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Abstract

In this paper, the conditions of occurrence of the local bifurcation (such as saddle-
node, transcritical and pitchfork) near each of the equilibrium points of a
mathematical model consists from four-species Syn- Ecosymbiosis are established.

Keywords: equilibrium point, , bifurcation, sotomayor theorem

*aaa gule W)
Ghad = 3 1k = sk Aeals — aslell A — Clunly) o

-

rAaMAl
Lla e ddadi JS e il (Dysia 5 JSSili agimdan) Jaddl gl by pledadl a8
Dy sl el G alladl il

1. Introduction:

Mathematical modeling is an important interdisciplinary activity which involves the study of some
aspects of diverse disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-
economics, Genetics, Pharmacokinetics are some of those disciplines. This mathematical modeling has
taken a lot of attentions in recent years and spread to all branches of life and drewing the attention of
every one. Ecology relates to study of living beings in relation with their living styles. Research in the
branch of theoretical ecology was initiated by Lotka [1] and by Volterra [2]. Since then many
scientists and researchers gave a lot of time and interest to this branch of study, see for example Meyer
[3], Cushing [4], Paul Colinvaux[5], Freedman [6], Kapur [7, 8].

Bifurcation analysis gives regimes in the parameter space with quantitatively different asymptotic
dynamic behavior of the system. Bob W. Kooi [9] studied the numerical bifurcation analysis of
dynamical systems with simple Lotka-Volterra models or more elaborated models with more
biological detail. Remy and Christiane R. [10 ], studied the bifurcation analysis of a generalized gause
model with prey harvesting and a generalized Holling response function of type Ill. Rami & Raid[11]
proposed and analyzed a prey-predator model with four Syniecological system with Holling type-II
functional response, they obtained a set of sufficient and necessary condition which guarantee the lacal
and global stability of this system.

In this paper however, we will established the conditions of the occurrence of local bifurcation of a
mathematical model proposed by Rami & Raid[11].
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2. Mathematical model:[11]
An ecological model of four species Syn-Ecosymbiosis, comprising of prey-predator,
commensalisms and competition, model is proposed in [11] .

ﬂ:rlNl 1-— N1 — a1Ng N2 +cN1N3
dT kq b+ N1

dN2 agNg 2
—e No —diNo —doN
dT b+ Ng 2 T2 8272
dNg3 N3
— —pN3|1- —= |- a1N3N 2.1
aT 2 3[ kzj 1N3N4 (2.1
dNg N4
—2 —r3Ng|1-—2 |- asN3N
FEE 4( ng 2N3Ny4

where 0<e <1 represents the conversion rate.
This model consists of a prey (for example, Anemone) whose population density at time T denoted
by Nl, the predator (for example, Butterfly fish) whose population density at time T denoted by

N 2, the host (for example, Hermit crabs) whose population density at time T denoted by N3, and
the host's competitor species (for example, other type of Hermit crabs) whose population density at
time T denoted by N 4 -Moreover all the parameters are assumed to be positive and described as
given in [11].

Now, for further simplification of the system (2), the following dimensionless variables are used
in[11].

a
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Thus, system (2) can be turned into the following dimensionless form:

dx = x{(l— X) —MjL z} = xf1(x,y,z,w)
dt uo + X

d eu1x
—y=y{ 1 —U3—U4y}=yf2(x,y,z,W)

dt uz + X
% = z[u5(1—u62) —W] = zf3(x, y,z,w) (2.2)
((jj—\f[v = W[u7(1— ugw) — U9z] = wfg(X,y,z,w)

with x(0) >0, y(0) >0, z(0) > 0 andw(0) > 0. It is observed that the number of parameters have

been reduced from fourteen in the system (2.1) to ten in the system (2.2). Obviously the interaction
functions of the system (2.2) are continuous and have continuous partial derivatives on the following
positive four dimensional space:
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4 4,
Ry ={(X, ¥, Z,w) € R™:x(0) > 0,y(0) > 0,2(0) > 0, w(0) > 0} . Therefore these functions are Lipschitzian on R? ,

and hence the solution of the system (2.2) exists and is unique. Further, in the following theorem, the
boundedness of the solution of the system (2.2) in R f is established by [11].

Theorem 1: All the solutions of system (2.2) which initiate in Rf are uniformly bounded.

3. Existence and stability analysis of system (2.2):[11]

The four-species Syn-Ecosymiois model given by system (2.2) has at most twelve equilibrium
points, which are mentioned with their existence conditions in [11] as in the following:
The equilibrium points E = (0,0,0,0), which known as the washout point, and the single species

points E; = (1,0,0,0), E, = (O,O,UL,O), Es= (O’O’O'ul) are always exists.
6 8

The first planar equilibrium point E4 =()?, ?,0,0) exists uniquely in Int. Rf (interior of R2)of
Xy —plane if in addition to the condition X <1 at least one of the following conditions are satisfied:

1
u, > = (2.3a)
2
eul2 + u§u4 < UgUg + 2U5U4 (2.3b)
The second planar equilibrium point
_ = o ~ _ Us(ugu7 —ug) ~_ U7(usug —-1)
Eg = (0,0, Z ,W) where W= TT— and z = Te— (2.4a)

exists uniquely in the Int. Rf of ZW —plane provided that one set of the following conditions is
satisfied:

usug >1 and UgU7 >Ug (2.4b)
UgUg <land UgU; <Ug (2.4c)
The third planar equilibrium point Eg = ()_(,O, Z,O) = (uﬁ—ﬂ ,O,ui ,O) always exists in Int. RE
6 6
of XZ —plane.
The fourth planar equilibrium point E- =(§,0,0,W)=(1,0,0,uij always exists in Int. Rf of
8

XW —plane.
Now, the first three species equilibrium point
i« . _ 1
RV - 1- —
Eg = (X, Y, Z,O) where ¥ = Ueluz + X)(ulu;()]+(u2 +%) and %= ug (2.5a)

And X is positive constant exists uniquely in Int. Rf of Xyz — space if the following conditions

are satisfied:
2uoug >ug +1 (2.5b)

u6(eul2 +U§U4)<U6(U1U3 +2uzu4)+ 2Uouy (2.5¢)

Ug +1>ugX (2.5d)
The second three species equilibrium point
o R d) == 0<%<1
Eg = (&, 9,0, W) where Shra— ug »and (2.6)
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exists uniquely in Int. Ri’ of Xyw — space if the following conditions are hold :

1
Uy >= (2.6b)
279

eu12 + u§u4 <UUg +2U5Uy (2.6c)

The  third  three  species  equilibrium  point Eio= (X' 0,z°, W') where

L _ Usugu7ug —ug + u7(usug -1 /0
U5UGU7Ug —Ug '

=z, W =w @.7)

exists uniquely in the Int. Rf of XZW — space if condition (2.4a) or (2.4b) is satisfied.

* * * *
Finally the positive (coexistence) equilibrium point Eqq = (X Y ,Z W ) where 2" =7, w*=w
(2.8a) , and

y= (up +x)[sp (1= %) +u7 8] (2.8b)
Ug S
exists uniquely in Int. R_‘:' if and only if the following condition is satisfied.

O<x <—=— (2.8¢)

S2
where Sl = U5U6 —1 and, 52 = U5U6U7U8 —Ug

4- The stability analysis:[11]

In the following the stability analysis of all feasible equilibrium points of system (2.2), which is
down by [11], is summarized in the following in order to study the bifurcation that depends on this
results .

Note that, the symbols 4, /1iy’/1iz and 4, represent the eigenvalues of the Jacobian matrix
J(Ej);i=12,...11 that describe the dynamics in the x—direction, y—direction,
z —direction and W—direction respectively,

A- The Jacobian matrix J (E)of system (2.2) at the trivial equilibrium point Eq =(0,0,0,0) has
the eigenvalues: Agy =1>0 , gy =-U3 <0, 4g; =U5>0 and Ay, =U7>0,50 Eg isa
saddle point.

B-The eigenvalues of the Jacobian matrixJ(El) of system (2.2) at the first single species

equilibrium point E; = (1,0,0,0) are:
ﬂlx =1>0 , /11y =

point.
C-The eigenvalues of the Jacobian matrix J(EZ) of system (2.2) at the second single species

equilibrium point E = (O,O,UL,O) are:
6

euq
Uo +1

— U3, 44; =Ug >0 and Ay, =U7 >0, accordingly E; is a saddle

u
Aox =1+2>0 , Jpy =—Ug<0 Ay, =—U5 <0 and A, =U7 =<, thus E; is a
6 6

saddle point.
D-The Jacobian matrix J(E3)of system (2.2) at the third single species equilibrium point

E;= (0,0,0, ui) has the following eigenvalues:
8
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A3y =1>0, /13y =-U3<0, A3, =Ug —i and Ag,, =—U7 <0, then E3 is a saddle
point.

E-The Jacobian matrix J (E4)of system (2.2) at the first two species equilibrium point
Es= ()?, V,0,0) has the following eigenvalues:

Al Al
/14)(:_74.5 A12—4A2,andﬁ4y=—7—5 A12_4A2

/142 :US >0 , and ﬂ4W:U7 >0
where

oo

- u; X ~
Af]. = X—1—¥2+U4y,and A2 U4)A(y[1
(up +x)

upy +9U12U27<37
U +%)°) (U +%)°

Thus E4 is unstable.

F-The Jacobian matrix of system (2.2) at the second two species equilibrium point

Es =(0,0,Z,W)= (0,0, U7 (Ustig—1) s (uguiz _UQ)) has one positive eigenvalues given by:

UslgU7Ug —Ug " UslgU7Ug —Ug
Asx =1+Z >0, A5y =—U3 <0.Thus Eg is saddle unstable.

G-The eigenvalues of the Jacobian matrix J (E6) of system (2.2) at the third two species equilibrium

point Eg = ()_(,0, Z,O): (UGH O,ui,O) are:
6

UG’

- eus +euqug —UoUgUg —Ug—U3U
AGX:_X<O!2'6y: 1 1Y6 —H2Y346 —H3 36,
U2U6+U6+1

Ugl7 —u
Ag, =—Us <0 and Ag,, = > Je 9

Therefore, if the following conditions hold
ey (1+ug) <Uus(upug +Ug +1) (2.9a)

UgUl7 <Ug (2.9b)
Then EG is locally asymptotically stable. However, it is a saddle point otherwise.

H-The eigenvalues of Jacobian matrix J (E7) of system (2.2) at the forth two species equilibrium

point E- :(1,0,0,ulj are:
8

Jry =—1<0, Jgy =%§“f”, I =%§‘1 and Ay, = Uy <0.
Therefore, if the following conditions hold

eu; <ugz(u, +1) (2.10a)

Usug <1 (2.10b)

Then E7 is locally asymptotically stable. However, it is a saddle point otherwise.
I- The Jacobian matrix J(Eg)of system (2.2) at the first three species equilibrium

pointEg = (X, y,2,0)= [7(, Y, UL ,0) has the following eigenvalues:
6

Jox =~ + 1A% ~ kg, and Jgy -~ -1 [A? —4hy
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Ag; =—U5 <0 and 44 _Uslly ~Ug
Us
Where, A —_x Uy v,and & 7 Uy euf up Xy
! A\l——x —1+7v2 +U4y’ A2=U4Xy 1— _ + 3
(up +X) (up +X) (up +X)
Therefore if the following conditions are satisfied
m
% <1 (2.113)
(U2 + X)
UgU7 <Ug (2.11b)

then, Eg is locally asymptotically stable in the R_ﬂ'. However, it is a saddle point otherwise.
J- The Jacobin matrix J(Eg)of system (2.2) at the second three species equilibrium point

Eg = ()A(, y,0, W) = ()2, )A/,O,ul) has the following eigenvalues:
9

Ug
where
. Uqy N ) 21U, R0

Blz_x _1+71y 5 +u4y,and BZ=U4)2)7 1— ury +eu1 uz Xy
Uy + X U, + X Us + X
(up +X) Uz +%)%) (Uy+%)°

Therefore if the following conditions are satisfied:

u A

Lz <1 (2.12a)

(up +%)

ugug <1 (2.12b)

So, Eg is locally asymptotically stable in the Rf_’. However, it is a saddle point otherwise.
K-The Jacobian matrixJ(E;y) of system (2.2) at the third three species equilibrium point

Eig = (X' 0,2°, W') has the following eigenvalues:

L[] 2 ° 2
/uoz=—821 +%\}B{ —4B3, and /110W:_821 _% By -4BS

Aox =—X" <0, and Aoy = ey x° —U3(U2 +X.)
y U2+X.

where
By =UsUg z® +U;UgW*, and BJ = (UsUgli7ug —Ug)z° W
Thus if the following conditions are satisfied
UsUgU7Ug > Ug (2.13a)

euy x° <u3(u2 +x') (2.13b)

then, ElO is locally asymptotically stable in the Rf. However, it is a saddle point otherwise.
L-The Jacobian matrix J(E;q)of system (2.2) at the positive equilibrium point

* * * *
Ell = (X Y .2 W )has the following eigenvalues:
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R R
/111x=—71+%\/R12—4R21 /111y=—71—%\/R12—4R2 ,

R R
M1 =—73+%‘/R32—4R4 ,and /111W=—73—%‘/R32—4R4

where

*

* 2 * *

* u
R = x| —1+ 1Y Uy |, euUXy
<U2+X)2 (U2+X)2 (U2+X)3

* * * *
Ry =UslUgZ +U;UgW ,and R, =(UsUgl;Ug —Ug )z W
Thus if the following conditions are satisfied.
*

+ULY ™ Ry =uyX y | 1-

Uiy S <1 (2.14a)
(Uz + X )
UsUgU7Ug > Ug (2.14b)

Hence, E,, is locally asymptotically stable in the. However, it is a saddle point otherwise.

5.The local Bifurcation.

In this section an investigation for dynamical behavior of system (2.2) under the effect of varying
one parameter at each time is carried out. The occurrence of local bifurcation in the neighborhood of
the equilibrium point of system (2.2) are studied in the following theorem.

Theorem 2: If the parameter u3 passes through the value U§=%, then the equilibrium point E1

transforms into nonhyperpolic equilibrium point and if
U+ 2u (1+Uy)%#1 (2.15)

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation.However violate
condition (2.15) gives pitch-fork bifurcation.

Proof: According to the Jacobian matrix of system (2.2) at Ej that is given by  J(Ep) it is easy to
verify thatas U, =U3 | the J(El,as) has the following eigenvalues:

ﬁlx =1>0, ﬂly =0

Az =u5 >0 and Ay =u, >0.

Let v°=(6.65.03.69)" be the eigenvector of J(E,u3) corresponding to the eigenvalue of

U
1+u,

cand 62

4, =0-Then it is easy to check that V°=(f%9§,9§,010)T ,where bl1=-1<0,bjp=~
1

represents any nonzero real value. Also, lety® =(hf,h3,h3,hq)" represents the eigenvector of

JT(EL u3) that corresponding to the eigenvalue ily =0. Straight forward calculation shows that

y°=(0,h3,00)7 ,where N, represents any nonzero real number.

oF
Now, since g Fu, (X,u3)=[0,-y.0,0]" ,where X =(x,y.z,w)" and F =(fy, f, f3, )"

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
oF

T Fu, (E1,u3) = [0.0,001". and the following is obtained:
3
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ol o o T
y [Fu, (B1,u3)]=(0,h2,00(0.0,00)" =0. Thus system (2.2) at E1 does not experience any saddle-node
bifurcation in view of sotomayor theorem [12]. Also, since

ol 0y, O o o T 0 0 ° 0
Y [DRy, (B ug)v 1= (0:12,00)(0.62.00)" =o% #0. here, DRy, (B1u8) =—-Fu, (Xu3) [y g
ol r_2 0y/. 0 . 0O _bfz 02 2
Moreover, we have Y [P7Fu(ELus)v.v )]—aaz {—1+u1+2u[1(1+u2) }to' by condition
(2.15).Here, DZFua(E1,U§):DJ(X,U3) |X:El,u3:u§'Then by sotomayor theorem, system (2.2) possesses a
transcritical bifurcation but not pitch-fork bifurcation near Eq where u, =u3

ol 2 0y/. 0 . 0
However, violate condition (2.15) gives that Y [D7Fu(ELW3)(V',V)1=0 and hence further

T [D%Fy, (B U3 v )] = ﬂé hp 0
by (1"‘”2)

Sotomayor theorem, system (2.2) possesses a pitch-fork bifurcation.

computation  shows .Therefore according to

Theorem 3: If the parameter U, passes through the value U7— , then the equilibrium point E2
transforms into nonhyperpolic equilibrium point and if

Us (1-Ug)
AT (2.16)

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork
bifurcation can occur.

Proof: According to the Jacobian matrix of system (2.2) at E2 that is given by J(E2) it is easy to
verify thatas U7 =u7 , the J(E2,U7) has the following eigenvalues:

Aoy =1+ui>o, Ay =-u3<0,42; =-U5 <0 and Ay =0.
6
Let v=(.02.03.02) be the eigenvector of J(E2.U7) corresponding to the eigenvalue of

bs4
A,, =0 Then it is easy to check that ‘_’=(0'0'—§‘9_4'6’_4)T Where bgz=-us <0,bg=—i<0, and 9

represents any nonzero real value. Also, let X:(m,h_z.@h_@T represents the eigenvector of

a7 (E2,u7) that corresponding to the eigenvalue 4,,, =0- Straight forward calculation shows that

y= (O,O,O,h_4)T , Where h_4 represents any nonzero real number.

oF

Now, since 3, =iy (X,u)=[000,w(L-ugw)] " ,where X =(x,y,z,w)" and F=(f, f2, f3, 2)"

With fj ;i=1234 represent the right hand side of system (2.2). Then we get

OF
Fre = Ry, (E2,u7) =[0,0,0 01" and the following is obtained:

T
X [Fu, (E2,u7)1=(0,0,0,n4)(0,0,00)" =0. Thys system (2.2) at E2 does not experience any saddle-node
bifurcation in view of sotomayor theorem. Also, since

YT [DRy, (E2.u7)v] = (000.h4)(000.6)" =yl 0.

481



Majeed Iragi Journal of Science, 2015, Vol 56, No.1B, pp: 474-491

here, DFu7(E2,U_7)=aﬁXFu7(X,U7) |X:E2,u7:u_7'

Moreover, we have

yT[DZHJ7(E2.U_7)(y.y)]=0_42@[ Uy -D+2u U8]¢0 by condition (2.16).

Here, D2Fu7(E7ru_7):DJ(X'U7) Ix:Ezquu?-Then by sotomayor theorem, system (2.2) possesses a
transcritical bifurcation but not pitch—fo& bifurcation near E2 where U7 =u7 .

T2
However, violate condition (2.16) gives that ¥ [P HJ7(E2’U_7)(Y’Y)]:0, and hence further computation

Trn3 T
shows Y [D7Fy, (E2,u7)(v,v.v)1 = (00,0,h4)(0000)" =0~ Therefore according to Sotomayor theorem,
system (2.2) possesses a pitch-fork bifurcation.

Theorem 4: If the parameter us passes through the value us— , then the equilibrium point E3
transforms into nonhyperpolic equilibrium point and system (2.2) not possesses any saddle-node
bifurcation ,transcritical bifurcation, but no bifurcation, and no pitch-fork bifurcation can occur.

Proof: According to the Jacobian matrix of system (2.2) at E3 that is given by  J(E3) it is easy to

verify that as u5=E , the J(Es,E) has the following eigenvalues:
Azx =1>0, Agy =-u3 <0, 43z =0 and Agy =-u7 <0.

Let v= (E,EZZ)T be the eigenvector of J(E3,Us) corresponding to the eigenvalue of 43z =0. Then

it is easy to check that Vv=(00.63~ 93) ,where as=—3—:<0y@=—u7 <0,and €3 represents any

|| g IIIE’ |

nonzero real value. Also, Iety (hlh_h__4) represents the eigenvector of JT(Es,E) that

corresponding to the eigenvalue 43z =0. Straight forward calculation shows that ;=(0,0,E,0)T :

where h3 represents any nonzero real number.
Now, since
oF

=Ry, (X,u,)=[00,@~u, 2)z0]" ,where X =(x,y.zw)' and F =(fy, fp, f3, f4)"

8u5

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
OF

o = us (X us) =[0,0.0.01" and the following is obtained:
5

i P T
y [Fyg (B3, u5)] (0,0,,3,0(0,0,00)" =0.

Thus system (2.2) at E3 does not experience any saddle-node bifurcation in view of sotomayor

T — =
.
theorem . Also, since ¥ [DFug(E3, us)v]=(0.0,13,0(0,000) =0,

here, DFu5(E3,U5)=&Fu5(X,U5) |X=E3,u541=5' Thus system (2.2) at E3 does not experience any

transcritical bifurcation and pitch-fork bifurcation occurs at E3 where us =E .
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Theorem 5:Assume that x<iand at least one of conditions (2.3a) and (2.3b) are hold and the

Y %) | VU +R)2 Y2 —4(eu,%9) (U, +%)°
"~ 2(eu,Xxy) 2(eu,Xy) '

parameter U passes through the value then the

equilibrium point E4 transforms into nonhyperpolic equilibrium point and if the condition

Uy
(ule)z >1 (2.17a), and
by
e # ==
- 2.17b) ,
- - Uy ~ euyu,y
where P11= X(—“ (uzi—é)zJ and b21:((u21+§;/2) are hold then system (2.2) possesses a saddle-node

bifurcation, violate condition(2.17b) and if the condition
2(up + x) (b12+b11u2) +

] * 6216122‘]151@[51% + Xy + 2uz] (2.17¢).
by 201 (b 1+ b 10y 1u7 + by 1(u2 + X))

6’1 h]_(uz + X)bg{

n U X
where b12 =73 l+;( holds then system (2.2) possesses a transcritical bifurcation finally, if condition
2

(2.17c¢) reverses and the condition
M1 =Mg3, (2.17d), where

(Elzuigl) {ZyHﬁ 612 {291+91(u2 +X) + a +2>2/) +2eu2ﬂ and,

Mo = AFh611§13913 {(u FX) 42 611(EU2 }

by 2 (U +X) 2 21

holds, then system (2.2) experience a pitch-fork bifurcation at E4 where up =ty. .
Proof: According to the Jacobian matrix of system (2.2) at Ea that is given by  J(E4) it is easy to
verify that as U, =U1, the J(E4,U1) has the following eigenvalues:

A4x - A4y =0,s0 either Agx =0 or A4y =0

A4z =ug >0 and Agyw =U7->0Q.
We will take 44x =0 at u =t

Let V=(4,6.63.64)" be the eigenvector of J(E4.n) corresponding to the eigenvalue of

A4x =0 Then it is easy to check that vV = Cr b” 9100) where & represents any nonzero real value.

Also, lety=(n.ho.hg.ha)" represents the eigenvector of  J' (E4.lp) that corresponding to the
eigenvalue 44x =0 Straight forward calculation shows that

y = (hL, —E—Fn l:l—sﬁl , where M represents any nonzero real number.
21

oF )=[- L exy

Now, since M:Ful(x,u1 Up X U +X 00] ,where X =(x, v, z, w) and F=(fy, fo, f3, f4)

With fj ;1=1234 represent the right hand side of system (2.2). Then we get
——Fu(E4 W =375 +X ue?/x 0.01" and the following is obtained:

3 [, (B4, = (.- %Hl,—%ﬁl,ox— W gl X Hl{ b“e}to

Up+X " Up+X ' Uy +X by,
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612621(—Uz —1)+611(U2 +i)§1ﬁli(621+9611) N Uzyélﬁl

l512621012 +)2)2 612621(112 +>2)2

Also, since VT[DFul(E4101)\7]= £0,
. _ o
by condition(2.17b), here, DFu1(E4.u ):a_XFul(X'ul) |X=E4,u1=01'

Then system (2.2) possesses a saddle-node bifurcation in view of sotomayor theorem.

T o
Now, violate condition (2.17b) gives that ¥ [PFu, (E4.UV1=0 moreover, we have

2(up + )"()2(6122 + ﬁlzluz) +

20O D 2, a0 + 0]
by oty (by 1 + 02 1b1 U2 + by 1(U2 + X))

¥ [D?Ry, (E4,00)(9,9)] = -6y (up + 2)62{
#0
by condition (2.17c). Here, D2F(Eg, i) = DI (X, ) | X=E,u,=t,” 1hen by sotomayor theorem, system (2.2)

possesses a transcritical bifurcation but not pitch-fork bifurcation near E4 where up =t .However,
Trn2 S
violate condition (2.17c) gives that ¥ [D°Fu (E4u)(V.V)I=0 and hence further computation shows

9T[D3511(E4,01)(\7,\7,\7)] =-M1+M2 #0py condition (2.17d).

Therefore according to Sotomayor theorem, system (2.2) possesses a pitch-fork bifurcation.

but no transcritical nor pitch-fork bifurcation occurs in view of sotomayor theorem near E4 where
up =ug. .

Theorem 6: Assume that condition (2.4b) or (2.4c) holds and the parameter Ug passes through the
value Ug =usugu7ug , then the equilibrium point Es transforms into nonhyperpolic equilibrium point
and if

UsUgZ
=== 21 (2.18)

then system (2.2) possesses a saddle-node bifurcation but no transcritical bifurcation, , nor pitch-fork
bifurcation can occur.

Proof: According to the Jacobian matrix of system (2.2) at Es that is given by J(Es) it is easy to
verify thatas ug =Ug, J(Es,Ug) has the following eigenvalues:

Asx =1+ 2z >0, /15y=—U3 <0

A5z + A5y =UgUgZ +u7ugw > 0,and

A5z - Asw =0.

Then either 45z =0 or Asyw =0 wWe will assume that 45z =0 .

Let V=(.62.03.01) be the eigenvector of J(Es,Ug) corresponding to the eigenvalue of

A5z =0 . Then it is easy to check that V =(0'0'53,—%53)T \where B33=-usigZ <0,b34=—7 <0, and 3
4

represents any nonzero real value. Also, let ¥ = (. hp, hg,hg)T represents the eigenvector of

37 (Es, lg) that corresponding to the eigenvalue 45z =0  Straight forward calculation shows that

~ ~ ~ T -~
y=(0,0,h3,—%h3) , where N3 represents any nonzero real number.
43

Now, since —;L; =Fy, (x,u9)=[0,0,0,—wz]T ,where X =(x, y,z,W)T and F =(fq, fo, f3, f4)T

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
oF

g Fu, (Es.0,)=[0.0,0,-WZ1" and the following is obtained:
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~ 520
7T Ry (5, Tl = 003 22i000,-21T =2 20
b UzUg

43

Also, V' [DFy, (Es,T0)7] = (o,o,ﬁs,—%ﬁs)[o,o,o,—v'véw b%f?’ 2 - Zhﬁ?[ S "} #0,

u-U
43 4 8

By condition (2.18) .Thus system (2.2) at E5 possesses a saddle-node but does not experience any
transcritical or pitch-for bifurcation in view of sotomayor theorem.

Theorem 7: If the parameter ug passes through the value ug=ugu7, then the equilibrium point
transforms into nonhyperpolic equilibrium point and system (2.2) does not experience any saddle-node
Jtranscritical and pitch-fork bifurcation at Es where ug =ug.

Proof: According to the Jacobian matrix of system (2.2) at Ep that is given by  J(Eg) it is easy to

verify that as  ug =ug., the J(Es, ug) has the following eigenvalues:
eu; (I+ug)—uz(A+ug(@+us))
1+ug(@+u,)

<0 provided that condition(2.9a) holds
Let

16)( =X >0 ﬂGy =
Agz =—ug5 <0 and Agy =0.

V=(61,02,63,04)" be the eigenvector of J(Ee.ug) corresponding to the eigenvalue of As =0 -Then it

is easy to check that v=(- blsb 2=—06,,0,- ID34<94 oa)" where bri=-X<0,bj3=%>0,bgg=-u5 <0, b34——— and
by h33 b3

04 represents any nonzero real value. Also, lety = (h.hp.ha.ng)T represents the eigenvector of

JT(Ee,@) that corresponding to the eigenvalue 4, =0. Straight forward calculation shows that

y=(0,00,hg)" , where N4 represents any nonzero real number.

oF
Now, since ug Fu, (X, ug) ~[0,0,0,-wz]" ,whereX =(x,y,z,w)" and F = (fy, fp, f3, f4)"

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
oF

g Fug (E6.Ug) = [0,0,0.01", and the following is obtained:

T - r T .
y" [Fu, (Ee.Ug)1=(0,0,0,14)(0.000)" =0. Thus system (2.2) at Es does not experience any saddle-node
bifurcation in view of sotomayor theorem. Also, since

i —- - T — 9 .
y" [DRy, (B u] = (0.00.14)0.000)" =0. Here, DRy, (Eg.u9)=—-Fuy (X.u9) |y g, , ;- Thus again by

sotomayor theorem, system (2.2) does not possesses any transcritical bifurcation and pitch-fork
bifurcation near Ee where ug =ug.

Theorem 8: If the parameter us passes through the value ug =-=, then the equilibrium point E7

transforms into nonhyperpolic equilibrium point and if

Ug # UsUgU7Ug (2.19)
then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork
bifurcation can occur.

Proof: According to the Jacobian matrix of system (2.2) at E7 that is given by J(E7) it is easy to
verify that as us =u5 , the J(E7,uf) has the following eigenvalues:
eu; —us(u, +1)

A‘?X =—1<0, /17y= u2+1

<0 if condition(2.10a) holds

A7z =0 and A7y =-u7 <0.
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Let Vv =(4.0.064)" be the eigenvector of J(E7.us) corresponding to the eigenvalue of
. . , by
A, =0. Then it is easy to check  that v 33930% 439é) ,where

!, u !,
b13:1>0,b43:—u—:<0,b44:—U7<0,and 03  represents any nonzero real value. Also,

let y' = (hi,ho,ha,h)T represents the eigenvector of JT(E7,U'5) that corresponding to the eigenvalue
A, =0. Straight forward calculation shows that

y'=(00,m3,0) , where h3 represents any nonzero real number.

oF
Now, since s Fug (X,us5) =[0,0, 2(1-up2).0]" ,where X = (x,y,z,W)" and F = (fy, f2, f3, f4)"

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
OF

T = Ry, (E7,u5) =[0,0,0, ol" and the following is obtained:

T ; .
y [FUS(EY,US)]=(0,0’h3’9)(0|01010) =0. Thus system (2.2) at E2 does not experience any saddle-node
bifurcation in view of sotomayor theorem. Also, since

y' [DRy (E7,ub)v] = (00,13,0)(0,0,03,0) T = h36% # 0. pere,

N O
DRy, (E7,U5)—8—X Fug (X, us) |x=E7,u5=ug'

T 2 N _ L 02 u9_u5u6u7u8
Moreover, we have Y [P"Fug (E7.UB)(V,v)] =hgo 3{ Uy U }to’

.. 2 Iy
by condition (2.19). Here, D”Fug (E7,u5)=DJ(X,u5) |x=E7,u5=ué- Then by sotomayor theorem, system

(2.2) possesses a transcritical bifurcation but not pitch-fork bifurcation near Ep

. .. . T2 'y
where U7 =U7 .However, violate condition (2.19) gives that ¥ [D"Fug(E7,uB)(V'.V)1 =0. and hence
further computation shows
yT D3R, (E7.u5)(v.vv)] = (0.0,1,0) b13 23 o3 2—1)u1,—2b13 03 2200 =0,
by bif 3 ()
Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.

Theorem 9:Assume that conditions (2.5a),(2.5b) and (2.5c) hold and the parameter U, passes through

the value g =ugu7, then the equilibrium point Eg transforms into nonhyperpolic equilibrium point
and

1
if 573, (2.20)

then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork
bifurcation can occur.

Proof: According to the Jacobian matrix of system (2.2) at Eg that is given by  J(Eg) it is easy to
verify that as ug =ug , the J(Eg,ug) has the following eigenvalues:

),8X=—i E\’Al —4A2 and /18y=—i—5‘,A12 4A2 where

- 2 —=
A= X1+ —2 ) ugy, and Ap —ugry- —2Y ., Ui

(U, +X) Uy +x) (uz +x)
Agz =—ug5 <0 and Agy =0.
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Let V=(A.02.03.04)" be the eigenvector of J(Eg.lg) corresponding to the eigenvalue of
A =0- Then it is easy to check that

_ b, 2b13b34 5 b21b1§34 5 b34
V= (-2 - 04.-=204.69)" \where
b33(b.l.2b21_b.l.1b22) b?:S(b.I.ZbZI k%.1bZZ) b33
- - U Xy - U;X - _ - eu U,y
=X+———— ,bop=- —<0,bj3=x>0,bp1=—==—
b11 0, %) 12 =7 % 13 21 U, %)

b33z =-usg <0,634=—i<0

>0 ,bpp =—Ugy <0,

and 01 represents any nonzero real value. Also, let y = (. hp,hg,hg)T represents the eigenvector of

JT(ES,Ug) that corresponding to the eigenvalue 4y, =0- Straight forward calculation shows that

y=000hy)T  where h4 represents any nonzero real number.

Now. since 5—':: U, (X, )=[0,0,0~wz]" ,where X =(x,y,z,w)" and F =(fy, f2, f3, f4)"
) u9

With fi ;i=1234 represent the right hand side of system (2.2). Then we get

oF _
g Fu, (Es. Ug) =[0,0,0 01" and the following is obtained:

;T T
[Fu, (Es.Ug)] = (0,00, h4)(0,000)" =0. Thys system (2.2) at E2 does not experience any saddle-node
bifurcation in view of sotomayor theorem . Also, since

y' [DFy, (Eg.Ug)V]=(000,h4)(000,-264)" = -h4f4z #0.

- 0
here, DFUQ(E8:U9)=8_XFU9(X1U9) |X=E8,u5=65'
g o 1 .
Moreover, we have ¥' [DFy, (Eg.Ug)(V. V)] {%}%2*‘4 #0, py condition (2.20).
2 -
Here, D"Fy,(Eg,us)=DJ(X,ug) |x:Esyu5:gs-Then by sotomayor theorem, system (2.2) possesses a

transcritical bifurcation but not pitch-fork bifurcation near Eg where ug =Ug .However, violate
condition (2.20) gives that

) o
y" [D"Fyy (Eg,Ug)(V,V)1=0.  and hence further computation shows

7' [D3Ry, (Eg.Ug)(V.V, )] = (0.0,0,ha)(ky. k2,0.0)T =0

" Up (U —X) 92€2 U191 92( 2—X)
(u+x)* (U, +X)?

_Zeuluzélz 2y6, D 0,

T UpX)® (U +X)? (up+x)

Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.

where k1:—u196?3 +(wup — ulx)é?1 6> and

Theorem 10:Assume that conditions (2.6b)-(2.6¢) are hold and the parameter U, passes through the
value , then the equilibrium point Eg transforms into nonhyperpolic equilibrium point and if
ug #uguz (2.21)
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then system (2.2) possesses transcritical bifurcation, but no saddle-node bifurcation, nor pitch-fork
bifurcation can occur.
Proof: According to the Jacobian matrix of system (2.2) at Eg that is given by J(Eg) it is easy to

verify thatas us =Us, the J(Eg,Us) has the following eigenvalues:

B / /
l9x=—71+% 812_482,/19y_———— 82 4B2 where

By = (-1 —2 g, By —ugiga- Ly S0
(u2+x) (u2+x) (u2+x)

Agz =0 and Agy =-U7 <0.

Let V=(4,62,63.64)" be the eigenvector of J(Eg.is) corresponding to the eigenvalue of

622613 6‘,3 IS21613 ég ég _%%)T ,

A4, =0-Then it is easy to check that V=

(612621—611622) l (612621—611622) - 644
where
~ Ul)A()AI " U y ~ A
=—X , = <0, x>0, b ——>O,b =-uygy <0,
br1 (U, X7 b2 u 3 b3= 21 (0, )2 22 =-Ugy

643=—E—2<0,644=—U7<0

A

and &3 represents any nonzero real value. Also, let § = (hy,hp,hg, hg)T represents the eigenvector of

JT(Eglﬁs) that corresponding to the eigenvalue 45, =0. Straight forward calculation shows that

y =000, where h3 represents any nonzero real number.

Now, since —;F = Fyg (X,us)=[0,0,Z(1—UGZ),0]T ,where X =(x,y,zw)| and F =(fy, f, f3, f4)"
5

With fi ;i=1234 represent the right hand side of system (2.2). Then we get

oF .
us Fu, (Eg, Us) = [0,0,0.0]" and the following is obtained:

§' [Fug (B9, 0s)] = (0.0,/.0)(000.0)" =0

Thus system (2.2) at Eg does not experience any saddle-node bifurcation in view of sotomayor
theorem. Also, since ¥ [DFu (Eg,05)i]=(00,13,0(0.0,63.0) =gtz =0,

here, DFy, (Eg. US)——Fu u5) | _, u,=, Moreover, we have

T2 ie)(0 o) = | Yo Uet7 152
y* [D7Ry (B9, us)(v. V)l = { }3h4¢0 by condition (2.21).

Here, DZFUS(EQYGS):D‘](XlUE))|x:Eg’u5:ﬁs'Then by sotomayor theorem, system (2.2) possesses a
transcritical bifurcation but not pitch-fork bifurcation near Eg where Us=Us However, violate

T2 o n
condition (2.21) gives that Y [D"Ru (Eo.us)V.V)1=0 and hence further computation shows

§7 (D3R, (Eg.s)(0,9,9)] = 0.0, 3. OXSL, 2.00)" =0.
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~ _v ~ ~ v2 ) _V
where  S1= —u1y4913 + —UZ(U{XS) 0120 4 WO %) (lfzs )
(uy+X) (uy+X)

_ 2euu,67 256, i b,

+(nqug — uli)élzég, and

Ut R)S  (UtR)? © (UptX)

)

Therefore according to Sotomayor theorem, there is no pitch-fork bifurcation.

Theorem 11:Assume that conditions (2.4b) or (2.4c) holds and the parameter u3 passes through the
eu; xe

value u®3= where x°® given in (2.7), then the equilibrium point Eip transforms into

Up+x°
nonhyperpolic equilibrium point and system (2.2) possesses transcritical bifurcation, but no saddle-
node bifurcation, nor pitch-fork bifurcation can occur at Ejo where uz =u®3 .

Proof: According to the Jacobian matrix of system (2.2) at E1p that is given by J(Ep0) it is easy to

verify thatas uz=u®s, the J(E10.u"3) has the following eigenvalues:
. 2
le VB*1 —4B°2,and

Aox=-x" <0, Aoy =0, 4oz =-=+

N~

. 2
How = — 521 —% B*] —4B°*)

where B®1 =ugugz® +u7ugw®,and B®2 = (usugu7ug —ug)z°w®.
Let v°=(40.65.63.65)" be the eigenvector of J(E1o.u3) corresponding to the eigenvalue of

46, =0 Then it is easy to check that V" = (—%95 0300 where

Uy X

<0,
u,+x°

b®*11=-%x<0, b*12=—

and 0°2 represents any nonzero real value. Also, let y* = (hf,h3,h3,h$)T represents the eigenvector of

JT(E10,U§) that corresponding to the eigenvalue ﬂloy =0. Straight forward calculation shows that

[ ]
y* =(0,h3,00)" , where h2 represents any nonzero real number.

oF
Now, since 7 —= Fu3(X,u3)=[o,o,—y,0]T .where X =(x,y,z,w)" and F =(fy, fp, f3, f4)T
3

With fj ;i=1234 represent the right hand side of system (2.2). Then we get

oF .
o~ Tus(Bro.u3) =[0,00 01" and the following is obtained:
3

y*T IRy, (E10.u"3)1= (00.h°2.0)0000) =0.
Thus system (2.2) at E1o does not experience any saddle-node bifurcation in view of sotomayor

theorem. Also, since y.T[DFu3(E10’U.3)V.]: (0,0,h°2,0)(0-63,00) =—h363 =o0.

0
[
here, DRy, (E10.u3) =—Fu,(X.u3) [y _¢ , _,s- Moreover, we have
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(00,h*2,0)(- blZ blZ Cuxe blZ e“luz2 —2u29'2,0,0)T
bry b11 (U2+X) bll Up+x°)

b, euu, e YA
=|—==——=-_0y - U965~ |y £0.
bry (u2+x')2 2mT

Here, DZFug(E10,U§)=DJ(X,U3)Ix:Em’ugzu;-Then by sotomayor theorem, system (2.2) possesses a

v T ID%R, E10.u*3)v" V")

transcritical bifurcation but not pitch-fork bifurcation near E1g where uz =u®3.

Theorem 12:Assume that Eg1=(x",y",z",w") exist and the parameter ug passes through the value
ug = usuguyug then the equilibrium point Ep1 transforms into nonhyperpolic equilibrium point and if
w" = usugz” (2.22)

where z* and w* are given in (2.7a) and (2.7b), then system (2.2) possesses a saddle-node bifurcation,

but not transcritical bifurcation nor pitch-fork bifurcation can occur at E11where ug_ug .
Proof: According to the Jacobian matrix of system (2.2) at E11 thatis given by J(Ep1 it is easy to

verify that as  ug—u3 , the J(E11,U3) has the following eigenvalues:

PP 2 4Ry, 2 _——1——‘/R2—4R ,

2 2 __ R Ry Rs 1‘/ﬁ
M1y =— ‘/R “4R2 =208 g =-—=2-1 R2_4R2 =R
1% 2 2 2 2\V73 4 3

* 2
e

WhereR]_:_x (- 1+—)+U4y ,Rz—U4X y (1_ uy . Up Uy Xk Yy *

(U, +x*)? (U, +x*)? (U, +x*)3

R3 =ugUgz™ +u7ugw”,andRy = (Usugu7ug —ug)z w* =0

Let v* =& .65.05.00T be the eigenvector of J(E11,U3) corresponding to the eigenvalue of
A, =0-Then it is easy to check that

Ve b3 P b3 £ g b L 3)
(b1 214+0"10"22) (b"1b"21-b"10"22) b"34
* o uxXy WX * % * euyU,y"
wherg b'11=-Xx +—2-2 - b12=——2"-<0,b"13=X >0,b'21=—22_>0,
*\2 * *\2
(Uy+Xx7) Uy +X (uy+x7)

b*22=-ugy* <0,b"33=-usUgz" <0,b"34=-2" <0
x * ko ok ok #\ T -
and €3 represents any nonzero real value. Also, let y™ = (h',h3,h3,hs)" represents the eigenvector of
\y (E11,U5) that corresponding to the eigenvalue 4,,, =0. Straight forward calculation shows that
y* =(- b43b3j‘k:33b44 h*3,— b11(b33t144*‘b*43b 3) h§, h*3,— b*34 h*3)T
by b1Dr g b4 ’

*
where ba3=-ugw" <0,bjs=-u7ugw* <0,and h3 represents any nonzero real number.

Now, since aau—F = Fy,q (X,u8) =[0,0,0~wz]" ,where X = (x,y,z,w)" and F = (fy, f2, f3, f4)"
9

490



Majeed Iragi Journal of Science, 2015, Vol 56, No.1B, pp: 474-491

With fj ;i=1234 represent the right hand side of system (2.2). Then we get
oF

g Fug (E11,U8) = [0,0,0-w*z*1" and the following is obtained:

*2
*T %y UsUgZ
y [Fug (E11,u9)] :_SU;LS h3 #0. Also, since y*T [DFu9 (B11, US)V*] = {_ w+ USUGZ*}%: #0, by condition

0
(2.22) .Here, DFug(EllvUS):a_XFug(XvUQ) IX:Ell’ugzu;-Then by sotomayor theorem, system (2.2) possesses
a saddle-node bifurcation but not transcritical bifurcation nor pitch-fork bifurcation can occur at
E11where ug_ug .
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