
Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

 DOI: 10.24996/ijs.2024.65.10.30

*Email: Raghad.k.Salih@uotechnology.edu.iq

5678

Enhancing Blockchain Security by Developing the SHA256 Algorithm

Raghad K. Salih*1,2, Ali H. Kashmar3

1Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq
2Department of Applied Sciences, University of Technology, Baghdad, Iraq.

3Al Farabi University College, Cyber Security Department

Received: 14/6/2023 Accepted: 23/8/2023 Published: 30/10/2024

 Abstract

 Security plays a vital role in various domains, including blockchain technology.

The Blockchain serves as a secure data structure for storing transactional records.

Hash functions are employed in cryptography to ensure integrity and authentication

within the blockchain. The widely used SHA256 algorithm has faced recent attacks,

prompting the development of stronger hash functions. This paper presents a novel

modification approach to enhance the performance of SHA256 by introducing an

extended mechanism for generating a 288-bit message digest and reducing the

number of rounds to 44 instead of 64 while preserving the diffusion of data through

its complex iterative process, which involves multiple rounds of bitwise and logical

operations. The change makes sure that even small changes to the input data cause

noticeable variations in the output hash, thereby maintaining cryptographic

properties. The suggested hash function SHA288 achieves improved security,

collision resistance, and preimage resistance, while maintaining a faster execution

time compared to SHA256. The tables and tests conducted on the suggested

algorithm have revealed its remarkable safety and robustness in countering attacks as

well as demonstrated outstanding performance in random tests, which further

enhances its security measures.

Keywords: Hash function, SHA256, collision resistant, NIST tests of randomness

and rounds.

 SHA256 خوارزمية تطوير من خلال سلسلة الكتل ناتعزيز أم
 3كشمر حبيبعلي , 1،2*صالح كاظمرغد

 1 قسم الرياضيات, كلية العلوم, جامعة بغداد, بغداد, العراق.
 العراق. ,بغداد ,الجامعة التكنولوجية, قسم العلوم التطبيقية 2

 3كلية الفارابي الجامعة ، قسم الامن السبراني

 الخلاصة
الكتل الكتل. تعمل سلسلة تقنية سلسلة بما في ذلك ، المجالات في مختلف يلعب الأمن دورًا حيويًا

كهيكل بيانات آمن لتخزين سجلات المعاملات. يتم استخدام وظائف دالة التجزئة في التشفير لضمان النزاهة
، SHA256والمصادقة داخل سلسلة الكتل. واجهت خوارزمية المستخدمة على نطاق واسع هجمات حديثة

 ISSN: 0067-2904

mailto:Raghad.k.Salih@uotechnology.edu.iq

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5679

 SHA256مما أدى إلى تطوير وظائف دالة تجزئة أقوى. يقدم هذا البحث طريقة تعديل جديدة لتحسين أداء
لتوليد ملخص رسالة آلية موسعة تقديم إلى 288من خلال الجولات مع 64بدلًا من 44بت وتقليل عدد

الأحادية العمليات من متعددة تتضمن جولات معقدة تكرارية عملية من خلال البيانات انتشار على الحفاظ
والمنطقية. يضمن التغيير أنه حتى التغييرات الصغيرة في بيانات الإدخال تسبب اختلافات ملحوظة في تجزئة

المقترحة التجزئة وظيفة تحقق التشفير. خصائص على الحفاظ وبالتالي محسنًا SHA288الإخراج, أمانًا
بـ مقارنة تنفيذ أسرع الحفاظ على وقت ، مع الصورة ما قبل للتصادم ومقاومة . كشفت SHA256ومقاومة

التصدي في الملحوظين وقوتها سلامتها عن المقترحة الخوارزمية على أجريت التي والاختبارات الجداول
 للهجمات ، كما أظهرت أداءً متميزًا في الاختبارات العشوائية ، مما يعزز إجراءاتها الأمنية.

1. Introduction

 A mathematical hash function is a cryptographic function, which accepts input messages of

arbitrary size and outputs a fixed-size result known as the hash value or digest. The output is

usually a combination of numbers and letters that act as a distinct digital "fingerprint" for the

input information. Because of their strong anti-collision, pre-image and 2nd pre-image

resistance properties, hash functions are widely utilized in computer science and cryptography

for a range of tasks such as verifying data integrity, storing passwords, blockchain

transactions, and creating digital signatures. Second preimage resistance refers to the promise

that it is computationally impossible to identify another input message that generates the same

hash value as a given message. Collision resistance means that finding two different input

messages that hash to the same output is computationally impossible. A perfect hash with an

m-bit digest should take about 2m operations to find a pre-image or a 2nd pre-image, while

finding a collision with a birthday attack requires about 2(m/2) operations [1,2,3].

 The output of the hash function must be deterministic, which means that for a given input,

the output will always be the same. Secure Hash Algorithm 256-bit (SHA256) is one kind of

hashing algorithms. The National Security Agency (NSA) of the United States created the

SHA256 in 2001. It is frequently used in digital security applications to guarantee data

integrity, authenticity, and confidentiality. It is a portion of the SHA-2 family. Because it is a

one-way function, figuring out the input data from the hash value is computationally

impossible. This characteristic makes SHA-256 practical for utilizes like password storage

and digital signatures. SHA-256 is widely utilized in many sectors, including finance,

healthcare, and government. It is regarded as being secure and reliable overall. In SHA-256,

the message is split into blocks each one has 512-bit, which are then processed in 64 rounds

utilizing a variety of bitwise operations and nonlinear functions, such as logical functions

(AND, OR, XOR), arithmetic functions (ADD, SHIFT). During each round, the block is

partitioned into sixteen words each one has 32-bit, and these words are used to update a set of

eight 32-bit variables, known as the working variables [1,4,5]. This work aims to increase the

security and effectiveness of the SHA256 algorithm, resulting in a more secure and reliable

blockchain system.

 This paper is designed as follows: Section 2 focuses on some previous work. Section3

describes the blockchain technology while Section 3 covers the details of SHA256 algorithm,

the proposed method is presented in section 5. Section 6 discusses experimental results.

section 7 presents the security analysis of the suggested algorithm. Finally, section 8 is

devoted to the conclusions of the paper.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5680

2. Related Work

 In 2013, Algredo-Badillo et al. [6] proposed four novel hardware implementation schemes

aimed at enhancing the performance of SHA256. The architectures focus on optimizing the

inner loop computation by rearranging operations, precomputing certain values, balancing

paths, and integrating additional registers to reduce path complexity. These modifications are

achieved without increasing clock cycles.

 In 2018, Rachmawati1 et al. [7] made a comparative study and found that the intricacy of

SHA256 and MD5 algorithms was equal. However, MD5 demonstrated faster running times

compared to SHA256.

 In 2019, Xenya et al. [8] proposed the use of blockchain technology and cryptographic

schemes to address fraudulent activities in accounting records. By employing the SHA256

algorithm for hashing records and enforcing a structure that prevents data manipulation, the

system efficiently maintains the integrity of forensic accounting records, ensuring trust in

digital evidence.

 In 2021, Fotohi et al. [9] proposed a technique to enhance communication security among

devices on a blockchain network through two procedures: node authentication using identity-

based signatures and posting blocks utilizing device identities as public-keys for hashing. It

improves scalability, throughput, average detection rate, and authentication time.

 In 2022, Salagrama et al. [10] presents a blockchain-based method for data integrity

assurance, where the message verification code is saved within blockchain blocks. The

method involves encrypting the SHA256 value using public-key cryptosystem with the

receiver's public-key, along with including a timestamp and nonce. Through comparisons

with existing methods and penetration testing, the proposed approach showcases the superior

strength and robustness of blockchain for ensuring data integrity. Al-Odat et al. [11] enhanced

secure hash design by amalgamating SHA-1 and SHA-2, protecting against collision and

length expansion attacks. It amalgamates the hash functions' round steps utilizing function

manipulators. The design was verified by resistance collision and length extension attacks.
Mohanty et al. [12] presented a hospital administration system that securely processes patient

data for effective registration and diagnosis. Patient details are encrypted using a 256-bit

SHA-256 hash value, ensuring secure data management. The system treats concerns about

safety in long data encryption for insurance and medical data.

 In 2023, Kumar et al. [13] proposes a secure and decentralized service recommendation

framework utilizing SHA256 and blockchain. The system ensures privacy and offers

personalized suggestions by combining blockchain technology and the SHA256 algorithm.

Simulation trials validate its effectiveness in providing customized services while maintaining

user privacy and security.

 The objective of this work is to enhance the security and efficiency of blockchain

technology through the enhancement of the SHA256 algorithm. The primary goals of this

work are to fortify the algorithm's resistance against attacks, particularly collisions and brute

force attacks. This will be achieved by increasing the output size to 288 bits, which will

significantly bolster its ability to withstand potential threats. Simultaneously, we aim to

optimize the algorithm's performance, aiming to reduce its overall running time while

maintaining the randomness of the output digest and ensuring a secure cryptographic process.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5681

3. Blockchain Technique

 Blockchain is a transparent, decentralized digital ledger that records and Validates

transactions made among several computers. It employs hash functions and cryptographic

systems to construct a chain of blocks, each consisting of a timestamped and immutable

record. It provides data storage that is secure, impenetrable, and auditable without relying on

a centralized authority [4,5]. The hash functions are essential to preserving the integrity and

security of the blockchain. In this work, the suggested hash algorithm SHA288 was utilized to

boost the integrity and robust security of the blockchain. Every block in the chain of a

blockchain contains a hash value that serves as a representation of the data it contains. The

block's unique identifier is this hash value, which is produced by a hash algorithm. The

interconnection of these hash values is what gives the blockchain its strength. Any alteration

to the data within a block would result in a different hash value because the hash calculation

takes the hash value of the preceding block into account. As any effort at tampering would be

rapidly discovered by the network, this process ensures that the blockchain stays tamper-

resistant and immutable, maintaining the security and integrity of the stored data as shown in

Figure (1) [14,15].

Figure 1 :Diagram showing how to link a blockchain.

4. SHA256 Function

 SHA-256 belongs to the SHA-2 family. It is a robust cryptographic hash function and

produces a message that has 256 bits called digest, which serves as a very secure manner of

any given input message. SHA-256 is widely regarded for its ability to guarantee data safety

and integrity across numerous applications. SHA-256 padding adds extra bits to the end of a

message before hashing. It enforces that the message length is adjusted to be a precise

multiple of the block size of 512 bits. SHA-256 creates a 256-bit hash by processing a padded

message. Padding begins with a 1 bit, followed by zeros. A 64-bit integer representing the

original message's length is appended. Since the hash function only works on 32-bit words

and the starting hash values are eight 32-bit words in hexadecimal notation as explained in

eq.(1), the modulo sum utilized in SHA-256 is 232 [1,6].

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5682

h1
(0)
= A = 6a09e667

h2
(0)
= B = bb67ae85

h3
(0)
= C = 3c6ef372

h4
(0)
= D = a54ff53a

h5
(0)
= E = 510e527f

h6
(0)
= F = 9b05688c

h7
(0)
= G = 1f83d9ab

h8
(0)
= H = 5be0cd19 }

 …(1)

 SHA-256 accepts a message of maximum length 264 – 1 bits, which is divided into n-

blocks, 𝑛 ≥ 1, each one has length 512 bits such that (m1, m2, ... , mn), then each mj block is

split into 16 words each one has 32 bits as mj= w1, w2……….w16, 1 ≤ j ≤ n. These 32 bit

words are then extended into sixty- four words each word contains 32 bits as in eq.(1) [1].

W𝑖 = {
wi 1 ≤ 𝑖 ≤ 16

𝜎1
(256)(wi−2) + 𝑤𝑖−7 + 𝜎0

(256)(wi−15) + wi−16 17 ≤ 𝑖 ≤ 64

…(2)

where

 𝜎0
(256)(𝑥) = 𝑅𝑂𝑇𝑅7(𝑥) ⨁ 𝑅𝑂𝑇𝑅18(𝑥) ⨁ 𝑆𝐻𝑅3(𝑥) …(3)

𝜎1
(256)(𝑥) = 𝑅𝑂𝑇𝑅17(𝑥)⨁ 𝑅𝑂𝑇𝑅19(𝑥) ⨁ 𝑆𝐻𝑅10(𝑥) …(4)

 ROTRN(x) is the rotate right operation of x by N positions to the right and SHRN(x) is the

right shift operation of x (SHRN(x)=x>>N).

After that, the blocks m1, m2,..., mn are processed one by one as follows:

For each j= 1,2,3,…,n construct the update eight working variable by doing 64 rounds

consisting of:

𝑇1 = ℎ +∑ (𝐸)
(256)

1
+ 𝐶ℎ(𝐸, 𝐹, 𝐺) + 𝐾𝑖

(256)
+𝑊𝑖

𝑇 2 = ∑ (𝐴)
(256)
0 +𝑀𝑎𝑗(𝐴, 𝐵, 𝐶)

H = G

G = F

F = E …(5)

E = D + T1

D = C

C = B

B = A

A = T1 + T2

Where 𝑊𝑖 in eq.(2) , the SHA-256 keys 𝐾𝑖 , 𝑖 = 1,… ,64 are constant values,

∑ (𝐴)
(256)
0 = 𝑅𝑂𝑇𝑅2(𝐴)⨁ 𝑅𝑂𝑇𝑅13(𝐴) ⨁ 𝑅𝑂𝑇𝑅22(𝐴), …(6)

∑ (𝐸)
(256)
1 = 𝑅𝑂𝑇𝑅6(𝐸)⨁ 𝑅𝑂𝑇𝑅11(𝐸) ⨁ 𝑅𝑂𝑇𝑅25(𝐸), …(7)

𝐶ℎ(𝐸, 𝐹, 𝐺) = (𝐸 ∧ 𝐹) ⨁ (¬ 𝐸⋀ 𝐺) , …(8)

𝑀𝑎𝑗(𝐴, 𝐵, 𝐶) = (𝐴 ∧ 𝐵) ⨁ (𝐴⋀ 𝐶) ⨁ (𝐵⋀ 𝐶) …(9)

and the update values can be obtained by using new values A,B,…,H as:

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5683

h1
(j)
= A + h1

(j−1)

h2
(j)
= B + h2

(j−1)

h3
(j)
= C + h3

(j−1)

h4
(j)
= D + h4

(j−1)

h5
(j)
= E + h5

(j−1)

h6
(j)
= F + h6

(j−1)

h7
(j)
= G + h7

(j−1)

h8
(j)
= H + h8

(j−1)
}

 …(10)

After the final block mn has been processed, the output hash ℎ𝑘
(𝑛)
 , 𝑘 = 1,2, … 8 is the string

of the variables 𝑆𝐻𝐴256 = ℎ1
(𝑛)
ℎ2
(𝑛)
ℎ3
(𝑛)
ℎ4
(𝑛)
ℎ5
(𝑛)
ℎ6
(𝑛)
ℎ7
(𝑛)
ℎ8
(𝑛)

. Figure (2) describes how

SHA256's algorithm works in two iterations [1,6,8].

Figure 2: The Process of the SHA-256 algorithm involves two iterations.

5. The Proposed Method

 The new suggested hash algorithm partakes a similar word size as SHA-256. and

accepting a message of maximum length 264 – 1 bits which is divided into n-blocks (m1, m2,

... , mn) each one has length 512 bits then each mj block is split into 16 words each one has 32

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5684

bits as mj= w1, w2,….w16, 1 ≤ 𝑗 ≤ 𝑛. These 32-bit words are then extended into sixty- four

words each word contains 32 bits, which are given as input to the round function. To bolster

the algorithm's security, the number of intermediary state variables was augmented by one to

be a total of nine. This enhancement donates a message digest length of 288 bits. The

objective behind this modification is to fortify the algorithm's resilience against prospective

attacks, thereby promoting its overall security by creating more bit variation in each working

variable. A new modification approach is suggested to improve the functionality of SHA256

and address its time complexity. This approach reduces the number of rounds from 64 to 44,

effectively streamlining the computation. Additionally, an extended mechanism is introduced

to generate a larger 288 bit-length message digest, thereby strengthening the algorithm's

security. Figure (3) shows the construction of the proposed hash function SHA288 while

Figures (4) and (5) explained one iteration of it. In the proposed work, changes have been

made to the working variables of the SHA-256 algorithm as well as the function

mechanization and procedural aspects of the rounds keeping in mind maintaining the

complexity and distribution of input data to augment security. These changes are outlined in

the SHA288 algorithm steps.

Figure 3: The proposed SHA288 construction.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5685

The SHA288 Algorithm

Input

• The message M

Output

• The hash value in hexadecimal.

1: 1: affix the message with padded bits to make sure it is compatibility with 448 mod

512. A solo 1 bit is attached at the terminus and then more zeros are added to bring the

overall length to a multiple of 512. considering the input data is 64 bits.

2: Partition the input by using (step1) into (n) blocks (m1, m2, ... , mn) each one has 512

bits as described in section 4.

3: Initialize hash value by adding another initial value to eq.(1) to create a set of nine

32-bit words, in a hexadecimal pattern that is:

 h9
(0) = I = 6𝑏6𝑓58𝑎9

4: Once the pre-processing is finished, each message block, starting from m1 to mn, is

sequentially processed utilizing the below steps:

i. For j=1 to n

ii. Set up a message schedule, Wi as:

 wi 1 ≤ i ≤ 16

Wi = σ1
(256)(wi−2) + wi−7 + σ0

(256)(wi−15) + wi−16 17 ≤ i ≤ 40

 σ1
(256)(wi−3) + wi−7 +wi−5 +wi−17 41 ≤ i ≤ 64

iii. Initialize the nine intermediary state variables A, B, C, D, E, F, G, H and I by

using (j-1)st hash value in (step 3):

A = h1
(j−1)

B = h2
(j−1)

C = h3
(j−1)

D = h4
(j−1)

E = h5
(j−1)

F = h6
(j−1)

G = h7
(j−1)

H = h8
(j−1)

I = h9
(𝑗−1)

}

iv. Compute the following:

For i= 1 to 64

If i = 2,4,6,…,40 then find:

T1 = I +∑ (𝐸)
(256)

1
+ 𝐶ℎ(𝐸, 𝐹, 𝐺) + 𝐾𝑖−1

(256)
+𝑊𝑖−1

T 2 =∑ (𝐴)
(256)

0
+𝑀𝑎𝑗(𝐴, 𝐵, 𝐶)+𝐾𝑖

(256)
+𝑊𝑖

I = H + T2

H = G

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5686

G = F

F = E

E = D + T1

D = C

C = B

B = A

A = T1 + T2

Elseif i = 41 to 64 then find

𝑇1 = I +∑ (𝐸)
(256)

1
+ 𝐶ℎ(𝐸, 𝐹, 𝐺) + 𝐾𝑖

(256)
+𝑊𝑖

T 2 =∑ (𝐴)
(256)

0
+𝑀𝑎𝑗(𝐴, 𝐵, 𝐶)

I = H

H = G

G = F

F = E

E = D + T1

D = C

C = B

B = A

A = T1 + T2

 where 𝑊𝑖 is explained in (step 4(ii)) and 𝐾𝑖 are constant values of SHA-256 keys.

Figures (4) and (5) explained one iteration of SHA288.

v. Calculate the jth

intermediate hash value as:

ℎ1
(𝑗)
= 𝐴 + ℎ1

(𝑗−1)

ℎ2
(𝑗)
= 𝐵 + ℎ2

(𝑗−1)

ℎ3
(𝑗)
= 𝐶 + ℎ3

(𝑗−1)

ℎ4
(𝑗)
= 𝐷 + ℎ4

(𝑗−1)

ℎ5
(𝑗)
= 𝐸 + ℎ5

(𝑗−1)

ℎ6
(𝑗)
= 𝐹 + ℎ6

(𝑗−1)

ℎ7
(𝑗)
= 𝐺 + ℎ7

(𝑗−1)

ℎ8
(𝑗)
= 𝐻 + ℎ8

(𝑗−1)

ℎ9
(𝑗)
= 𝐼 + ℎ9

(𝑗−1)

vi. Write the sha288 bit digest output of the message M after the final block mn has

been processed: 𝑆𝐻𝐴288 = ℎ1
(𝑛)
 ℎ2
(𝑛)
 ℎ3
(𝑛)
 ℎ4
(𝑛)
 ℎ5
(𝑛)
 ℎ6
(𝑛)
 ℎ7
(𝑛)
 ℎ8
(𝑛)
ℎ9
(𝑛)

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5687

Figure 4: One iteration process of the SHA288 algorithm where i=2,4,…,40

Figure 5: One iteration process of the SHA-288 algorithm where i=41,42,43,…,64

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5688

6. Experimental Results

 The modified algorithm was subjected to rigorous testing using various messages of

varying lengths. The results demonstrated notable improvements in algorithm efficiency,

where the changeover mechanism ensures that even minor alterations in the input data lead to

entirely distinct hash outputs, thereby preserving the robust and stringent properties of the

cryptographic, with reduced execution times compared to the original SHA256 algorithm.

Interestingly, despite generating longer message digests, the modified algorithm SHA288

offered superior performance. This observation is summarized in Table (1) below,

showcasing the comparative results of the two algorithms.

Table 1: Message Digest and Running Time for Different Message Lengths

No.
Message Type

(M)
SHA256 SHA288

The elapsed time in

seconds

SHA256 SHA288

1 Abc

06D90109C8CCE34EC0

C776950465421E1

76F08B831A938B3

C6E76CB7BEE8790B

15A40AA2393D0FF4728

227C259BE6BC290A12

C0A7934E95BA1C38A

0D3D7A080C05D26763

0.18858 0.162676

2 abc

BA7816BF8F01CFEA4

14140DE5DAE2223B00

361A396177A9CB410FF6

1F20015AD

F98AA371582AB12577

AF1FC8D70B63E0AAD9

8FB33756C307B897D40

CC3D8BA3E44EE02BE

0.18896 0.163474

3
0000000000aaaa

aa

61321C480217CE2E2D2

78A563DB3C8696D92A

E60C1578723E9DF38B73

916EE43

5C941018B62697715D63

8704BFB0E56BAC3DA4

33CCA228BC802F9F925

314EC14C35DC13E

0.235469 0.182458

4
000000000aaaaa

a

7FE1C85C162FD58E

04A25CC656427587

7E33DEEB1A8D6FC6B9

78D18052873D58

D2248506DABE6293228

212CD6857CB5AF591B

529EE6C2566C0E78D5F

8C3C6FA57BF2B4B3

0.199469 0.179458

5
0000000000aaaa

ab

EC83DED5BEEE485888

4851CCE32D25F1C44

5349A1829DE5EBA

083268423DD22E

68A44312F4455F327DC3

4BB4CC9A67F1AE331F

A066CA28F283A171E

B7E65401B73C56303

0.215598 0.180807

6 1000 bits

E133A99B761F90C353B

D9BEED497146006AF75

6F5BCD838517072218E1

B25749

F3A0E02ACB6DE9217F0

ADC54080878C2E25CAE

6175EE5DA77F21B538A

60A3CEA3284F43F

2.591164 2.261733

7 10000 bits

E485FCD54BB04C357E7

D37B69420C2FAE3A2E5

AB37272A39877E15CE0

68ABCD7

AC54076E80E67C081A8

C8F2F6161393491610544

B4ECBD571CFB650BFD

C4305D5D6AF4DD

24.06546 21.00639

8
30000 bits

7E771686B586F0829EF5

13BA397C382584938AA

59B081CC59AF03BC346

0CF53D

8AF716F7DF0A8CFCBE

870A0FE314C5BC238F7

F520EC4A7315FD39C1E

440870F39B2A64B9

111.0545 101.3534

9 100000 bits

8062238FBE34EF9356DE

B57DDCC9D98B6B0A3D

1E419FC9DBCAC71720E

90D47FE

59472AF20DA2EC58777

5AAE11BC7C645A758B

C4D9B7337C9DD25FAF

D28D8A099EDF4EF25

548.5551 512.1653

7. Security Analysis

 In this section, we will subject the proposed algorithm to a series of tests to verify its

security and efficiency, as described below.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5689

7.1 Collision Attack

 The collision attack is an attack on a cryptographic hash function with the objective of

finding two or more distinct input messages that produce the same hash output [16]. The

proposed SHA288 with 288-bit hash output provides a larger output space compared to

SHA256's 256-bit output, contributing to its heightened resilience against collision attacks.

The increased bit length of SHA288 enhances its ability to offer a higher level of collision

resistance. In contrast, the comparatively shorter hash length of SHA256 renders it more

prone to potential collisions, making it less secure in the face of advanced cryptanalytic

techniques. Table (2) contains the comparison among SHA1, SHA256 and SHA288 which

share the same functional structure with variations in the internal operations, hash digest size,

rounds and number of security bits.

Table 2: Secure Hash Algorithms

Algorithm SHA1 SHA256 SHA288

Message size <264 <264 <264

Block size 512 512 512

Hash digest size 160 256 288

Rounds 80 64 44

Preimage attack 2160 2256 2288

Second Preimage attack 2160 2256 2288

Collision complexity (Security) 280 2128 2144

7.2 Brute Force Attack

 A brute force attack against a hash function involves systematically trying all possible

inputs to discover the one that produces a specific hash value, with the intention of revealing

the original input data [17]. Based on the analysis of simulation results presented in Table (1),

it has been observed that SHA-288 exhibits superior cryptographic strength and resistance

against brute force attacks compared to SHA-256. This can be attributed to SHA-288's larger

output space of 288 bits, which allows for a wider range of possible hash values. Notably,

even minor changes in the input of SHA-288 lead to significantly different outputs, indicating

its heightened sensitivity to input variations. These findings emphasize the increased security

provided by SHA-288, making it a more robust choice for data protection compared to SHA-

256.

7.3 Running Time

 From the observations in Table (1), it is evident that the execution time of SHA288 is

shorter than that of SHA256, even though the resulting message is longer. This improvement

can be attributed to two factors: first, the reduction in the number of rounds from 64 to 44 in

the SHA288 algorithm; second, the modifications made to the mathematical functions used in

SHA288, which enhance its efficiency and security. These advancements in SHA288

highlight its superior performance in terms of efficiency and security when compared to

SHA256. Figure (6) visually represents the difference in running times between two hash

functions. It effectively displays how the execution times vary with an increase in the length

of the message. This figure emphasizes the notable contrast in performance between the two

algorithms, highlighting the impact of message length on their respective execution times.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5690

Figure 6: The running time of the hash functions SHA288 and SHA256

7.4 NIST Statistical Suite Tests

 The NIST Test is a statistical program developed by the National Institute of Standards

and Technology (NIST). It consists of 16 tests designed to assess the randomness and

statistical properties [18] of a bit sequence generated by the SHA288 hash function. The test

evaluates various aspects of randomness, ensuring that the SHA288 hash function meets the

required standards. For the NIST Test, the input parameters used in the 16 tests are derived

from multiple message files of different lengths. The goal is to evaluate the performance of

the SHA288 hash function across various scenarios. The test results are presented in Tables

(3), (4), and (5), where the percentage of passed sequences for each individual test is

computed. These results are then compared with the appropriate P-value > 0.01 to determine

the level of statistical significance.

Table 3: Presents NIST test results for hash functions SHA256 and SHA288 on message1 /

Table 1.

The Message abc

Hash Function SHA256 SHA288

Statistical Tests P- Values Result P- Values Result

Frequency Monobit 0.317 Pass 0.555 Pass

Block Freq. 0.535 Pass
0.731

Pass

Runs 0.068 Pass 0.983 Pass

L. Run of Ones 0.712 Pass 0.833 Pass

Binary MatrixRank -1 fail -1 fail

DFT Spectral 0.422 Pass 0.9138 Pass

Non Overlapping Templates 0.0001 fail 0.999 Pass

Overlapping Templates NaN fail NaN fail

Maurer's Universal Statistical -1 fail -1 fail

Linear Complexity 0.921 Pass 0.264 Pass

Serial 0.841 Pass 0.083 Pass

Appro. Entropy 1 Pass 1 Pass

Cumulative sums Forward

Cumulative sums Reverse

0.469

0.236

Pass

Pass

0.792

0.737

Pass

Pass

Rand. Excursions 0.604 Pass 0.350 Pass

Rand. Excursions Variant 0.288 Pass 0.789 Pass

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5691

Table 4: Presents NIST test results for hash functions SHA256 and SHA288 on message4 /

Table 1.

The Message 000000000aaaaaa

Hash Function SHA256 SHA288

Statistical Tests P- Values Result P- Values Result

Frequency Monobit 0.802 Pass 0.813 Pass

Block Freq. 0.731 Pass 0.314 Pass

Runs 0.534 Pass 0.076 Pass

L. Run of Ones 0.781 Pass 0.196 Pass

Binary MatrixRank -1 fail -1 fail

DFT Spectral 0.051 Pass 0.130 Pass

Non Overlapping Templates 0.999 Pass 0.999 Pass

Overlapping Templates NaN fail NaN fail

Maurer's Universal Statistical -1 fail -1 fail

Linear Complexity 0.759 Pass 0.499 Pass

Serial 0.841 Pass 0.498 Pass

Appro. Entropy 1 Pass 1 Pass

Cumulative sums Forward

Cumulative sums Reverse

0.687

0.906

Pass

Pass

0.524

0.350

Pass

Pass

Rand. Excursions 0.434 Pass 0.497 Pass

Rand. Excursions Variant 0.844 Pass 1 Pass

Table 5: Presents NIST test results for hash functions SHA256 and SHA288 on message 9 /

Table 1.

The Message 100000 bits

Hash Function SHA256 SHA288

Statistical Tests P- Values Result P- Values Result

Frequency Monobit 0.211 Pass 0.157 Pass

Block Freq. 0.404 Pass 0.560 Pass

Runs 0.511 Pass 0.191 Pass

L. Run of Ones 0.272 Pass 0.718 Pass

Binary MatrixRank -1 fail -1 fail

DFT Spectral 0.818 Pass 0.665 Pass

Non Overlapping Templates 0.053 Pass 0.999 Pass

Overlapping Templates NaN fail NaN fail

Maurer's Universal Statistical -1 fail -1 fail

Linear Complexity 0.239 Pass 0.498 Pass

Serial 0.498 Pass 0.498 Pass

Appro. Entropy 1 Pass 1 Pass

Cumulative sums Forward

Cumulative sums Reverse

0.378

0.091

Pass

Pass

0.251

0.174

Pass

Pass

Rand. Excursions 0.901 Pass 0.202 Pass

Rand. Excursions Variant 0.654 Pass 0.376 Pass

 The comparative analysis between the SHA288 algorithm and SHA256 reveals improved

performance in random tests, evident in Table (3). The SHA288 algorithm successfully passes

14 out of 16 tests, surpassing SHA256's achievement of 13 successful tests. Additionally, in

other examples as in Tables (4) and (5), both algorithms achieve an equal number of

successful tests.

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5692

 Therefore, The SHA288 algorithm possesses several notable advantages compared to its

predecessor, SHA256. It produces longer message digests, leading to enhanced security by

expanding the output space and reducing the likelihood of collisions. Additionally, its faster

execution time improves overall efficiency, making it more practical for real-world

applications. Lastly, the algorithm's robust randomness properties provide resistance against

various hacking techniques, thereby bolstering its overall protection capabilities.

8. Conclusions

 The suggested algorithm SHA288 addresses the enhancement of security and efficiency in

blockchain technology through improvements to the widely utilized SHA256 algorithm. The

primary objectives encompass augmenting the security of SHA256's intermediary state

variables by expanding the output size to 288 bits, and optimizing execution time by reducing

the number of rounds to 44 iterations, while simultaneously enhancing the mechanization of

working functions. The proposed modifications, meticulously detailed in tables 1 to 5 and

figures 3 to 6, have undergone thorough testing to substantiate their robust security,

exceptional anti-collision capabilities, resistance against preimage and second image attacks,

as well as adherence to NIST tests of randomness.

References
[1] Federal information processing standard (fips), " Sucre Hash Standard,"180-2. National Institute

of Science and Technology, 2002.

[2] A. H. Jasim and A. H. Kashmar , "An Evaluation of RSA and a Modified SHA-3 for a New

Design of Blockchain Technology," in Artificial Intelligence for Smart Healthcare, Cham:

Springer International Publishing, 2023, pp. 477-489.

[3] H. Abdulsalam and A. A. Fahad, " Evaluation of Two Thresholds Two Divisor Chunking

Algorithm Using Rabin Finger print, Adler, and SHA1 Hashing Algorithms," Iraqi Journal of

Science, vol. 58, no.4c, pp.2438-2446, 2017.

[4] A.H. Kashmar, K. H. Ahmed and S. I. Eddie, "Hybrid chaotic keystream generation (HCKG) for

symmetric image encryption," Journal of theoretical and applied information technology, vol.97,

no.3, pp.984-993, 2019.

[5] H. k. Hussein, R. A. Muhajjar and B. S. Mahdi, "Using Visual Cryptography and hash function

for Fragile Watermarking to Detect Electronic Document Forger." Iraqi Journal of Science, vol.

64, no.7, pp.4557-4569, 2023.

[6] I. Algredo-Badillo, C. Feregrino-Uribe, R. Cumplido and M. Morales-Sandoval, "FPGA-based

implementation alternatives for the inner loop of the Secure Hash Algorithm SHA-

256," Microprocessors and Microsystems, vol.37, no.6, pp.750-757, 2013.

[7] D. Rachmawati, J. T. Tarigan, and A. B. C. Ginting, " A comparative study of Message Digest 5

(MD5) and SHA256 algorithm," Journal of Physics: Conference Series, IOP Publishing, vol.

978, no.1, p. 012116, 2018.

[8] M.C. Xenya and K. Quist-Aphetsi., "A cryptographic technique for authentication and validation

of forensic account audit using SHA256," in International Conference on Cyber Security and

Internet of Things (ICSIoT), IEEE, pp. 11-14. 2019.

[9] R. Fotohi, and F.S. Aliee, "Securing communication between things using blockchain technology

based on authentication and SHA-256 to improving scalability in large-scale IoT," Computer

Networks, vol.197, pp.108331, 2021.

[10] S. Salagrama, V. Bibhu and A. Rana, "Blockchain Based Data Integrity Security

Management. Procedia Computer Science," vol.215, pp.331-339, 2022.

Available online at: www.sciencedirect.com .

[11] Z. A. Al-Odat, S. U. Khan and E. Al-Qtiemat, "A modified secure hash design to circumvent

collision and length extension attacks," Journal of Information Security and Applications, vol.71,

p.103376, 2022.

http://www.sciencedirect.com/

Salih and Kashmar Iraqi Journal of Science, 2024, Vol. 65, No. 10, pp: 5678-5693

5693

[12] M.D. Mohanty, A.Das, M.N. Mohanty, A. Altameem, S.R. Nayak, A.K. Saudagar and R.C.

Poonia. "Design of Smart and Secured Healthcare Service Using Deep Learning with Modified

SHA-256 Algorithm," In Healthcare, MDPI, vol. 10, no. 7, p. 1275, 2022.

[13] K.P Kumar, N. H. Varma, N. Devisree and M. S. Ali, "Implementation of Associative Service

Recommendation Scheme Applying Sha256 Algorithm Through Blockchain," Journal of Survey

in Fisheries Sciences, vol.10 no.2S, pp.2741-2747, 2023.

[14] A. A. S. Al-karkhi, N.F. Hassan and R. A. Azeez, "A Secure Private Key Recovery Based on

DNA Bio-Cryptography for Blockchain," Iraqi Journal of Science, vol. 64, no.2, pp.958-972,

2023.

[15] R.F. Ghani, A.A.S. Al-Karkhi and S.M. Mahdi, "Proposed Framework for Official Document

Sharing and Verification in E-government Environment Based on Blockchain

Technology," Baghdad Science Journal, vol.19, no.6 (Suppl.), pp.1592-1602, 2022.

[16] R. Verma, N.Dhanda and V. Nagar, "Enhancing security with in-depth analysis of brute-force

attack on secure hashing algorithms," in Proceedings of Trends in Electronics and Health

Informatics: TEHI 2021, pp. 513-522. Singapore: Springer Nature Singapore, 2022.

[17] A.H. Alwan and A. H. Kashmar, "Block Ciphers Analysis Based on a Fully Connected Neural

Network," Ibn AL-Haitham Journal for Pure and Applied Sciences, vol.36. no.1, pp.415-427,

2023.

[18] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson et al., "A Statistical

Test Suite for Random and Pseudo Random Number Generators for Cryptographic Applications,"

vol. 22. US Department of Commerce, Technology Administration, National Institute of

Standards and Technology, 2001.

