. e.the spac M, given by
M, = {v € M:y(av) - 0 whenever a — 0}.
Remark 1.1[4] By condition (iii) above, if u= 0 then y(av)=y (% Bv) <y(Bv), for all a,f inF,
0 < a < B . This shows that y is an increasing function.
Example [12]
The Orlicz modular is defined for every measurable real function f by the formula(1) y (f) =
Je( @) dm(t)

Where m denotes the Lebesgue measure in R and ¢ : R — [0, o) is continuous in which ¢(u) =
Oifand only if u = 0 and ¢(t) - o as n — oo . The modular space induced by the Orlicz modular
Y, is called the Orlicz space L%

(2) The Musielak- Orlicz modular space . Let

y(f) =Jo(w, f() du(w),

Where u isa o — finite measureon 2 ,and ¢ : QO X R — [0, o0) satisfy the following :

(i) @ (w,u) is a continuous even function of u which is nondecreasing foru > 0 , Such that
¢(w,0) =0, ¢(w,u) >0foru# 0and p(w,u) > wasn - oo

(i) @(w,u) is a measurable function of w for each u € R

Definition 1.3 [6] The y-ball, B, (u)centered at u € M, with radius r > Oas

B.(u) = {v EM,;y(u—v)< r}.

The class of all y-balls in a modular space M, generates a topology which makes M, Hausdorff
topological linear space. Every y-ball is convex set, therefore every modular space is locally convex
Hausdorff topological vector space [7].

Definition 1.5 [6] Let M,, be a modular spase.

(@) A sequence {v,} c M, is said to be y-convergentto v € M, and write v, Lo i y(v, —v) =
0 as n— oo,
(b) A sequence {v, } is called y- Cauchy whenever y(v,, — v,,) > 0as n,m — oo.
(c) M, is called y- complete if any y- Cauchy sequence in M,, is y- convergent.
(d) Asubset BcM,, is called y- closed if for any sequence {v,} cB is y- convergent to a point in B
(e) A y-closed subset BcM, is called y- compact if any sequence { v, } cB hasa y- convergent
subsequence.
(f) Asubset Bc M, is said to be y- bounded if daim,(B) < o, where
daim, (B) = sup{y(v —u); v,u € B}
is called the y- diameter of B.
(9) The distance between v € M, and Bc M,, is
y(v — B) =inf {y(v —u);u € B}.
Definition 1.6 Let M, be a modular space, and A,B are two non — empty subsets in 2My et
H, (A, B) denotes Hausdorff distance of A and B that is defined as the following
Hy, (A,B) = max { supgeay(a- B),suppep v(b - A)}.

Lemma (1.1) Let M, be a modular space and let A,and B, real sequences in CB(M,,) Then we can
choose a,, in A, , b,, in B, such that

y(@,— by)=H, (A, ,By) + &, limy_e, =0 ..(11)
Definition (1.7) [13] or [14] Let A be a non-empty set and T: A — 24 be a multi-valued mapping,
the point x € A is said to be a fixed pointof T & xeT(x). And x is a fixed point of a single-valued
mapping T ifand only if x = T(x)
Definition (1.8) [15] A mapping T: A — 2Mv such that

H, (Tu,Tv) < K y(u—v) foralluv €A....(1.2)

is said to be multi — valued Lipschitz if there exists k > 0 and multi — valued contraction (shortly,

mv.c) ifk < 1.
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The following lemmas are required in the next section.
Lemma (1.2): [15] Let {a,} cR*such that a,,;<(1- 1,) a, + 0, wWhere A, (0,1), for all
neN, Yo_;A,and g, = o(4,). Then lim,_.a, =0.
Lemma (1.3): [16,17] Let {a,} € R* suchthat a,,,<(1-1,) a, +1, €

where 4, €(0,1), for all neN, Yp_;A,=oand ¢ > 0 is fixed number. Then 0 <
lim,_.supa, < e¢.
exists a 8(g) > 0, such that

if y(v) = y(u) = 1 and (v—u)Zs,thenyG(v+u)> <1-6.

2. Main Results
Let A be a non-empty subset of M, , and T: A — 24 u, €A. If the sequence {u,, } A is defined by

Upt1 € (1 - an)un + a,Tv,

Vp€(1-Pn) up +Bn Tuy, ¥n20 .....(1.3)
or
Uny1 = (1 —an )un +api, U, € TUn ,Vn=0

vp,= (1= B u,+Bnén, &, €Tu,, ¥Yn=>0 ...(1.4)

Two convergence results for iteration (1.4) are established dealing with contraction. We start with the
following needed lemma:-

Theorem (2.2) : Let M, be a complete modular space and @ # A < M, A is a nonempty closed. If
T: A - CB(A) ism.v.c mapping, then T has a fixed in A
Proof
Selectu, € Aand u; € T(uy) By Lemma (1.1) there must existu, € T(u;) such that
y@wi—uy) < Hy(T(u), T(u))+K
similary , there exists u; € T'(u,) such that

y(uz—uz) < H (T (uy), T(up))+K?
By induction, there is the sequence {u,, } in A such that Vi,€ N, u;,; €T (u;) and
Y (i = Uipr) < kPd (uo,ug ) + ik

Therefore ,

Yico¥ (Wi — iy ) Sy (o — wy ) BiZp k') + X2oik!
This prove that {u, } is a cauchy sequence. so, since A is complete there exist u € A
such that limy_,c, uy = u. Also, the continuity of T lied to lim,_, H, (T(u, ),T(w)) =0
Sinceu, €T (u,_1),then

lim, o dist(u, ,T(w))=Ilim,oinf {y(u,—v):v €T w)}=0
This implies that
dist (w,T(w)) =inf {y(u—v):v €T (w)} =0 And, the closeness of T (u), it must be the
casethatu € T(u)
Theorem (2.3) Let M, be a complete convex real modular space, let @ # A < M, and A be convex
and closed subset of M, and T:A——> CB(A) be a mv.c mapping. Let { a,}, { Bn} S
(0,1)satisfying:
i) 0 < a,,Pn<1
(il) Xpmian = ©
then foru, € A, thesequence {u, } in (1.4) converges to a fixed point of T.
Proof:
The existence of the fixed point follows from the Theorem (2.2). Let p € A be a fixed point of T'.

By conditions (1.4), (1.1) and (1.2), we get

Upp1 —P = (1= adup+ anptn —p where pu, €Tv,

Y (Unyr —p) = v((1 = apdun + an un — ((1_an)p+anp))

=y (- a)u,—p)+ an o —p)

S(1-ap)ywn—p)+any (un—p)
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<(1-a)y(u,—p)+ anHy (Tvy, Tp) + anéy
< A=—ap))y@y —p)+ anky (W —p)+ ané,
Again , from conditions (1.4), (1.1) and (1.2), we get
]/( un+1_p):(1_ an)y(un_p)+ (an)/((l— .Bn)un+ .Bngn_(l_.gn)p_ ﬁnp)-l'
Ay, & , where g, € Tu,
S(l_ an)y(un_p)"' ank(l_ ﬁn)y(un_p)‘l' ankﬁny(gn_p)+ )

S(l_an)y(un_p)+ ank(l_ ﬁn)y(un_p)-l'ankﬁnHy(T Up,Tp) + anen +
Uy k B &n

S(l_an)y(un_p)+ ank(l_ .Bn)y(un_p)+ankzﬁny (Un—p)+ anen+ ankPrey
S((]-_an)'i' ank)y(un_p)‘l' Un &n + an k B &y

Thus,

V(un+1_p)=((1_ an(l_k))p(un_p)+0(an)
Let us denote

an =y (Up —p)

A = a,(1—-k)€e(0,1) vn=0
And using lemma ( 1.2 ), we obtain lim,_. a, = 0. which implies that lim,_,y(u, —p) =
0, thuslim,,u,=p
Theorem (2.4): Let M, be a complete convex real modular space, let @ # A & M, and A be a
convex and closed subset of M,. Let &£ > 0 be a fixed number and T, S : A —> C(A) be two multi-
valued mappings. If S is a m.v.c mapping and lim,,_,., w,, = p, where p is a fixed point of T, for any
given wy €4, the sequence {w,, } in (1.4) with {a,, }, { 8.} satisfying
i) 0<a,,Bn<1
(i) Ynqap =
andif H (T z,Sz) < €, forall z €A, then p is a common fixed point of T and S.
Proof:
The existence of the fixed point g of S follows from the Theorem (2.2). For the mapping S from
(1.4) be
Upe1 = (1—-a,) u, +a, 6, , where 6, € Sv,, ¥n >0
v, =(A-F)un+pPné&, where&, eSu,, Yn=>0
So, from conditions (1.1) and (1.2), we get
Wni1 = Unpr = (1 - an) (Wp-up) + an(tn—6n), where 6, € Sv,
V(Wn+1 - un+1)= Y ((1 - an) (Wn_un) tay (.un_gn))
< (1 _an) V(Wn - Up ) +a’ny(.un_9n)
=1-an) v(Wn - up ) +any (Un — @y + @, — 6,), Where @, Sg,
= (1 _an) V(Wn - Up ) tany (.un - wn) + any (wn - gn)
< (1 - an) V(Wn - Up ) +anHy (Tgn ’ Sgn) + anHy(S In 'Svn) +ay bn + an dn
=1 -an)yWn - up ) +apetanky(gn — vn) + an by + andy
= (1 _an) V(Wn - Up ) tayet+ay, k Y ((1 - ﬁn ) Wn +ﬁnfn - (1 - ﬁn ) Up +ﬁn(n)). + a, bn +
a?’l dn
where &, € Tw,, ,{, € Su,
= (Z“an) YWp — Uy ) tapetanky (-0 Y wyp — up )+ P& —G) + an by +
a?’l n

V(Wn+1 - un+1)S (1_an) V(Wn — Up ) +an£+ank(1_ﬂn)y(wn - Up )+
an kﬁny(fn_(n)-}_an bn+ an dn

=(1_an) V(Wn — Up )+an£+ank(1_ﬁn)y(wn - un) +ankﬂny (fn_en‘l' én —
() +ayb,+ a,d,, where e, €Sw,

S(l_an)y(wn - un)+ang+ank(1_ﬂn)y(wn_ un)+ank.8ny
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(fn _en) +ay kﬁn V( €n _(n) + a, bn + a, dn
V(Wn+1 - un+1)£(1_an) V(Wn - un)+an€+ ank(l_ﬁn)y(wn_ un)+
an k.BnHy(T Wn, Swn) +a, kﬁnHy(S Wn,SWn ) + ay bn + a, dn t+a, k.BnCn +a, kﬁn fn
< (1_an) V(Wn — Uy ) +an€+an k(l_ﬁn)y(wn - Up )+an kﬁn 5+an kzﬁnY(Wn -
Un )+ an bn+ an dn +a, kﬁncn +a, kﬁn fn
S((l_an)+ank (1_ﬁn)+ank2.8n ) V(Wn — Up ) +(1+kﬁn)ang +anbn+ andn +
an k.BnCn +a, kﬁn fn
S((1_an)+ank(1_.Bn)+ankﬁn)y(wn - Un )+2an£+anbn+ andn +ankﬁncn+
an kB fn
Thus,
V(Wn+1 - un+1)S ((1_an(1 —k)))/(Wn — Up )+2ang+anbn+ an dn +an kﬁncn-}'
an kBn fn
Finally
anb,+ a,d, +a, kfp,cn+a, kB, fn = 0 as n — oo
Let us denote
apn =vWp — up ) Ap=ay(1 —-k) € (0,1) ;Vn=0
and from Lemma (1.3) it follows that
O<limsupa, <e
n—o0

Since ¢ is arbitrary lim,,_,, supa, = 0 and so lima,, = 0, which implies that, and

n—-oo
lim y (x, — up ) =0 ,and lim y(en — up) = y(p—q) soy (p—q) =0,hence p=gq.

Corollary (1):
Consider we have M,,Aand Tas in Theorem (2.2). For any uy €A, upy =1 —apu, +
anVy, vy €Tu,,n=>0
and {a, }<= R* satisfying:
@O0 < a,< 1
()T @y = o
the iteration sequence {u,} converges to a fixed point of T
Proof: Follows from Theorem (2.3) with 3, =0.n > 0

By the proof of Theorem (2.2), we have that the iteration sequence u,,, = Tu, converges to a
fixed point of a m.v. c. mapping T.
Corollary (2):
LetM, ,Aand Tas in Theorem (2.3). Let & > 0 be a fixed number. If T,S: M—— C(M) are
two m. v. c. mappings, {u,,} defined by condition (1.4) with {a,, }, {8, } satisfying
() O0<ap,Bp<1
(i) Xpmap= o
andifH, (Tz,Sz)forall ze M, then p is a common fixed point of T and S.
Proof:
Since T, S are m.v.c. mappings then T, S have a fixed point p, q, and by Theorem (2.3) the iteration
{u,, } in condition (1.4) converges to p and then by Theorem (2.4)
y(p—q) =0
Hence
p=4q
So, p is a common fixed point of T and S. m
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