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Abstract 

Lung cancer is the first killer among all the known malignancies. Late detection of 

this malignancy is a major contributor to advanced-stage diagnosis and poor 

outcomes. Pulmonary microbiota has been recently reported as one of lung cancer 

risk hallmarks that is still to be fully understood. This study aimed to explore the 

potential role of microbiome in predicting lung carcinogenesis. Microbiome Library 

Construction of the 16SrRNA variable region (V3–V4) was conducted by gene 

amplicon sequencing using the Illumina sequencing platform. Microbiome data was 

analysed using Version QIIME2-202006 software for species annotations. The 

sequences were denoised by the DADA2 plugin implemented in QIIMETM2. The 

bacterial amplicon sequence variants (ASVs) were then identified. The results of 

16SrRNA sequencing and gene library bioinformatic analysis indicated that 

Haemophilus, Prevotella, and Streptococcus were on the top of abundant genera. 

The species Haemophilus influenza has also been identified among the top 12 

bacterial species in malignant and non-malignant lung samples. Microbiome-based 

identification of the human airway microbiota may provide effective predictive 

biomarkers for lung carcinogenesis. 
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 الخلاصة  
الورم        لهذا  المتأخر  الاكتشاف  يعد  المعروفة.  الخبيثة  الأورام  جميع  بين  الأول  القاتل  هو  الرئة  سرطان 

بأن   مؤخرًا  التقارير  اشارت  له.  السيئة  والنتائج  المتقدمة  المرحلة  في  التشخيص  في  رئيسياً  عاملًا  الخبيث 
فهمها   يتعين  يزال  لا  ولكن  الرئة،  بسرطان  الإصابة  خطورة  عوامل  من  واحدة  تمثل  قد  الرئوية  الميكروبات 
إنشاء   تم  الرئة.  بتسرطن  التنبؤ  في  للميكروبيوم  المحتمل  الدور  استكشاف  إلى  الدراسة  هذه  تهدف  بالكامل. 

 الجينamplicon عن طريق تسلسل   16SrRNAللجين  (V3-V4)المتغايرة   للمنطقة  Microbiomeمكتبة  
تسلسل   منصة  الــ   . Illuminaباستخدام  بيانات  تحليل  برنامج    Microbiomeتم  -QIIME2باستخدام 
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في   تسلسل QIIMETM المنفذ  متغيرات  تحديد  تم  تسلسل   (ASVs) .البكتيريا Amplicon ثم  نتائج  أشارت 
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 و  Haemophilus وتحليل المعلومات الحيوية لمكتبة الجينات إلى أن الاجناس البكتيرية 16SrRNAالجين 
Prevotella و Streptococcus     النوع تحديد  تم  كما  الوفرة.  ذات  الأجناس  رأس  على  كانت 

Haemophilus influenza    نوعً بكتيري في عينات الرئة الخبيثة وغير الخبيثة. قد يوفر    12من بين ألاكثر
لتسرطن   فعالة  تنبؤية  حيوية  مؤشرات  البشري  الهواء  مجرى  في  للميكروبات  الميكروبيوم  إلى  المستند  التحديد 

 .الرئة
 

Introduction 

      Lung cancer ranks as the third most incident malignancy after breast cancer in females 

and prostate cancer in males. However, it represents the first cause of cancer related deaths 

among all the known cancers up to now. Late detection of lung cancer is the main reason for 

increasing mortalities among lung cancer patients [1]. Having been one of the most prevalent 

cancers in the world, lung cancer poses a serious threat to human health due to its high rates 

of morbidity (1.82 million) and mortality (1.59 million) per year [2]. Increasing evidence has 

revealed a connection between lung cancer and microbial-related pulmonary disorders such as 

chronic obstructive pulmonary disease (COPD), pneumonia and cystic fibrosis, and lung 

cancer. Therefore, the pulmonary dysbiosis of certain microorganisms is believed to be linked 

to lung tumorigenesis [3]. 

 

       Generally speaking, the microbial community of archaea, bacteria, and eukarya that 

inhabit particular sites inside the body, mainly the aerodigestive tract, alongside outside the 

body (i.e., skin) is termed as 'microbiota' [4]. Nevertheless, lungs were believed to be free of 

microbiota until the last decade. The human microbiota that lives on and in the human body 

are thought to outnumber human cells 10-fold.  

 

      Bacterial microbiota has a significant impact on the etiology of health and disease because 

of the large bacterial communities found inside the human body and the range of activities 

they participate in [5]. Both smokers and non-smokers have had bacterial populations found 

in their broncho-alveolar lavage samples [6], pleural fluid [7], and lung tissues, where lung-

based microorganisms contributed to the etiology of non-malignant respiratory disorders 

[8,9]. Although recent studies have identified the lung cancer microbiome in samples 

collected from respiratory tract fluids and tissues, the profile variation of the pulmonary 

microbiota between normal and malignant lung tissues alongside their role in the prediction of 

lung carcinogenesis is not fully uncovered [10]. 

 

       Discovering the pathophysiological mechanisms of pulmonary illness's progression, 

particularly in patients with chronic obstructive pulmonary disease (COPD), requires data 

collection about the lung microbiota and their alterations during disease courses [11]. 

Managing the lung microbiome information may help develop new preventative therapeutic 

strategies for various malignant pulmonary diseases and for a better understanding of the lung 

microbiome association between malignant and non-malignant pulmonary diseases [12,13].  

Traditional culture techniques no longer represent the standard for microbial queries since it 

has been predicted that most of the bacterial species of human microbiota cannot be cultivated 

using the traditional isolation methods [14,15]. The breadth and depth of the microbiota 

present in both the healthy and diseased lung have been shown by advanced microbiome 

techniques that identify bacterial DNA sequences, including the 16S ribosomal RNA gene 

(16S rRNA) [16,17,18]. 

 

     Several phyla have been previously identified in the microbiome of lung cancer such as 

Bacteroidetes, Proteobacteria, and Firmicutes, in addition to several bacterial genera 
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Prevotella, Neisseria, and Streptococcus [19]. Moreover, it has been recently reported that 

particular genera are dominated in malignant lung tissues with advanced metastases stage, 

which may suggest their role in cancer progression [20]. On the other hand, the domination of 

the families Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae may be associate with 

normal lung tissues, linking the normal microbiota with good prognosis of lung cancer 

patients [21]. 

 

       Predicting molecular biomarkers has recently been explored in respiratory tract cancers 

[22,23]and other malignant diseases [24]. Despite recent increases in extensive research 

focusing on pulmonary microbiome, the key role behind involving lung microbiota as one of 

the lung cancer risk hallmarks remains to be fully known. We, therefore, hypothesized that the 

respiratory microbiota can possess tumorigenic activity through dysregulation or even 

modulating oncogenic genes and thus they are important to unravel the potential role of the 

microbiome in lung cancer [25]. Dysbiosis of microbiota could be a determinator of early 

pathohistological events in lung tissue and thus microbiome could act as a potential biomarker 

for predicting lung carcinogenesis [26]. 

 

      We, therefore, aimed to explore the comparison between microbiomes in samples of lung 

cancer patients and healthy controls, and how the identified microbiota could serve as 

predictive biomarkers for lung carcinoma. 

 

Materials and Methods 

2.1. Patients and Sample Collection 

      A total of 151 clinical samples were collected from patients admitted to Ghazi al-Hariri 

Surgical Specialities Hospital and individuals attending Tuberculosis Institute in Baghdad 

during the period from September 2021 to February 2022. The samples were gathered based 

on various inclusion criteria; such as age, sample type, smoking status, and health status of 

recruited individuals. The current study was ethically approved by the College of Science 

Research Ethics Committee at the University of Baghdad under the reference number 

"CSEC/0122/0015". All samples were anonymously gathered from people who provided their 

informed consent. 

 

2.2 Extraction of Genomic DNA 

     The QIAamp DNA Microbiome Kit (cat. no. 51704 - QIAGEN) was utilized to extract the 

genomic DNA of microbiota from the collected samples The Qubit® dsDNA Assay Kit in 

Qubit® 2.0 Flurometer (cat. no. Q32851 -Life Technologies, CA, USA) and NanoDrop 2000 

spectrophotometer (Thermo Fisher Scientific Inc., USA) were used to measure the DNA 

integrity, concentration and purity. Quality control of DNA extracts was further analysed on 

1% agarose gel electrophoresis at 100 voltages run for 40 minutes. The extracted DNA was 

diluted to 1 ng/uL with deionized distilled water to achieve the concentration needed to 

amplify the variable region (V3–V4) of the 16S rRNA gene. 

 

2.3. 16S rRNA Gene Amplicon Sequencing 

     Polymerase chain reaction (PCR) amplification was conducted using particular primers 

tagged with sample-specified barcodes and targeting the V3-V4 region of the bacterial 16S 

rRNA gene with modified Linker Primer Sequences (forward: 5’- 

CCTAYGGGRBGCASCAG -3’; reverse: 5’-GGACTACNNGGGTATCTAAT -3’) [27]. 

 

2.4. Library Construction, Quality Control and Sequencing 

The PCR products with the proper sizes between 400 and 450 bp were selected on 2% agarose 
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gel electrophoresis at 80 voltages run for 40 minutes and purified with a Qiagen Gel 

Extraction Kit (cat. no. 28706X4 -Qiagen). 

      The same amount of PCR products from each sample were pooled, end-repaired, A-tailed, 

and further ligated with Illumina adapters.  Microbiome libraries were sequenced and created 

on a paired-end Illumina platform to generate 250bp paired-end raw reads. 

 

2.5. Microbiome Data Analysis 

     Microbiome sequences obtained from the examined samples were analyzed using the 

QIIME™ (Quantitative Insights into Microbial Ecology) software (Version QIIME2-202006) 

for species annotation.  The sequences were denoised using the Divisive Amplicon Denoising 

Algorithm 2 (DADA2) plugin implemented in QIIMETM2. The bacterial amplicon sequence 

variants (ASVs) were then identified. 

 

     Alpha diversity was assessed by Chao1, the Shannon index, and phylogenetic diversity 

[28].  Beta diversity was evaluated by weighted and unweighted UniFrac distances [29]. The 

differences in microbiota content between normal and cancerous samples were investigated 

by principal coordinates analysis (PCoA) and represented as box-and-whiskers plots [30]. 

Linear discriminant analysis (LDA) was employed to identify the differential taxonomy by 

effect size (LEfSe) [29]. 16S rRNA abundance-based metagenomic function prediction was 

carried out using Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 2 (PICRUSt2) software [31]. 

 

2.6. Statistical Analysis 

     All data was calculated as mean values alongside their standard deviation or 95% 

confidence intervals. Data categorized according to the sample type (malignant or normal) 

were compared using a one-way analysis of variance or the χ2 test (for categorical variables) 

[32]. Similarity analysis was carried out to identify the differences in the microbiota 

communities. The Wilcoxon rank-sum test or t-test was employed to indicate any significant 

differences in alpha or beta diversity and the UniFrac dissimilarities [33]. The Kruskal-Wallis 

rank-sum test was used to distinguish the significant differential abundance among different 

groups in LEfSe analysis. All significance tests were two-sided, and p-values < 0.05 indicated 

statistical significance [34]. All statistical analysis tests were conducted using SPSS software 

(Version 27.0; SPSS, USA). 

 

Results and Discussion  

3.1. Clinical Distribution of the Collected Samples 

     All collected clinical samples of sputum and pleural fluid were distributed among 3 groups 

of recruited individuals.  1st group represented lung cancer patients (n=21; 14%). 2nd group 

demonstrated cases of lower respiratory tract infections (n=86; 57%). The rest of the samples 

(n=44; 29%) were collected from apparently healthy individuals. 

 

3.2. 16SrRNA Amplification 

     The genomic DNA of the microbiota was subjected to purification from the collected 

samples. Twenty-two out of 30 samples, selected according to specified inclusion criteria, 

passed the quality control (QC) analysis. For the other 8 failed samples, no band was obtained 

from the PCR after running the product on the gel (Figure 1). The PCR amplification results 

of 16SrRNA variable regions V3-V4 (16SV34) showed that one-third of the examined 

samples (n=10; 33.3%) met the sample quality requirements for library preparation 

(construction) and sequencing amplification since the amplified microbial DNA required 

nucleic acid fragments in the target region only (Figure 2). 
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Figure 1: Representative image showing the bands of extracted DNA on 1% agarose gel 

electrophoresis, where (S) lane represents a standard sample (50ng), (M1 and M2) lanes 

represent the Trans 15k plus DNA molecular weight marker, which is 2μL loaded premixed 

containing eight different sizes of linear double-stranded DNA fragments, while (1-30) 

lanes demonstrate samples ranged in the order (All loaded with 2μL of DNA samples). 

Figure 2: The image depicts PCR products on 2% agarose gel electrophoresis, where (M1) 

illustrates Trans 100bp DNA ladder loaded as 1μL per well; samples ranged in the order all 

loaded as 3μL per well. 

 

     Based on these results, the passed samples were chosen for DNA library construction of 

16SV34 and sequencing analysis afterward. The DNA QC and subsequent 16SV34 

amplification are fundamental stages to ensure the accuracy and reliability of sequencing 

data achieved from the bacterial DNA source. Therefore, the quality data of the expected 

output could be obtained as high as possible [35]. 

 

3.3. OUTs Clustering and ASVs Annotations 

      To explore the potential changes in the lung microbiome, ten representative samples 

represented 2 groups: lung cancer patients (n=3) and individuals with and without benign 

pulmonary diseases (n=7). Both groups were subjected to sequencing analysis according to 

the demographic data of the recruited individuals. The raw data obtained for the elected 

samples by sequencing had a total of 512,975 paired-end reads (PE). Around 69.78% of reads 

out of the PEs were combined to 357,955 resulting in an average of 404 bp merged reads per 

sample (Table 1). 
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Table 1: Raw reads and merged tags for each sample after pair-end reads merging by 

sequencing analysis. 

Sample 
Raw PE 

Reads 
Combined1 Uncombined2 

Combined 

(%) 
Combined (bp) Avg._len.(bp) 

LP1 45,862 41,394 4,468 90.26 17,489,577 423 

LP2 48,709 23,333 25,376 47.9 8,132,394 349 

LP3 51,282 31,508 19,774 61.44 10,944,468 347 

P1 47,304 34,225 13,079 72.35 14,080,811 411 

P2 49,641 37,704 11,937 75.95 15,885,747 421 

P3 42,270 29,891 12,379 70.71 12,113,801 405 

S1 100,494 58,542 41,952 58.25 23,402,899 400 

S2 42,296 34,362 7,934 81.24 14,569,207 424 

S3 44,349 31,901 12,448 71.93 13,159,768 413 

S4 40,768 35,095 5,673 86.08 14,884,207 424 

Total: 512,975 357,955 155,020 69.78 144,662,879 404 

 

1 (The combined tags sequences achieved by trimming), 2 the leftover uncombined sequences. 

Usually, the raw data gained by sequencing has a particular rate of dirty data. To produce 

precise and trustworthy outcomes for bioinformatic analysis, splicing and filtering of raw data 

were firstly conducted to achieve clean data using DADA2 implemented in QIIMETM2 to 

lessen noise [36]. Initially, the reads that excluded bacterial primer sequences or that included 

low-quality primer sequences were removed [37]. ASVs feature sequence table corresponding 

to the representative sequence of Operational Taxonomic Units (OTUs) for predicting 

functional profiles was conducted using DADA2 to denoise the sequences (Table 2), where 

the ASVs were identified, and any sequences with abundance < 5 were filtered out to achieve 

the final ASVs [38]. 

Out of the total combined (n=357,955), qualified PE reads (n=353,791) were achieved after 

filtration of the low-quality reads (n=4,164), followed by removing the barcodes, adaptors, 

primers, and chimeras. The latter represented artifact sequences produced by incorrectly 

joined sequences that happened during the PCR process utilizing a mixture of templates. 

Effective tags, after excluding the chimera sequences known as 'Nochime', were obtained 

(n=317,915) for the next steps of bioinformatic analysis at an average length of (400 nt) with 

52.5% GC ratio and 97.93% quality; which was statistically valid for OUT clustering (Table 

2). 
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Table 2 : Statistical outcomes of processed data achieved after splicing and filtering the low-

quality reads bioinformatically. 

Sample Qualified1 Nochime2 Base (nt)3 

Avg. 

Len.(nt)4 Qual%5 GC%6 

LP1 40,912 31,870 13,458,594 422 98.11 52.23 

LP2 22,913 21,509 7,391,483 344 97.77 52.97 

LP3 31,119 30,096 10,362,668 344 98.09 50.43 

P1 33,873 32,606 13,400,095 411 98.2 52.78 

P2 37,296 35,873 15,115,887 421 97.57 52.97 

P3 29,686 26,058 10,537,997 404 97.84 54.82 

S1 57,795 45,017 17,788,804 395 98.22 53.43 

S2 33,918 32,601 13,819,717 424 97.46 51.48 

S3 31,560 29,381 12,100,721 412 98.05 52.41 

S4 34,719 32,904 13,954,697 424 97.99 51.9 

Total 353,791 317,915 127,930,663 400.1 97.93 52.542 
 

1 the qualified sequences after Raw Tag sequences carried out filtering short length sequences 

with low quality; 2 the Tags filtrating the chimera sequences (i.e. Effective Tags ultimately 

utilized for subsequent bioinformatics analysis; 3 the number of DNA base pairs in the 

ultimate Effective Tags; 4 the length average of the Effective Tags; 5the nucleotide 

sequencing proportion that has quality values in Effective Tags more than 97%; 6GC (%) the 

ratio of GC content in Effective Tags. 

 

3.4. Distance Variation of Microbial Community 

     Based on the OUTs clustering and the findings of ASVs annotations characteristics of each 

examined sample, the relative bacterial abundance was obtained at 7 taxonomic levels 

representing the kingdom, phyla, class, order, family, genus, and species. Principal 

components analysis (PCA) was conducted to estimate the distance variation in the structure 

of the microbial community. PCA is a statistical procedure to extract structures in data by 

orthogonal transformation and reducing dimensionalities of data [39]. It extracts the first two 

axes reflecting the variety of samples to the most extent and thus can reflect high-dimensional 

data's variation in a two-dimensional graph, which reveals the simple principle embedding in 

complex data. The more similar composition of the community among the samples is the 

closest distance of their corresponding data points on the PCA graph. As shown in Figure 3, 

the proportion of the 1st principal component (PC1) is 36.45% ; which spanned the most 

variation in distance differences in the structure of the studied microbiota community. The 

2nd principal component plotted spanned the second most variation accounting for 19.14%. 

The PCA results exhibited that OTUs clusters were distributed among all the plotted 

quadrants. Surprisingly, the OTUs clustering distance of the pleural samples was the closest, 

followed by OTUs of lung cancer samples. All examined samples were overlapped in two of 

the four quadrants. However, sputum samples showed higher divergence in comparison to 

other malignant and non-malignant lung samples. These results suggested that the subsets of 

malignant and non-malignant lung samples shared OTUs components at a closer distance than 

that of normal sputum samples. 
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Figure 3: PCA diagram representing the principal components (PCs) samples data of each 

related group. The first principal component (PC1= 36.45%) plotted on the X-axis spans the 

most variation, while the second principal component (PC2=19.14%) plotted on the Y-axis 

spans the second most variation. PCA plot elucidates that differences in the microbial 

community of the lung cancer samples and non-malignant pleural ones are less variable when 

comparing with sputum ones. 

 

3.5. Microbiome Taxonomy 

A histogram of investigated phyla was depicted based on their abundance in each examined 

sample. Bacterial phyla abound in all the tested samples Actinobacteriota, Bacteroidota, 

Cyanobacteria, Firmicutes, Fusobacteriota, and Proteobacteria (Figure 4). Recent studies have 

reported Proteobacteria and Firmicutes abundance in lung cancer [40]. It is worth mentioning 

that an abundance of Cyanobacteria has been reported in the blood microbiome of breast 

cancer patients [41]. However, detecting chloroplast in the tested samples represented a 

challenge as its microbiome data and even mitochondrial ones tended to be filtered in a recent 

relative study [42]. Therefore, discussing the related microbiome data was overlooked in the 

current study. The bacterial genera were explored using the aligned representative sequences. 

The findings further demonstrated that the explored phyla had included 31 genera as follows; 

Actinobacteriota (Atopobium, Actinomyces, Rothia), Bacteroidota (Muribaculaceae, 

Bacteroides,Rikenellaceae, Capnocytophaga, Porphyromonas, Prevotella, Alloprevotella), 

Proteobacteria (Acinetobacter, Pantoea, Neisseria, Pseudomonas, Haemophilus, 

Achromobacter, Stenotrophomonas, Escherichia/Shigella), Firmicutes (Lactobacillus, 

Blautia, Faecalibacterium, Monoglobus, Allobaculum, Oribacterium, Solobacterium, 

Streptococcus, Veillonella, Gemella) and Fusobacteriota (Fusobacterium, Leptotrichia). 
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Figure 4: Histogram of Relative Abundance of Microbiota at the phyla level based on 

representative sequences (ASVs) after denoise and frequency distribution of ASVs in each 

sample as well as visualization of annotation results of ASVs at the genus level of the 

bacterial microbiota. 

3.6. Microbiota Abundance and Phylogenetic Relationship 

     To further study the microbiome's relative abundance and their phylogenetic relationship, 

heatmaps alongside evolutionary trees of explored genera were drawn based on their 

annotated OTUs in each examined sample (Figure 5).  

      Interestingly, the abundant genus belonging to Proteobacteria in lung cancer samples was 

Hemophilus (LP1=11.866%, LP2=6.815%, and LP3=1.362%), while in non-cancerous 

control counterparts (P1=0.085%, P2=0.148% and P3=1.030%). Therefore, the existence of 

Haemophilus spp. in non-malignant pulmonary samples was less abundant than that in lung 

cancer samples. However, normal sputum controls varied between the low (S1=0.198%) to 

highest abundance (S4= 82.885%) of this bacterial genus. Indeed, the Haemophilus spp 

abundance in the sputum microbiome may reflect the microbial enrichment of the oral 

environment. This may, therefore, provide an informative clue about the potential relation 

between Hemophilus spp.-related airway diseases such as COPD and lung carcinogenesis 

[43].  

      Interestingly, two well-known oncogenic bacterial genera (Fusobacterium and 

Porphyromonas) have also been identified in the microbiome sequencing analysis. Even 

though these onco-bacteria usually colonize the upper airways and are associated with oral 
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malignancies, they have been reported to implicate lung cancer development due to their 

long-term colonization [44,45]. 

 
Figure 5: Heatmap showing genus OTUs Abundance. Sample symbols are shown on the x-

axis, while their OTU annotations are presented. Genera clustering tree is presented to the 

left of the figure. The heatmap scale is measured by the Z score, which represents the 

taxonomic relative abundance of a bacterial genera calculated as a ratio between the mean of 

the relative abundance of all samples in the taxa and their standard deviation. 

 

3.7. Airways Microbiome is a Potential Predictive Lung Cancer Biomarker 

The cladistic analysis gives an accurate definition of organisms’ taxonomy in which the 

organisms are grouped into ‘clades’ according to the latest common ancestor and are best 

illustrated by cladogram design referring to the relationship between the diverse levels of 

clades in different groups of samples [46]. Investigation of distinctive microbiota at the 

phylum level may, therefore, provide a better idea about potential effects on predicting lung 

carcinogenesis (Figure 6). 
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(A) 

 

(B) 

Figure 6:  Cladogram and enrichment analysis among lung cancer and control samples. (A) 

Cladogram  for phylogenetic relation of control and lung cancer genera. Cladogram was 

structured by the Linear Discrimination Analysis (LDA) Effect Size (LefSe) method to  

investigate the phylogenetic allocation of bacterial microbiota that was significantly 

indicated in lung cancer compared to control samples. (B) LDA scores illustrated 

significant bacterial differences  within cancer and control samples at phyla to genera levels. 
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     The algorithm of Linear Discrimination Analysis (LDA) Effect Size (LefSe) permits the 

recognition of biomarkers of high dimensional data among various examined categories [47]. 

LefSe was employed to explore the identifying taxa within lung cancer samples and their 

controls. The taxa levels revealed that Haemophilus alongside other 3 genera including 

Acinetobacter, Pantoea, and Neisseria, were significantly enriched in the lung cancer samples 

in comparison to the pleural controls. 

 

      A ternary plot, one of alpha diversity analyses, has been employed to show the bacterial 

genera distributed as circles among the groups on the triangle vertices. The circle sizes 

indicate the OTUs relative abundance of the dominant taxa, and the size of the circles is 

proportional to the relative abundance, while the location of the circles represents the 

proportional abundance of each group compared to other ones [48]. The ternary plot 

demonstrated that Hemophilus, Prevotella, and Streptococcus were the most enriched genera 

among the studied sample groups with almost similar proportions of around (20%) in lung 

cancer samples. The plot below depicts that the abundance of Haemophilus spp. accounted for 

almost (80%) of sputum samples, while it was around 4% in the pleural samples. 

Interestingly, Veillonella was identified with approximately 10% abundance in malignant 

lung samples, whereas in benign pleural and sputum ones, the abundance accounted for 52% 

and 38% respectively (Figure 7). 

  

 

 
Figure 7: Ternary plot elucidating OTUs abundance landscape of the bacterial genera of 

malignant, non-malignant and healthy samples within the examined groups distributed on its 

three vertexes. The bigger and closer circle to a group vertex the higher genus abundance in 

that group. Ternary plot depicts that the most enriched genera are Hemophilus, Prevotella, 

Streptococcus. 
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Enrichment of the respiratory tract with Hemophilus, Prevotella, and Streptococcus 

microbiota has been recently determined to associate with ERK/PI3K pathway alterations in 

respiratory epithelial cells, which are relevant to lung cancer [49]. A very recent study has 

reported that Prevotella and Veillonella were strongly associated with lung cancer progression 

[50]. Taken together, these outcomes support our perception of how much microbiota inhabit 

the lower respiratory tract and may motivate early events in the neoplastic transformation of 

the epithelium layer. 

 

     Since Haemophilus was on the top of abundant genera of Proteobacteria, the species 

Haemophilus influenza was identified among the top 12 bacterial species in malignant and 

non-malignant lung samples. H. influenza represents the main bacterial cause of COPD-

related smoking, which is reported as a potential risk factor for lung cancer since 

approximately 50–80% of lung cancer cases with smoking status have previously diagnosed 

with COPD [51, 52, 53]. Overall, regardless of smoking history, age, or sex, patients with 

COPD have a 4- to 6-fold higher chance of developing lung cancer [54]. Having been 

detected in lung cancer patients alongside the non-cancerous ones, Haemophilus spp. may 

potentiate their role as microbiome biomarkers for developing lung cancer. 

 

Conclusion 

      Non-cultural 16SrRNA sequencing techniques have explored a complex microbiome 

harbored by the respiratory tract which is not detectable by conventional cultivation methods. 

Our findings of the lung microbiota genera Hemophilus spp. alongside the genera 'Prevotella, 

Streptococcus' could potentiate their prediction role in earlier lung tumorigenesis and thus 

may offer a platform for further exploration of novel prognostic microbiome-based 

biomarkers for lung carcinomas. Foreseeable future investigation on a larger scale relative to 

studies is highly recommended. 
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