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Abstract 

     Short-range effect on C2, C3, C4 and C5 form factors in the 90Zr atomic nucleus 

was scrutinized. The charge density of the 90Zr was as well as scrutinized via the 1- 

and 2-body parts of cluster expansion in collaboration with harmonic functions of 

single particle. To incorporate the short-range effect in the 2-body part of cluster 

expansion, the Jastrow formula was used. Here, the core-polarization and model 

space participations are what lead to the form factors in 90Zr. The transition density 

of core polarization was calculated using the Tassie form, relying on the charge 

density. The elements of one body density matrix were determined by performing 

shell model computations using the computer code OXBASH together with the 

N50J interaction. The oscillator parameter b  and correlation parameter   were 

applied to the existing calculations, where b  and    are autonomously produced 

for each distinct nucleus by matching between the predicted and actual elastic form 

factors. A single value for each of b  and   must be given for computing the 

density, elastic and inelastic form factors for diverse states in 90Zr. This work 

provides confirmation that the short-range effect substantially dominates existing 

computations, where taking this effect into account appears to be crucial to creating 

an important modification to the predicated findings which eventually leads to a 

noteworthy interpretation of the data across all assumed momentum transfers. 
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تاسي   صيغة  استخدام  طريق  عن  القلب  أستقطاب  شحنة  كثافة  (Tassie form)أنتقال  على  بالأعتماد   ،
( من خلال اجراء حسابات أنموذج القشرة  OBDMالشحنة. تم ايجاد عناصر مصفوفة كثافة الجسم المنفرد )

الكمبيوتر   كود  بواسطة  معلم N50Jوالتفاعل    OXBAHالنووي  تطبيق  تم  الأرتباط    ةومعلم  bالمتذبذب    ة . 
  حيث يتم توليدهما بشكل مستقل لكل نواة مميزة عن طريق المطابقة بين عوامل الشكل المرنة المتوقعة ،

لحساب كل من كثافة الشحنة وعوامل التشكل المرن وغير    و    bوالفعلية. يجب إعطاء قيمة واحدة لكل من  
. يوفر هذا العمل تأكيدًا على أن التأثير قصير المدى يهيمن  Zr90المرن لحالات متهيجة مختلفة في نواة ال  

بشكل كبير على الحسابات الحالية ، حيث يبدو أن أخذ هذا التأثير في الاعتبار أمر حاسم لإنشاء تعديل مهم  
الزخم   نقل  عمليات  جميع  عبر  للبيانات  بالملاحظة  جدير  تفسير  إلى  النهاية  في  يؤدي  مما  المتوقعة  للنتائج 

 المفترضة.
1. Introduction 

     In nature, the nucleus is the most intricate structure. Understanding how the short inter-

particle portion of nuclear wave functions works is crucial for describing nuclei. The difficult 

assignment is a result of the intricate interactions between nucleons and the significant nuclear 

density. Additionally, understanding the work of short inter-particle portion guarantees that 

all crucial measurements in nuclei (for example, the mean distance, the interaction range and 

the nucleon size) are accurate, which makes real theoretical explanations somewhat hard [1]. 

The structure of the neutron [2, 3], the bound nucleon [4–8], as well as the studies of neutrino 

oscillations and neutrino-nucleus interactions [9–13], all depend significantly on having a 

complete understanding of short-range correlations (SRCs). 

 

     Present models of the average field appropriately explain a number of static characteristics 

[14-18] in nuclei; however, they do not succeed in explaining how the SRCs dynamic affects 

these characteristics. Ab-initio computations [19–22] are stagnant constrained to light nuclei 

with soft interactions that amend short-range parts in nuclear wave function. Accordingly, 

genuine models are stagnant preferred to sort the main physical technique at short distances 

and to interpret the mid as well as high mass nuclei [23–25]. 

 

     The incorporation of SRCs into the Slater determinant was done by researches [26-28], 

linking universally N = Z low mass nuclei from the perspective of Born approach. These 

researches attempted to produce a formulation for elastic form factors, ),(qFel  reduced at two 

particle parts using the factor cluster expansion [29-31]. This formulation was utilized to open 

s-, p-, and sd-nuclei as well as closed (4He, 16O and 40Ca) nuclei. The influence of the SRCs 

on the s, p, and sd nuclei were achieved by [32] with completely differing from the strategy 

utilized by [26–28]. Cluster expansion and Jastrow function, which intercalates SRCs, were 

employed by [33] for imitating clear formulations to elastic form factors )(qFel  and densities 

).(r  In fact, these formulations hinge on the single particle motion [34-36] instead of the 

relative two-particle wave functions [25, 37]. It is crucial to note that the investigations stated 

above were exclusively concerned with the effect of SRCs on elastic ).(qFel  

 

     Inelastic form factors )(qFinel  with allowing for the influence of SRC’s in f5p (full fp) 

shell nuclei, for instance 58-64Ni ( 46-50Ti, 50-54Cr, 54-56Fe and 64-68 Zn) nuclei were tested by [38] 

([39]). As active protons are absent (present) in the f5p (full fp) space, the estimated )(qFinel  

in [38] ([39]) arise from the core-polarization contribution (both of the model space and core-

polarization contributions). 
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     There has been no comprehensive investigation about the effect of SRCs on )(qFinel  

outside the f5p model space. We accordingly, in this research, carry out such investigations in 

the N50J model space with the purpose of attain indispensible conclusions about this effect on 

)(qFinel  and its connection in a dissimilar mass region, dissimilar interaction and dissimilar 

truncation scheme. Here, the nucleus of 90Zr is chosen as a case study in the N50J model 

space, where the estimated results arise from the contributions of the core-polarization and 

model space. This research supplies confirmation that short-range effect noticeably controls 

existing calculations, where considering this effect is a crucial for producing a substantial 

amendment to the predicated findings which ultimately leads to a notable explanation of the 

data through all the supposed momentum transfers. 

 

2. Theory 

Inelastic form factor in electron-nucleus scattering is given by [40]:  
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       where q is the momentum transfer, J is the angular momentum, iiTJi =  and 

ff TJf =  are the initial and final states labeled by fiJ /  (spin) and fiT /  (isospin). 

Coulomb operator of electron-nucleus scattering is denoted by )(ˆ qT L

J , the correction of center 

of mass (cm) is signified by Abq

cm eqF 422

)( =  (which is answerable for omitting untrue states 

made from the cm motion),  the correction of finite-sized nucleon (fs) is depicted by 
443.0 2

)( q

fs eqF −=  (which is rumored to be equivalent for protons and neutrons), the atomic and 

mass numbers are represented by Z and A, correspondingly, and b  is defined by 

)/( pMb =  [40]. Here, 2/h=  with h  signifies the Plank’s constant, pM  denotes the 

mass of proton and   stands for the angular frequency. Eq. (1) may be written as [42]: 
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In Eq. (2), the bracket stands for the 3j- symbol, T  stands for the isospin and ZT  stands for 

the isospin projection. Here T  and ZT  are delineated by: 

.
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ifif
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                                                                   (3) 

The reduced matrix (revealed in Eq. (2)) is specified by [41]: 

,ˆ),,,,(ˆ

,

aTbbaJfiOBDMiTf L
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TJL

TJ =                                                    (4) 

where the symbols a  and b  are the single-particle states. The one-body density matrix 

(OBDM) is assessed using [43]: 
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where 
z  symbolizes the single-particle isospin operator. 

   To generate the many-body reduced matrix elements of the )(ˆ qT L

J  operator, the core 

polarization (cp) and model space (ms) participations are added [43]: 

.),(ˆ),(ˆ),(ˆ iqTfiqTfiqTf Z

cp

L

JZ

ms

L

JZ

L

J  +=                                                        (6) 

   The participation of ms, in Eq. (6), is signified by:  

),r,,()r(rr),(ˆ

0

,

2 fiqjdiqTf ms

JJZ

ms

L

J Z


=                                                                (7) 

where )(qrjJ
 stands for the spherical Bessel function whereas ),,(, rfims

J Z
  stands for the ms 

transition charge density given by [43]: 

 ,)r()r(Y),,,,,()r,,(
)(

, lnnlJ
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J RRjjjjJfiOBDMfi
Z 
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=                                  (8)                 

where the radial and spherical components of the harmonic wave function are symbolized by 

)(rRnl  and ,J  respectively. 

   The participation of cp, in Eq. (6), is signified by: 

),r,,()r(rr),(ˆ
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=                                                               (9) 

where the cp transition charge density ),,,( rficp

J Z
  which describes the nuclear collective 

modes,  relies on the formula used for cp. Accordingly the full transition charge density owns 

the formulation: 

),,(),,(),,( rfirfirfi cp

J

ms

JJ ZZZ   +=                                                                     (10) 

   In this research, the ),,( rficp

J Z
  is assumed to possess the formula of Tassie form [44]: 
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stands for the normalization constant gotten by revising of the reduced intensity )(CJB  to the 

experimental one, and ),,( rfigs

ch  stands for the ground state charge density. 

   For closed shell nuclei with ,ZN =  the charge density )(rgs

ch  can be related to the ground 

state density of point nucleon )(rgs

p  by: 

),(
2

1
)( rr gs

p

gs

ch  =           (in e.fm-3)                                                                            (13) 

     To accommodate the effect of SRCs into the ),(rgs

p  the many-particle wave functions are 

expressed by: 

,= F                                                                                                                  (14) 
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       where F signifies a model operator that insets SRCs and   signifies the Slater 

determinant wave function. In the existing research, F is taken as a Jastrow model [33]: 

,)(
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=
A

ji

ijrfF                                                                                                          (15) 

 

     where the two-particle SRCs, ),()( jiij rrfrf
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−=  are functions of state sovereign signified 

by:  ],)(exp[1)( 2
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

−−−=                                                                                      (16) 

and holds the features: 1)( →ijrf  for  great amounts of 
jiij rrr


−=  and  0)( →ijrf  for 

.0→ijr


 Accordingly, the SRCs effect embedded by Eq. (16) becomse considerable for the 

low   and conversely. 

   A clear formula for )(rgs

p is expressed as [32]: 
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Here ),...,,( 21 Arrr
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  describes the many-particle wave function shown in Eq. (14), 
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drrrgs

p  whereas rÔ  represents the density operator of one-particle that owns 

the formula 
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   To find ),(rgs

p  the generalized normalization integral was utilized [32]: 

,ˆ)0([exp[)( = rOII                                                                                     (19) 

 similar to the operator rÔ  from: 
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   In cluster inquiry of Eq. (20), the integrals ...)(),(  iji II were utilized for sectors of a 

system that owns A particles and a factor cluster disassembly of these integrals. The 

expectation value of rÔ  is given by [32]: 
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and so on. Hence, the identity operator is supposed to be F1. 
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     The expansion of cluster causes to fragmentation of one-particle, two- particle, . . ., A- 

particle correlation effects on the density. In this enquiry, more than two-particle constituents 

would not be utilized. Therefore, the correlated density )(rgs

p  of Eq. (21) whch reflects the 

consequence of SRCs alters into: 
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21
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Inserting Eqs. (22) and Eq. (23) into Eq. (24), we get: 
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For ease, Eq. (25) is expressed in a disparate formula as: 
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when the two-particle SRCs of Eq. (16) are taken into account, then: 
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With the aid of Eqs. (30) and (31), Eq. (28) alters to: 
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For ease, Eq. (32) may be expressed as: 

)2,(),(2ˆˆ
2222

2122
 rOrOOO rr +−= ,                                                                (33) 

where the two-particle fragment ),(22 zrO  is signified by: 
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where )(rgs

p  is in need of   embedded by Eq. (16). 

   The one-particle fragment ,ˆ
1

rO  shown in Eq. (35), is evidently identified by: 
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where )(rnl  and nl  designate the radial part of the single-particle wave function and the 

occupation probability of the state nl , in that order. By algebra of spherical harmonics, the 

formula of ),(22 zrO  displayed in Eq. (34) alters to [32]: 
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with 000 kll ji
 and )(xik  symbolize the Clebsch Gordan coefficient and the modified 

spherical Bessel function, respectively. 

  In reality, Eqs. (13) to (38) are suggested for NZ =  closed-shell nuclei with 0=nl  or 1. 

For NZ   open-shell nuclei, an identical formulas can as well be utilized but using 

.10  nl  

The mean square radii is demarcated by: 
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is the normalization constant of ).(rgs
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      Note that )(qFel  is accompanying with ),(rgs

ch  where )(qFel  is fundamentally the 

Fourier transform of ).(rgs

ch  i.e.: 
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Taking into account the corrections )(qFcm  as well as )(qF fs  in Eq. (41), we obtain: 
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                                                            (42) 

 

3. Results and discussion  

     The calculations of charge density ),(rgs

ch  elastic )(. qFel  and inelastic )(. qFinel  form 

factors in 90Zr nucleus were performed. Two classes of calculations were achieved using 

single-particle wave functions of harmonic potential without (class-1) and with (class-2) the 
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effect of SRCs. The calculations of class-1 are reliant only on b  but those in class-2 are 

reliant on b  and .  The magnitudes of b  and   in class-1 )class-2), displayed in Table 1, 

were created by amending b in an effort to match the calculated rms radius  ) and  b(   
2/1

.

2

calchr   )the 2/1

.

2

calchr   and the calculated ))(qFel ) with those of experimental data. The 

quantities of 2/1

exp

2  chr  [45], 
2/1

.

2

calchr   and the partaking of SRCs, 

,1

2

.

22/1

2

2

bodychcalchbody rrr −− −=  to the 2/1

.

2

calchr   of 90Zr nucleus are also displayed in 

Table 1. In reality, Table 1 illustrates that b has an inequity relation: (b class-1 () b class-2 ),  

where the addition of SRCs increases the relative distance amid nucleons which successively 

makes an upsurge in the size of the nucleus. As a result, it is necessary to shorten the value of 
b  that goes along with the nuclear size (which was experimentally steady). 

 

Table 1: The yielded magnitudes of ,b  and the partaking of one- particle and two-particle 

charge densities to the total rms charge radius 2/1

..

2

calchr   of 90Zr nucleus. Class-1 specifies the 

calculations of one-particle fragment (without the effect of SRCs) whereas class-2 specifies 

the calculations of one-particle in addition to the two-particle fragments (with the effect of 

SRCs). 

Class b  (fm) 
β  (fm-

2) 

Calculated rms charge radius 
2/1

..

2

calchr   (fm) 
Experimental rms 

radius       
2/1

..exp

2  chr
  

(fm) 

No SRCs effect 

(one-body part)  
2/1

1

2

bodychr −  

With SRCs effect   

(two-body part) 
2/1

2

2

bodychr −  

Total rms 

radius 
2/1

.

2

calchr   

1 2.25 0 4.2918 0 4.2918 002.028.4   [45] 

 2 2.02 1.75 3.8981 1.7805 4.2855 

 

     In Figure 1, the )(qFel  [Fig. 1(a)] and )(rgs

ch  [Fig. 1(b)] in the 90Zr nucleus calculated 

without SRCs (the dashed curve) and with SRCs (the solid curve) are revealed as well as 

compared with the measured results (open circle symbols). 

 

     In Fig. 1(a), the calculated outcomes of )(qFel  are plotted against the momentum transfer 

q (fm-1). At 8.0q  fm-1, both outcomes of class-1 (the dashed curve) and class-2 (the solid 

curve) are in well accord with the measured results. Moreover, the data is manifestly under 

predicted (over predicted) by the dashed curve at momentum transfer 5.28.0  q  

)5.2( q fm-1. Comprising the effect of SRCs (the solid curve) upsurges the magnitudes of 

)(qFel  at all considered momentum transfer which sequential causes to put them into the 

place of consistency with the measured results.  
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Figure 1: Square of elastic form factors Fel (q) [Fig. 1(a)] and the charge density distribution 

)(rgs

ch  [Fig. 1(b)] in the 90Zr nucleus. The dashed and solid curves are the calculated outcomes 

of class-1 (without SRCs) and class-2 (with SRCs), correspondingly. The experimental data 

(open circle symbols) is taken in (a) and (b) from [46] and [45], respectively. 

 

     In Fig. 1(b), the charge density distribution )(rgs

ch  is plotted versus r.  It is apparent from 

this figure that there is a higher chance of finding a proton nearby the central segment of 

)(rgs

ch  than that of the tail segment. In addition, the implanting of SRCs into the calculations 

of class-2 (the solid curve) leads to diminish substantially the central segment of )(rgs

ch  and 

at the same time leads to upsurge slightly the tail segment of ).(rgs

ch  This provides the 

explication that the addition of SRCs leads to increase the likelihood of shifting the protons 

from central segment of the nucleus towards its surface which in turn causes to rise the rms 

radius of the studied nucleus and makes it less rigid than it would be in the absence of the 

SRC’s effect. To retain the size of studied nucleus within the steady observed magnitude, the 

parameter b  has to be abridged when permitting for the influence of SRC’s. 

 

     Next, the influence of SRCs on inelastic form factors )(qFinel  for dissimilar states in the 
90Zr is argued. It is believed that this nucleus made up of an inert core having a neutron magic 

number (50 neutrons) at the orbital 1g9/2 and a proton magic number (28 protons) at the orbital 

1f7/2 as well as 12 active protons spread in the N50J-model space, defined by the orbitals 

2p3/2, 1f5/2, 2p1/2 and 1g9/2. The inelastic form factors in the 90Zr nucleus come up from 

),,( rfims

J Z
  and ),,( rficp

J Z
  transition charge densities. The quantity ),,( rfims

J Z
  is found 

by Eq. (8) while the quantity ),,( rficp

J Z
  is found by Tassie model of Eq. (11) in 

collaboration with the ),(rgs

ch  where )(rgs

ch  is calculated by Eq. (13) in common with Eqs. 

(35) - (38). The OBDM elements of N50J-space, where mixing of configurations is 

considered, are found through carrying out shell calculations utilizing the OXBASH-program 

together with the N50J interaction [47]. The form factors )(qFinel  of dissimilar states in 90Zr 

are estimated employing a single magnitude for each of b  and ,  where these magnitudes 

(exposed in Table 1) are yielded by matching the calculated elastic form factors )(qFel  and 

rms charge radius 2/1

.

2

Calchr 
 
with those of experimental data. 

 

     The comparison between the predicted and experimental )(. qFinel  in 90Zr nucleus is 

displayed in Figs. 2-5, where all considered transitions are of an isovector in nature (i.e., 

).0T  Note that the nucleus of 90Zr has .6=T  In these figures, the open circle symbols 
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denote the experimental results [48] while the dashed and solid curves denote class-1 and 

class-2 predictions gotten without and with the enhancement of SRCs effect, congruently. 

 

     The C2 form factors )(. qFinel  in 90Zr nucleus for electric quadrupole transitions from an 

initial state 
+= 0iJ  to final states += 2fJ  are presented in Fig. 2, where the parity of these 

transitions remains the same amid the initial and final states. 

 

     In Fig. 2(a), the C2 outcomes for ++ → 20  transition (with excitation energy Ex = 2.186 

MeV and reduced transition probability B(C2) = 59673  e2.fm4 [48]) are displayed. 

Actually, the state 2.186 MeV is the strongest one among those of observed 2+ states and was 

observed in the region of momentum transfer 0.64-1.72 fm-1 [48]. It is noticeable that the C2 

results estimated without the effect of SRCs under predict slightly (noticeably) the data at 

momentum transfer region 9.0q }9.0{ q  fm-1. Inserting of the effect of SRCs into class-2 

computations causes to enhance the C2 outcome which in turn takes the solid curve into 

location of agreement with the data over the regions of 9.0q  and 1.1q  fm-1. It is so clear 

that the influence of SRCs is not operative at the range 1.19.0  q  fm-1, where both the 

dashed and solid curves are coincide with each other and thus the data is not reproduced well 

by these curves at this region of q. Additionally, the solid curve accurately reproduces the 

performance of the experimental C2 results along the first and second diffraction minima and 

maxima. Fig 2(a) shows that the effect of SRCs becomes larger at the second loop than that at 

the first loop.  

  

 
Figure 2: Square of inelastic C2 form factors for 2+ (2.186 MeV) (Fig. 2(a)), 2+ (3.308 MeV) 

(Fig. 2(b)) and 2+ (3.842 MeV) (Fig. 2(c)) states in the 90Zr nucleus. The dashed and solid 

curves are the calculated outcomes of class-1 (without SRCs effect) and class-2 (with SRCs 

effect), respectively. The experimental data of open circle symbols in (a), (b) and (c) is taken 

from [48]. 
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     In Fig. 2(b) (Fig. 2(c)), the C2 results for ++ → 20  transition (Ex = 3.308 MeV, B(C2) = 

1869  e2.fm4) ((Ex = 3.842 MeV, B(C2) = 36206  e2.fm4)) [48] are displayed. In fact, the 

state 3.308 (3.842) MeV was measured in the momentum transfer range from 0.53 to 0.95 

(0.3 to 1.06) fm-1 [48]. It is manifest that the open circle symbols (the measured data) are very 

well predicted by those of the dashed (class-1) and solid curves (class-2). The manners of the 

dashed and solid curves are in very good accord with those of open circle symbols. The C2 

results in Fig. 2(b) (Fig. 2(c)) demonstrate that the effect of SRCs, which represents the 

strength of the contrast between the dashed and solid curves, is the larger at the second loop 

than that of the first loop. Moreover, Fig. 2(a, b and c) reveals that the considering of SRCs 

effect in class-2 calculations (the solid curve) leads to shift the second minimum towards the 

higher momentum transfer q. 

 

     The C3 form factors in 90Zr nucleus for electric octupole transitions from an initial state 
+= 0iJ  to final states −= 3fJ  are exposed in figure (3), where the parity of these transitions 

does not remain the same amidst the initial and final states. 

     In Fig. 3(a), the C3 form factors for −+ → 30  transition (Ex = 2.748 MeV, B(C3) = 
410)0.174.(8   e2.fm6 ) [48] are exposed. In reality, the state 2.748 MeV is the sturdiest one 

amongst those of observed 3- states and was detected in momentum transfer regions 0.326-

1.06 fm-1 [46] and 0.648-1.73 fm-1 [48]. It is perceptible that the C3 outcomes computed 

without the influence of SRCs (the dashed curve) agrees well the data at 6.0q  fm-1 and 

undervalues clearly the data at 6.0q  fm-1. Embedding of the influence of SRCs into class-2 

calculations causes to augment the C3 outcomes, which consecutive leads to fetch the results 

of the solid curve into the location of consistency with the observed data considered in the 

studies [48, 49]. This figure also demonstrates that the presentation of the observed data (open 

circle symbols) alongside the first and second diffraction maxima, and alongside the first 

diffraction minimum are very well reestablished by the class-2 computations (the solid curve). 

Again, this figure demonstrates that the influence of SRCs is the bigger at the second loop 

than that of the first loop. 

 

   
 

Figure 3: Same as in Fig. 2 but for C3 inelastic form factors. In (a) the data of open circle and 

open square symbols are taken from [48] and [49], respectively whereas in (b) and (c) the data 

of open circle symbols are taken from [48]. 

 

     In Fig. 3(b) (Fig. 3(c)), the C3 outcomes for −+ → 30  transition (Ex = 5.65 MeV, B(C3) = 

9506760  e2.fm6) ((Ex = 5.78 MeV, B(C3) = 2204501   e2.fm6)) [48] are exposed. Indeed, 

the state 5.65 (5.78) MeV was measured in the momentum transfer range from 0.51 to 1.05 
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(0.58 to 1.05) fm-1 [48]. It is patent from this figure that the dashed curve, which defines the 

computations of class-1 (without SRCs effect), underestimates somewhat the measured data 

of open circle symbols. Taking into consideration of SRCs effect by the computations of 

class-2 leads to reinforce the C3 outcomes (the solid curve) which sequential causes to 

transport the solid curve into the locus of agreement with the measured data through all 

considered region of q values. Furthermore, the behavior of measured C3 form factors is very 

well regenerated by the solid curve. Once more, this figure proves that the influence of SRCs 

becomes more strength at the second loop than that of the first loop. 

 

     The C4 form factors in 90Zr nucleus for transitions from the state 
+= 0iJ  to final states 

+= 4fJ  are revealed in figure (4). It is obvious that the parity in these transitions does not 

change between the initial and final states. 

 

     In Fig. 4(a), the C4 form factors for ++ → 40  transition (Ex = 3.077 MeV, B(C4) = 

( 510)80.095.2   e2.fm8 ) [48] are revealed. The excitation of the 3.077 MeV level was 

observed in q- ranges 0.66-1.06 fm-1 [48] and 0.81-1.73 [50]. It is visible that the C4 

outcomes evaluated without imbedding of SRCs underrates clearly the data across the entire q 

values considered in this study. Imbedding of the SRCs into class-2 computations leads to 

enlarge the C4 outcomes, which consecutively makes the solid curve in good (reasonable) 

contract with the data at 06.1q  ( 06.1q ) fm-1. Fig. 4(a) also proves that the performance 

of the experimental results (open circle symbols) alongside the first and second diffraction 

maxima as well as along with the first diffraction minimum are very well reconstructed by the 

class-2 calculations (the solid curve).  

  

 
Figure 4: Same as in Fig. 2 but for C4 inelastic form factors. In (a) the data of open circle and 

open square symbols are taken from [48] and [50], respectively while in (b) and (c) the data of 

open circle symbols are taken from [48].  
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     In Fig. 4(b) (Fig. 4(c)), the C4 form factors for ++ → 40  transition (Ex =4.34 MeV, B(C4) 

= 510)40.0(1.5   e2.fm8) ((Ex = 4.47 MeV, B(C4) = 510)65.0(3.45   e2.fm8)) [48] are 

revealed. Undeniably, the level 4.34 (4.47) MeV was identified in the momentum transfer 

region from 0.59 to 1.06 fm-1 [48]. It is clear from Fig. 4(b) (Fig. 4(c)) that the dashed curve, 

which signifies the class-1 computations (without SRCs), underrates visibly (slightly) the data 

at the entire considered q values. Inclusion of the SRCs effect by class-2 computations leads 

to strengthen the C4 results (the solid curve) throughout all considered q values which 

consecutively takes the solid curve into the site of closer (concurrence) with the data (open 

circle symbols). Additionally, the manner of experimental C4 form factors is superbly re-

created by the solid curve of class-2 computations. Again, this figure demonstrates that the 

SRCs come to be more operative over the second loop than that of the first loop. 

 

     The C5 form factors in 90Zr nucleus for transitions from an initial state 
+= 0iJ  to final 

states −= 5fJ  are seen in figure (5), where the parity of these transitions alters amongst the 

initial and final states. 

 

          
 

Figure 5: Same as in Fig. 2 but for C5 inelastic form factors. The experimental data in (a) and 

(b) is taken from [48].  

 

     In Figure 5(a) (Fig. 5(b)), the C5 form factors for −+ → 50  transition (Ex =2.319 MeV, 

B(C5) = 710)12.0(2.12   e2.fm10) ((Ex = 3.97 MeV, B(C5) = 710)00.1(2.62   e2.fm10)) 

[48] are shown. Definitely, both states 2.319 and 3.97 MeV were observed in the q- range 

from 0.71 to 1.06 fm-1 [48]. It is evident from Fig. 5(a) (Fig. 5(b)) that the dashed curve, 

which indicates the calculations when there is no the influence of SRCs, underrates 

perceptibly (somewhat) the data across all considered q-values. Inserting of SRCs effect by 

the calculation of solid curves leads to support the outcomes of C5 across the whole 

considered q- values which consecutively brings the solid curve into the location of nearer 

(agreement) with the experimental data (open circle symbols). Moreover, the behaviors of 

experimental C5 form factors are wonderfully re-formed by the solid curve of class-2 

calculations. For a second time, this figure exhibits that the SRCs become more effective 

throughout the second loop than that of the first loop. 

 

4. Conclusions 

     This work presents the conclusion that the short-range correlations effect noticeably 

controls the existing calculations, as taking this effect into consideration seems to be crucial in 

establishing a significant alteration in the predicated findings which ultimately leads to a 

noteworthy explanation of the data throughout the studied region of momentum transfer. In 
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addition, this effect becomes more operative across the higher momentum transfer of the 

second loop than that of the first loop. 
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