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Abstract

Short-range effect on C2, C3, C4 and C5 form factors in the %Zr atomic nucleus
was scrutinized. The charge density of the ®°Zr was as well as scrutinized via the 1-
and 2-body parts of cluster expansion in collaboration with harmonic functions of
single particle. To incorporate the short-range effect in the 2-body part of cluster
expansion, the Jastrow formula was used. Here, the core-polarization and model
space participations are what lead to the form factors in *Zr. The transition density
of core polarization was calculated using the Tassie form, relying on the charge
density. The elements of one body density matrix were determined by performing
shell model computations using the computer code OXBASH together with the

N50J interaction. The oscillator parameter b and correlation parameter S were

applied to the existing calculations, where b and / are autonomously produced
for each distinct nucleus by matching between the predicted and actual elastic form
factors. A single value for each of b and £ must be given for computing the

density, elastic and inelastic form factors for diverse states in %Zr. This work
provides confirmation that the short-range effect substantially dominates existing
computations, where taking this effect into account appears to be crucial to creating
an important modification to the predicated findings which eventually leads to a
noteworthy interpretation of the data across all assumed momentum transfers.

Keywords: Electron scattering; Elastic and inelastic form factors; Nuclear density;
Short-range effect; *°Zr atomic nucleus; Shell model calculations
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1. Introduction

In nature, the nucleus is the most intricate structure. Understanding how the short inter-
particle portion of nuclear wave functions works is crucial for describing nuclei. The difficult
assignment is a result of the intricate interactions between nucleons and the significant nuclear
density. Additionally, understanding the work of short inter-particle portion guarantees that
all crucial measurements in nuclei (for example, the mean distance, the interaction range and
the nucleon size) are accurate, which makes real theoretical explanations somewhat hard [1].
The structure of the neutron [2, 3], the bound nucleon [4-8], as well as the studies of neutrino

oscillations and neutrino-nucleus interactions [9-13], all depend significantly on having a
complete understanding of short-range correlations (SRCs).

Present models of the average field appropriately explain a number of static characteristics
[14-18] in nuclei; however, they do not succeed in explaining how the SRCs dynamic affects
these characteristics. Ab-initio computations [19-22] are stagnant constrained to light nuclei
with soft interactions that amend short-range parts in nuclear wave function. Accordingly,
genuine models are stagnant preferred to sort the main physical technique at short distances
and to interpret the mid as well as high mass nuclei [23-25].

The incorporation of SRCs into the Slater determinant was done by researches [26-28],
linking universally N = Z low mass nuclei from the perspective of Born approach. These
researches attempted to produce a formulation for elastic form factors, F,(q), reduced at two
particle parts using the factor cluster expansion [29-31]. This formulation was utilized to open
s-, p-, and sd-nuclei as well as closed (*“He, %0 and “°Ca) nuclei. The influence of the SRCs
on the s, p, and sd nuclei were achieved by [32] with completely differing from the strategy
utilized by [26-28]. Cluster expansion and Jastrow function, which intercalates SRCs, were
employed by [33] for imitating clear formulations to elastic form factors F,(q) and densities

p(r). In fact, these formulations hinge on the single particle motion [34-36] instead of the

relative two-particle wave functions [25, 37]. It is crucial to note that the investigations stated
above were exclusively concerned with the effect of SRCs on elastic F, (q).

Inelastic form factors F,,(q) with allowing for the influence of SRC’s in f5p (full fp)

shell nuclei, for instance *8-4Ni (#6-5°Ti, 50-%4Cr, 5+°6F¢ and %4%8 Zn) nuclei were tested by [38]
([39]). As active protons are absent (present) in the f5p (full fp) space, the estimated F, ., (Q)

in [38] ([39]) arise from the core-polarization contribution (both of the model space and core-
polarization contributions).
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There has been no comprehensive investigation about the effect of SRCs on F, (q)

outside the f5p model space. We accordingly, in this research, carry out such investigations in
the N50J model space with the purpose of attain indispensible conclusions about this effect on
F... (@) and its connection in a dissimilar mass region, dissimilar interaction and dissimilar

truncation scheme. Here, the nucleus of %°Zr is chosen as a case study in the N50J model
space, where the estimated results arise from the contributions of the core-polarization and
model space. This research supplies confirmation that short-range effect noticeably controls
existing calculations, where considering this effect is a crucial for producing a substantial
amendment to the predicated findings which ultimately leads to a notable explanation of the
data through all the supposed momentum transfers.

2. Theory
Inelastic form factor in electron-nucleus scattering is given by [40]:
A A\ |2 2 2
Fr@| —mK ttr@]i)] [P @f [Fut@]’ M

where g is the momentum transfer, J is the angular momentum, |i)=|J/T,) and
| f)=]3,T,) are the initial and final states labeled by J,, (spin) and T, (isospin).

Coulomb operator of electron-nucleus scattering is denoted by 'I°JL (), the correction of center
of mass (cm) is signified by F_(q)=e?"/** (which is answerable for omitting untrue states
made from the cm motion), the correction of finite-sized nucleon (fs) is depicted by
F.(q)= g0430%/4 (which is rumored to be equivalent for protons and neutrons), the atomic and
mass numbers are represented by Z and A, correspondingly, and b is defined by
b= /(M o) [40]. Here, 71=h/27 with h signifies the Plank’s constant, M, denotes the
mass of proton and @ stands for the angular frequency. Eq. (1) may be written as [42]:
_— T T ’
e b ] UG [ER

x[Fo (q)|2 IFo(@)] .
In Eq. (2), the bracket stands for the 3j- symbol, T stands for the isospin and T, stands for
the isospin projection. Here T and T, are delineated by:

T -T|<T<T,+T,

Z-N @)

T, =5

The reduced matrix (revealed in Eq. (2)) is specified by [41]:
(£]75 | i)=>oBom "G 1.3,a0) (b] TS5 [ ). 4)
a,b
where the symbols a and b are the single-particle states. The one-body density matrix
(OBDM) is assessed using [43]:
T, 0 T =
f j /7 OBDM (AT =0)

@)

)

OBDM (z,) = (-1)"' ™ (

-T, 0 T 2 )
(T 1 T OBDM (AT =1
-i_z-z(_l)-rf TZ( _;_ 0T j\/— ; )1
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where 7, symbolizes the single-particle isospin operator.

To generate the many-body reduced matrix elements of the fJL (q) operator, the core
polarization (cp) and model space (ms) participations are added [43]:

<f'I:JL(rZ,q)i>:<f i>+<f i>. ©

The participation of ms, in Eq. (6), is signified by:
<f fJL(Tzaq)“|>—jdrr jy@n oy 7 @i, f,n), (7

where j, (qr) stands for the spherical Bessel function whereas p;"_(i, f,r) stands for the ms
transition charge den5|ty given by [43]:
P i, f,0= S 0BDM(i, 1,4, ], J',z,) (Y37 R () Ry (), 8)
ji’ (ms)
where the radial and spherical components of the harmonic wave function are symbolized by
R, (r) and Y,, respectively.
The participation of cp, in Eq. (6), is signified by:

<f T (z;.0) i> =Tdrr2h(qr) PTG 1.1, (©)

where the cp transition charge density o5’ (i, f,r), which describes the nuclear collective

modes, relies on the formula used for cp. Accordlngly the full transition charge density owns
the formulation:

ms cp
T, (z,,9) T, (z;.0)

Py, (i F.0) = 1% (i F.0)+ o2, (i, 1) (10)
In this research, the p"_ (i, f,r) is assumed to possess the formula of Tassie form [44]:
11 g (0, f r)

p% G0, f,1)= N, —<1+ O

where

ar (11)

_[drr PG, f,r)—/(23, +1) B(CJ)
N, , (12)
(2J +1)jdrr pE(, f,r)

stands for the normallzatlon constant gotten by revising of the reduced intensity B(CJ) to the
experimental one, and pg (i, f,r) stands for the ground state charge density.

For closed shell nuclei with N = Z, the charge density pg (r) can be related to the ground
state density of pomt nucleon p2*(r) by:

pch (r) - _Pp (r)v (In e.fm'3) (13)

To accommodate the effect of SRCs into the p* (r), the many-particle wave functions are

expressed by:
¥ =FO, (14)
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where F signifies a model operator that insets SRCs and @ signifies the Slater
determinant wave function. In the existing research, F is taken as a Jastrow model [33]:

F=TTf0), (15)

i<j

where the two-particle SRCs, f(r;) = f(‘Fi — ‘), are functions of state sovereign signified
f(r;) =1-exp[-A(F, - 1)’], (16)
and holds the features: f(r;) —>1 for great amounts of T, _‘r —r‘ and f(r,) >0 for

r, — 0. Accordingly, the SRCs effect embedded by Eq. (16) becomse considerable for the
low g and conversely.
A clear formula for p2*(r)is expressed as [32]:

pp (I’)ZND<‘P(F1,F _;.’FZ""1FA)>

:ND<C3r>.

Here W¥(r,,T,,..,T,) describes the many-particle wave function shown in Eq. (14),

(17)

Np = (¥(F, Ty, Fa) [P (F, F, o, Fy)) - Symbolizes the normalization constant that is found

by 4z j o *(r)r’dr =1, whereas O represents the density operator of one-particle that owns

the formula
o} Zo (i) 25(r—r) (18)
Tofind p.°(r), the generallzed normalization integral was utilized [32]:
1(a) :< ‘P> (19)
similar to the operator O, from:
(6)-| 2] 20)

In cluster inquiry of Eq. (20), the integrals I;(«), I;;(«) ... were utilized for sectors of a
system that owns A particles and a factor cluster disassembly of these integrals. The
expectation value of C3 is given by [32]

PEM=NL(0,)=N,{0,) +(6,) +.+(6,) . 1)
where[32].
<éf>1:;[W} 7 :Zl:<i\Fl+or(1)Fl\i>, (22)
(6,), i [InIij(a)—lnIi(a)—lnlj(a)LZO
(23)

i,

=3 (ifFat0, 0 +6, @R i), - 3, ) + (o

and so on. Hence, the identity operator is supposed to be F.
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The expansion of cluster causes to fragmentation of one-particle, two- particle, . . ., A-
particle correlation effects on the density. In this enquiry, more than two-particle constituents

would not be utilized. Therefore, the correlated density p.°(r) of Eq. (21) whch reflects the

consequence of SRCs alters into:
PE®=No{0,), +(0,). |
Inserting Egs. (22) and Eq. (23) into Eq. (24), we get:
A A A
pE(r)~ ND{Z@ 6, i)+ 2Z<ij F.50, (1)F12\ij>a -2 {ijle, (1)|ij>a} .
i=1 i<j i<j
For ease, Eq. (25) is expressed in a disparate formula as:
pgs(l’) ~Np {<O'>1 +<Or>22 _<Or>21}

where

(0:), =2,

(0.),, =% (i

i<j

A
(0:),, =221, i),
when the two-particle SRCs of Eq. (16) are taken into account, then:
FioFe = (L-exp[-A(T, —1,)*1)L- expl-B(7, - 1,)°])
=1-2g(r,,1,, B) + 9(r,1,,2/)

6, i),

A
=1

R0, OFyfii)

where:

g(r,r,,2) =exp(-zr’)exp(-zr;)exp(2zr, r,cosw,), (with z=p or 27).

With the aid of Egs. (30) and (31), Eq. (28) alters to:
(S,) =23 (il @R -29(r,.1,. B) + 95,1 2B)] i),

- 2{Z<U’ 6. @ij), —22-(ii[6, W g (v, . AYfif), + (i

i<j i<j i<j

For ease, Eq. (32) may be expressed as:
(6,),,=(0,), 20, (r, )+ 0, (r,28),
where the two-particle fragment O,,(r, z) is signified by:

Oy, (r,2) =23 (iil6, (1) 9 (r,, ., 2)fif), -

i<j
Employing Eqg. (33) into Eq. (26), we obtain:
PEM)=N,{0,) ~20,,(r, 5) +0,,(r2A),
where p2*(r) is in need of 4 embedded by Eg. (16).

The one-particle fragment <(5r>1, shown in Eq. (35), is evidently identified by:
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(6,) =ik, )

- (36)
- 42 M (21 +1) ¢n. (r) 4. (1),

where ¢, (r) and 7, designate the radial part of the single-particle wave function and the
occupation probability of the state nl, in that order. By algebra of spherical harmonics, the
formula of O,,(r, z) displayed in Eq. (34) alters to [32]:

0,(r2)=4 3 1y 710y, @ +D(@; +1)

o I+, (37)
{4A::.,';T;';°(r 7)- Z(I 0l0[k0)’ An"i';“;"k(r,z)}, (z=5.2p)
where
Areni (r, z) = ¢.:;.1 (1), (r)exp(-zr?)
(38)

x T¢;.2 (1), () exp(-2r2) i, 2arr, )i,

with (1,01,0/k0) and i, (x) symbolize the Clebsch Gordan coefficient and the modified

spherical Bessel function, respectively.
In reality, Egs. (13) to (38) are suggested for Z =N closed-shell nuclei with 7, =0 or 1.

For Z =N open-shell nuclei, an identical formulas can as well be utilized but using
0<n, <1

The mean square radii is demarcated by:
< > IP (r)rdr, (39)
where

Z= 47rjp (r)r?dr, (40)

is the normallzatlon constant of p3 (r).
Note that F,(q) is accompanying with pJ (r), where F,(q) is fundamentally the
Fourier transform of pJ (r). i.e.:

F(@)=2 jp (1) Jo (ar)rdr (41)

Taking into account the corrections F_,(q) aswell as F(q) in Eq. (41), we obtain:

F,(a)=—- j p& () Jo (@n)ridr By, (9)F () (42)

3. Results and discussion
The calculations of charge density pg (r), elastic F, (q) and inelastic F,, (q) form

factors in %Zr nucleus were performed. Two classes of calculatlons were achieved using
single-particle wave functions of harmonic potential without (class-1) and with (class-2) the
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effect of SRCs. The calculations of class-1 are reliant only on b but those in class-2 are
reliant on b and g. The magnitudes of b and £ in class-1 (class-2), displayed in Table 1,

were created by amending b in an effort to match the calculated rms radius g)and (b

<rZ >Y2 (the <r? > and the calculated F,(q))) with those of experimental data. The
quantities of  <rj >t [45], <r;>u’ and the partaking of SRCs,

<r?>yt .= \/< M >t — < Ton >1 000y t0 the <ri >UZ of Zr nucleus are also displayed in

Table 1. In reality, Table 1 illustrates that b has an inequity relation: b( class-1) > b( class-2),

where the addition of SRCs increases the relative distance amid nucleons which successively
makes an upsurge in the size of the nucleus. As a result, it is necessary to shorten the value of
b that goes along with the nuclear size (which was experimentally steady).

Table 1: The yielded magnitudes of b, g and the partaking of one- particle and two-particle
charge densities to the total rms charge radius <r2 >=2 of %Zr nucleus. Class-1 specifies the

cal..
calculations of one-particle fragment (without the effect of SRCs) whereas class-2 specifies
the calculations of one-particle in addition to the two-particle fragments (with the effect of
SRCs).

- 2 1/2
Calculated rms charge radius < Iy >, (fm) R s
Class | b (fm) p (fm No SRCs effect | With SRCs effect | Total rms radius
2) (one-body part) (two-body part) radius 2 _1/2

2 12 2 _1/2 2 112 <Te Zexp.. (fm)

<Ten >1body <Ten >2 oy < Teh >cal.
2.25 0 4.2918 0 4.2918 4.28+0.002 [45]

2 2.02 1.75 3.8981 1.7805 4.2855

In Figure 1, the F,(q) [Fig. 1(a)] and p%(r) [Fig. 1(b)] in the *°Zr nucleus calculated

without SRCs (the dashed curve) and with SRCs (the solid curve) are revealed as well as
compared with the measured results (open circle symbols).

In Fig. 1(a), the calculated outcomes of F, (q) are plotted against the momentum transfer
q (fm™). At q<0.8 fm, both outcomes of class-1 (the dashed curve) and class-2 (the solid

curve) are in well accord with the measured results. Moreover, the data is manifestly under
predicted (over predicted) by the dashed curve at momentum transfer 0.8<q<2.5

(q > 2.5)fm™. Comprising the effect of SRCs (the solid curve) upsurges the magnitudes of
F,(q) at all considered momentum transfer which sequential causes to put them into the
place of consistency with the measured results.
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4
r (fm)
Figure 1: Square of elastic form factors Fe (q) [Fig. 1(a)] and the charge density distribution
p&(r) [Fig. 1(b)] in the *°Zr nucleus. The dashed and solid curves are the calculated outcomes

of class-1 (without SRCs) and class-2 (with SRCs), correspondingly. The experimental data
(open circle symbols) is taken in (a) and (b) from [46] and [45], respectively.

In Fig. 1(b), the charge density distribution o2 (r) is plotted versus r. It is apparent from

this figure that there is a higher chance of finding a proton nearby the central segment of
Pa(r) than that of the tail segment. In addition, the implanting of SRCs into the calculations

of class-2 (the solid curve) leads to diminish substantially the central segment of pJ (r) and

at the same time leads to upsurge slightly the tail segment of p%(r). This provides the

explication that the addition of SRCs leads to increase the likelihood of shifting the protons
from central segment of the nucleus towards its surface which in turn causes to rise the rms
radius of the studied nucleus and makes it less rigid than it would be in the absence of the
SRC’s effect. To retain the size of studied nucleus within the steady observed magnitude, the
parameter b has to be abridged when permitting for the influence of SRC’s.

Next, the influence of SRCs on inelastic form factors F, . (q) for dissimilar states in the

%07r is argued. It is believed that this nucleus made up of an inert core having a neutron magic
number (50 neutrons) at the orbital 1ge/2 and a proton magic number (28 protons) at the orbital
1f72 as well as 12 active protons spread in the N50J-model space, defined by the orbitals
2p3i2, 1fs;2, 2p12 and 1ger. The inelastic form factors in the *°Zr nucleus come up from

o > (i, f,r) and pfj @i, f,r) transition charge densities. The quantity o (| f,r) is found
by Eq (8) while the quantity o (i,f,r) is found by Tassie model of Eg. (11) in

collaboration with the p% (r), where pg (r) is calculated by Eq. (13) in common with Egs.

(35) - (38). The OBDM elements of N50J-space, where mixing of configurations is
considered, are found through carrying out shell calculations utilizing the OXBASH-program
together with the N50J interaction [47]. The form factors F,(q) of dissimilar states in *Zr
are estimated employing a single magnitude for each of b and g, where these magnitudes

(exposed in Table 1) are yielded by matching the calculated elastic form factors F,(q) and

rms charge radius < r2 >t* with those of experimental data.

o (@) in %Zr nucleus is

displayed in Figs. 2-5, where all considered transitions are of an isovector in nature (i.e.,
T #0). Note that the nucleus of *°Zr has T =6. In these figures, the open circle symbols

The comparison between the predicted and experimental F.
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denote the experimental results [48] while the dashed and solid curves denote class-1 and
class-2 predictions gotten without and with the enhancement of SRCs effect, congruently.

The C2 form factors F,, (q) in ®Zr nucleus for electric quadrupole transitions from an
initial state J, =0" to final states J, =2" are presented in Fig. 2, where the parity of these
transitions remains the same amid the initial and final states.

In Fig. 2(a), the C2 outcomes for 0" — 27 transition (with excitation energy Ex = 2.186

MeV and reduced transition probability B(C2) = 673+59 e%fm* [48]) are displayed.
Actually, the state 2.186 MeV is the strongest one among those of observed 2* states and was
observed in the region of momentum transfer 0.64-1.72 fm™ [48]. It is noticeable that the C2
results estimated without the effect of SRCs under predict slightly (noticeably) the data at
momentum transfer region q<0.9 {q>0.9} fm™. Inserting of the effect of SRCs into class-2

computations causes to enhance the C2 outcome which in turn takes the solid curve into
location of agreement with the data over the regions of q<0.9 and q>1.1 fm™. It is so clear

that the influence of SRCs is not operative at the range 0.9<q<1.1 fm™, where both the

dashed and solid curves are coincide with each other and thus the data is not reproduced well
by these curves at this region of g. Additionally, the solid curve accurately reproduces the
performance of the experimental C2 results along the first and second diffraction minima and
maxima. Fig 2(a) shows that the effect of SRCs becomes larger at the second loop than that at
the first loop.

10°% 11113
- C2 2% (3.308 MeV) ]
3 90Zr E

107171
- C2 2% (2.186 MeV)

10°F

‘\‘\‘-\‘\‘51-9"\‘\‘\‘ ]
0O 04 08 12 16 2 O0 04 08 12 16 2
g (in fm1) q (in fm1)

10'35 e
P C2 2% (3.842 MeV) 1
e 90Zr 3

o 107
s g
”—‘510'7;
10°k S

0 04 08 12 16 2

q (in fm1)
Figure 2: Square of inelastic C2 form factors for 2* (2.186 MeV) (Fig. 2(a)), 2% (3.308 MeV)
(Fig. 2(b)) and 2" (3.842 MeV) (Fig. 2(c)) states in the *°Zr nucleus. The dashed and solid
curves are the calculated outcomes of class-1 (without SRCs effect) and class-2 (with SRCs
effect), respectively. The experimental data of open circle symbols in (a), (b) and (c) is taken
from [48].
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In Fig. 2(b) (Fig. 2(c)), the C2 results for 0* — 2" transition (Ex = 3.308 MeV, B(C2) =

69+18 e?.fm*) ((Ex =3.842 MeV, B(C2) = 206+ 36 e2.fm*)) [48] are displayed. In fact, the
state 3.308 (3.842) MeV was measured in the momentum transfer range from 0.53 to 0.95
(0.3 to 1.06) fm™ [48]. It is manifest that the open circle symbols (the measured data) are very
well predicted by those of the dashed (class-1) and solid curves (class-2). The manners of the
dashed and solid curves are in very good accord with those of open circle symbols. The C2
results in Fig. 2(b) (Fig. 2(c)) demonstrate that the effect of SRCs, which represents the
strength of the contrast between the dashed and solid curves, is the larger at the second loop
than that of the first loop. Moreover, Fig. 2(a, b and c) reveals that the considering of SRCs
effect in class-2 calculations (the solid curve) leads to shift the second minimum towards the
higher momentum transfer g.

The C3 form factors in *°Zr nucleus for electric octupole transitions from an initial state
J, =0" to final states J, =3 are exposed in figure (3), where the parity of these transitions

does not remain the same amidst the initial and final states.
In Fig. 3(a), the C3 form factors for 0" — 3" transition (Ex = 2.748 MeV, B(C3) =

(8.74+1.0) x10" e2.fm®) [48] are exposed. In reality, the state 2.748 MeV is the sturdiest one

amongst those of observed 3 states and was detected in momentum transfer regions 0.326-
1.06 fm™? [46] and 0.648-1.73 fm™ [48]. It is perceptible that the C3 outcomes computed
without the influence of SRCs (the dashed curve) agrees well the data at q<0.6 fm™ and

undervalues clearly the data at g >0.6 fm™. Embedding of the influence of SRCs into class-2

calculations causes to augment the C3 outcomes, which consecutive leads to fetch the results
of the solid curve into the location of consistency with the observed data considered in the
studies [48, 49]. This figure also demonstrates that the presentation of the observed data (open
circle symbols) alongside the first and second diffraction maxima, and alongside the first
diffraction minimum are very well reestablished by the class-2 computations (the solid curve).
Again, this figure demonstrates that the influence of SRCs is the bigger at the second loop
than that of the first loop.

-2 _ _ -3 -4
107771 7173 107777 7173 107777
- C3 37 (2.748 MeV) 1 - C3 37 (5.650 MeV) 1 - C3 3 (5.780 MeV) 1
L .U:'.e;-s QOZr 3 E 000 QOZr E i f §¢ 907y ]
10"F \ 10°F
L = | =100
T T il
L L g
10°¢ 107 ¢ 3
3 3 10°¢ ]
10-8’ P N B R 10-9’ P T R B B E o e
0 04 08 12 1.6 0 04 08 12 16 0 04 08 12 16
q (in fm1) q (in fm1) q (in fm1)

Figure 3: Same as in Fig. 2 but for C3 inelastic form factors. In (a) the data of open circle and
open square symbols are taken from [48] and [49], respectively whereas in (b) and (c) the data
of open circle symbols are taken from [48].

In Fig. 3(b) (Fig. 3(c)), the C3 outcomes for 0" — 3" transition (Ex =5.65 MeV, B(C3) =

6760+ 950 e2.fm®) ((Ex =5.78 MeV, B(C3) = 1450+ 220 e%.fm®)) [48] are exposed. Indeed,
the state 5.65 (5.78) MeV was measured in the momentum transfer range from 0.51 to 1.05
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(0.58 to 1.05) fm™ [48]. It is patent from this figure that the dashed curve, which defines the
computations of class-1 (without SRCs effect), underestimates somewhat the measured data
of open circle symbols. Taking into consideration of SRCs effect by the computations of
class-2 leads to reinforce the C3 outcomes (the solid curve) which sequential causes to
transport the solid curve into the locus of agreement with the measured data through all
considered region of g values. Furthermore, the behavior of measured C3 form factors is very
well regenerated by the solid curve. Once more, this figure proves that the influence of SRCs
becomes more strength at the second loop than that of the first loop.

The C4 form factors in *Zr nucleus for transitions from the state J, =0" to final states
J, =4 are revealed in figure (4). It is obvious that the parity in these transitions does not
change between the initial and final states.

In Fig. 4(a), the C4 form factors for 0" — 4" transition (Ex = 3.077 MeV, B(C4) =

(2.95+0.80) x10° e2.fm® ) [48] are revealed. The excitation of the 3.077 MeV level was

observed in g- ranges 0.66-1.06 fm™ [48] and 0.81-1.73 [50]. It is visible that the C4
outcomes evaluated without imbedding of SRCs underrates clearly the data across the entire g
values considered in this study. Imbedding of the SRCs into class-2 computations leads to
enlarge the C4 outcomes, which consecutively makes the solid curve in good (reasonable)
contract with the data at q<1.06 (q>1.06) fm™. Fig. 4(a) also proves that the performance

of the experimental results (open circle symbols) alongside the first and second diffraction
maxima as well as along with the first diffraction minimum are very well reconstructed by the
class-2 calculations (the solid curve).

10° T T T T3 10%g— S S S
F C4 4% (3.077 MeV) ] F C4 4% (4.340 MeV) ]
E aden 907y E £ jo00f 907r E
NG ] == ]
o 10 D@0 e OF
= § L,;g Y
—_— 10»77 - — 10-7? \ e
10-9"\‘\‘\‘\‘: 10-9"\‘\‘\‘\‘:
0O 04 08 12 16 2 0O 04 08 12 16 2
q (in fm™) q (in fm1)
Eoro [ R
xe! 4% (4.470 MeV) -
10-4§ 902r _
I
S
ut10°k
-8: L | L | L | L | L
100 04 08 12 16 2
q (in fm1)

Figure 4: Same as in Fig. 2 but for C4 inelastic form factors. In (a) the data of open circle and
open square symbols are taken from [48] and [50], respectively while in (b) and (c) the data of
open circle symbols are taken from [48].
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In Fig. 4(b) (Fig. 4(c)), the C4 form factors for 0" — 4" transition (Ex =4.34 MeV, B(C4)
= (1.5+0.40)x10° e2.fm®) ((Ex = 4.47 MeV, B(C4) = (3.45+0.65)x10° e2.fm?)) [48] are
revealed. Undeniably, the level 4.34 (4.47) MeV was identified in the momentum transfer
region from 0.59 to 1.06 fm™ [48]. It is clear from Fig. 4(b) (Fig. 4(c)) that the dashed curve,
which signifies the class-1 computations (without SRCs), underrates visibly (slightly) the data
at the entire considered q values. Inclusion of the SRCs effect by class-2 computations leads
to strengthen the C4 results (the solid curve) throughout all considered q values which
consecutively takes the solid curve into the site of closer (concurrence) with the data (open
circle symbols). Additionally, the manner of experimental C4 form factors is superbly re-
created by the solid curve of class-2 computations. Again, this figure demonstrates that the
SRCs come to be more operative over the second loop than that of the first loop.

The C5 form factors in ®°Zr nucleus for transitions from an initial state J, =0" to final
states J, =5 are seen in figure (5), where the parity of these transitions alters amongst the
initial and final states.

E T T T T T T T T % 101113

. C5 5-(2.319 MeV) - c5 57 (3.970 MeV) -

107 907r 1 3 907y E

L 400 a)- o :
S e BT
AL A
wooc us
1075 — 0%

1o 1 i 2 I B R R B

0 0O 04 08 12 16 2 10 0O 04 08 12 16 2

q (in fm1) q (in fm-1)

Figure 5: Same as in Fig. 2 but for C5 inelastic form factors. The experimental data in (a) and
(b) is taken from [48].

In Figure 5(a) (Fig. 5(b)), the C5 form factors for 0" — 5~ transition (Ex =2.319 MeV,
B(C5) = (2.12+0.12) x10" e2.fm'% ((Ex = 3.97 MeV, B(C5) = (2.62+1.00)x10" €?.fm?))
[48] are shown. Definitely, both states 2.319 and 3.97 MeV were observed in the g- range
from 0.71 to 1.06 fm™ [48]. It is evident from Fig. 5(a) (Fig. 5(b)) that the dashed curve,
which indicates the calculations when there is no the influence of SRCs, underrates
perceptibly (somewhat) the data across all considered g-values. Inserting of SRCs effect by
the calculation of solid curves leads to support the outcomes of C5 across the whole
considered g- values which consecutively brings the solid curve into the location of nearer
(agreement) with the experimental data (open circle symbols). Moreover, the behaviors of
experimental C5 form factors are wonderfully re-formed by the solid curve of class-2
calculations. For a second time, this figure exhibits that the SRCs become more effective
throughout the second loop than that of the first loop.

4. Conclusions

This work presents the conclusion that the short-range correlations effect noticeably
controls the existing calculations, as taking this effect into consideration seems to be crucial in
establishing a significant alteration in the predicated findings which ultimately leads to a
noteworthy explanation of the data throughout the studied region of momentum transfer. In
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addition, this effect becomes more operative across the higher momentum transfer of the
second loop than that of the first loop.
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