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Abstract  

     The influence of fear on the dynamics of harvested prey-predator model with intra-

specific competition is suggested and studied, where the fear effect from the predation 

causes decreases of growth rate of prey.  We suppose that the predator attacks the 

prey under the Holling type IV functional response. he existence of the solution is 

investigated and the bounded-ness of the solution is studied too. In addition, the 

dynamical behavior of the system is established locally and globally. Furthermore, 

the persistence conditions are investigated. Finally, numerical analysis of the system 

is carried out. 

 

Keywords: Fear effect, Holling type IV functional response, Intra-specific 

competition, Stability analysis, Persistence. 

 

التنافس الضمني مع  المفترسة المحصودتأثير الخوف على ديناميكيات نموذج الفريسة   
 

 هبة عبدالله ابراهيم*, رحاب نوري شعلان, دينا الجاف 

العراق , بغداد, يغداد جامعةالعلوم,  كليةالرياضيات ,  قسم  
 

  الخلاصة 
،  الضمني  التنافس   مع   المفترسة المحصود تم اقتراح ودراسة تأثير الخوف على ديناميكيات نموذج الفريسة       

الفريسة    يتغذى علىأن المفترس    نفترضحيث يؤدي تأثير الخوف من الافتراس إلى انخفاض معدل نمو الفريسة.  
من النوع الرابع. يتم التحقيق في وجود الحل وحدوده. يتم إنشاء السلوك الديناميكي    هولنكلاستجابة  الدالة  وفقًا  

 .. يتم التحقيق في ظروف الثبات. أخيرًا ، تم إجراء التحليل العددي للنظاموشاملاللنظام محليًا 
 

1. Introduction 

     The prey-predator relation is one of the most important tools in the environment system. as 

a result of wide incidence and significance, the interaction between predators and their prey 

have been commonly studied. This subject will continue and stay to be one of the essential 

subjects in both ecology and biology, see [1-2]. In recent decades, mathematical modeling has 

a large effect as a tool for understanding the processes of biological. In the real world, all the 

species is interacting with each other in various ways. The interactions between species take 

different forms, for example, mutualism, prey-predator, and competition for food, etc. 
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     The first major attempt to investigate the evolution of predators and prey populations is  

due to Lotka, 1925 and independently by Volterra, 1926 which called Lotka-Volterra model 

[3]. 

 

      Several kinds of prey-predator models with various biological factors were studied by many 

investigators, such as fear, harvesting, refuge, stage structure, cannibalism and etc., see [4–8]. 

Fakhry and Naji [4] studied the effect of fear on the prey-predator model, they found that rising 

the rate of fear causes a decreasing in the predators and the system stay persists with the co-

existence equilibrium point. Haque and Sarwardi [7] proposed a prey-predator model with prey 

refuge and harvesting, they reached to the effect of refuge plays a significant role in regulating 

the dynamics of the system. Also, the functional response of species is an important in the 

ecological systems. Many researchers studied prey-predator models with different types of 

functional response [9-13]. Naji and Shalan [10] presented a prey-predator model with Holling 

type IV functional response and intra-specific competition, they found the growth rate and 

intra-specific competition parameters had a stabilizing effect on the system. 

 

      In ecological systems, the influence of predator on the prey perhaps direct, indirect or 

together. In the direct influence, the predator kills the prey directly [14]. Whilst, in the indirect 

influence, the predator causes fear to the prey and thus leads to a decrease in the growth rate of 

the prey [15]. Recent works displayed the impact of the fear to the ecological systems [16-19]. 

Tian and Li [18] presented a model of prey -predator involving fear and harvesting, they found 

when the fear is small, the coexistence equilibrium point is unsteady and a limit cycle presents. 

They also observed that as the effect of fear increases then the coexistence equilibrium point 

be stable while the limit cycle vanishes.  

 

     On the other hand, many investigators focused on the study of harvesting of the species on 

the dynamics of ecological system, see [20-24]. Raymond et.al [21] suggested a prey-predator 

fishery model with harvesting, they deduced that if the harvesting rate exceeds the growth rate, 

then the population would be extinct with time. Several types of harvesting have been proposed 

and studied such as constant harvesting, nonlinear and proportional harvesting see [25-30]. 

 

     The objective of this paper is to understand how the biological factors as fear and harvesting 

may effect on the dynamic of the model.  

 

     In this paper, the influence of fear on the dynamics of harvested prey-predator with intra-

specific competition is suggested and studied. We presume that the effects of fear and 

harvesting are included on the model and the predator attacks the prey according to Holling 

type IV functional response. In the next section, the model is mathematically formulated and 

the bounded-ness of the proposed system is studied. In section three, the equilibrium points 

analysis and local stability of the system are investigated, while the conditions of persistence 

are determined in section four.  after that, Numerical analysis is carried out to explain the 

analytical outcomes in section five. Finally, conclusions are included in section six. 

 

2. Model Formulation 

     The influence of fear on the dynamics of harvested prey-predator model with intra-specific 

competition is suggested and studied. Consider that the prey’s density 𝑥(𝑡) and the predator’s 

density 𝑧(𝑡) at time 𝑡. Suppose that the prey logistically grows in the absence of a predator 

with a growth rate 𝑟 > 0 and carrying capacity 𝑘 > 0. However, the fear effect from the 

predation causes decreases in the growth rate with a constant fear rate 𝜃 > 0. The predator eats 

the prey under the Holling type IV functional response with maximum attack rate 𝑎 > 0, the 
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direct measurement of the predator immunology from the prey 𝛽 > 0 and the half saturation 

level 𝑏 > 0. If the prey is unavailable, then the predator is eliminated with death rate 𝑑 > 0. 

The predator competes with its species with intra-specific competition rate 𝛼 > 0. Moreover, 

the positive constants 𝑒, 𝐸1 and 𝐸2 represent the conversion rate, harvesting efforts for the prey 

and predator, respectively. Now the dynamics of the harvested prey-predator model with fear 

and intra-specific competition is represented by the following set of differential equations: 

 

                            

𝑑𝑥

𝑑𝑡
= (

𝑟𝑥

1+𝜃𝑧
) (1 −

𝑥

𝑘
) −

𝑎𝛽𝑥𝑧

𝑥2+𝛽𝑥+𝛽𝑏
− 𝐸1𝑥,

𝑑𝑧

𝑑𝑡
=

𝑒𝑎𝛽𝑥𝑧

𝑥2+𝛽𝑥+𝛽𝑏
− 𝑑𝑧 − 𝛼𝑧2 − 𝐸2𝑧.

                                          (1) 

      

      Obviously, the domain of system (1) is given by 𝑅+
2 = {(𝑥, 𝑧) ∈ 𝑅2/𝑥 ≥ 0, 𝑧 ≥ 0}. 

Moreover, the right hands of the system (1) are in the 𝐶1 which are Lipschitzain functions. 

Therefore, the solution to the system (1) exists uniquely. We notice that an ecological model is 

well post if and only if it is a bounded model. So the next theorem gives the solution to the 

system (1) is uniformly bounded. Note that, the survival condition of coexistence of each 

species in system (1) is given by 

                                                                      𝑟 > 𝐸1.                                                               (2) 

Therefore, from now onward, we presume that condition (2) always holds.  

Theorem (1): All the solutions to system (1) are uniformly bounded.  

Proof: According to 1st equation, its noted that  

                                                           
𝑑𝑥

𝑑𝑡
≤ 𝑟𝑥 (1 −

𝑥

𝑘
) − 𝐸1𝑥 .                                               (3) 

Then, by direct computation and condition (2), we obtain the following 

𝑥(𝑡) ≤
𝑘(𝑟−𝐸1)

𝑟
,   ∀𝑡 ≥ 0.  

Let 𝑉(𝑡) = 𝑒𝑥(𝑡) + 𝑧(𝑡), then  
𝑑𝑉

𝑑𝑡
≤

𝑒𝑟

1+𝜃𝑧
𝑥 − 𝐿𝑉, where 𝐿 = 𝑚𝑖𝑛{𝐸1, 𝑑 + 𝐸2}, and it gives 

𝑑𝑉

𝑑𝑡
+ 𝐿𝑉 ≤ 𝑀, where 𝑀 =

𝑒𝑘(𝑟−𝐸1)

1+𝜃𝑧
. By means of the Granwall lemma, we get 

𝑉(𝑡) ≤
𝑀

𝐿
(1 − 𝑒−𝐿𝑡) + 𝑉0𝑒−𝐿𝑡. For 𝑡 → ∞, we have     

𝑉(𝑡) ≤
𝑀

𝐿
. Therefore, system (1) are uniformly bounded.  

 

3. Equilibrium Analysis and Local Stability  

System (1) has three positive equilibrium points, namely,  𝑦𝑖 = (𝑥𝑖, 𝑦𝑖), 𝑖 = 0,1,2.  

1. The equilibrium point 𝑦0 = (0,0) always exists. 

2. The equilibrium point 𝑦1 = (�̂�, 0), where �̂� =
𝑘(𝑟−𝐸1)

𝑟
 , always exists under the survival 

condition (2). 

3. The interior equilibrium point 𝑦2 = (𝑥∗, 𝑧∗) exists, where 

                                𝑧∗ =
1

𝛼
[

𝑒𝑎𝛽𝑥∗−(𝑑+𝐸2)(𝑥∗2
+𝛽𝑥∗+𝛽𝑏)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
].                                              (4) 

 

and 𝑥∗ is a positive root of the polynomial of order seven. 

                               𝐵1𝑥7 + 𝐵2𝑥6 + 𝐵3𝑥5 + 𝐵4𝑥4 + 𝐵5𝑥3 + 𝐵6𝑥2 + 𝐵7𝑥 + 𝐵8 = 0.            (5) 

where  𝐵1 = −
𝛼𝑟

𝑘
< 0, 

 𝐵2 = 𝛼𝑟 (1 −
3𝛽

𝑘
) + 𝐸1(𝜃(𝑑 + 𝐸2) − 𝛼),  

𝐵3 = 3 [𝛼𝑟𝛽 (1 − (
𝑏−𝛽

𝑘
)) + 𝐸1𝛽(𝜃(𝑑 + 𝐸2) − 𝛼)] − 𝐸1𝑒𝑎𝜃𝛽, 
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𝐵4 = 3 [𝛼𝑟𝛽 (𝑏 + 𝛽 − 2
𝛽𝑏

𝑘
) + 𝐸1𝛽𝑏(𝜃(𝑑 + 𝐸2) − 𝛼)(𝑏 + 𝛽)] −

𝛼𝑟𝛽3

𝑘
+  𝛼𝛽(𝑑 + 𝐸2)(1 −

𝜃(𝑑 + 𝐸2)) − 2𝐸1𝑒𝑎𝜃𝛽2, 

𝐵5 = 6𝛼𝑟𝛽2𝑏 + 2𝛼𝑟𝛽3 − 3
𝛼𝑟𝛽2𝑏2

𝑘
− 3

𝛼𝑟𝛽3𝑏

𝑘
− 𝑎2𝛽2𝑒 + 2

𝑎2𝛽2𝑒𝜃(𝑑 + 𝐸2)

𝛼

+ 2𝑎𝛽2(𝑑 + 𝐸2) −
𝑎𝜃𝛽2(𝑑 + 𝐸2)2

𝛼
+ 6𝐸1𝜃𝛽2𝑏(𝑑 + 𝐸2) − 4𝐸1𝛼𝛽2𝑏

− 2𝐸1𝜃𝑒𝑎𝛽2𝑏 − 𝐸1𝛼𝛽3 − 𝐸1𝜃𝑒𝑎𝛽3 + 𝐸1𝜃𝛽3(𝑑 + 𝐸2), 

𝐵6 = 3𝛼𝑟𝛽2𝑏 (𝑏 + 𝛽 −
𝛽𝑏

𝑘
) − 𝑎2𝛽3𝑒 (1 +

𝑎𝜃

𝛼
) + 2𝑎𝛽2(𝑑 + 𝐸2) (

𝑎𝛽𝑒𝜃

𝛼
+ 𝑏)

−
𝑎𝜃𝛽2(𝑑 + 𝐸2)2

𝛼
(𝛽 + 𝑏) − 3𝐸1𝛼𝛽2𝑏2, 

𝐵7 = 3𝛼𝑟𝛽3𝑏2 −
𝛼𝑟𝛽3𝑏3

𝑘
− 𝑎2𝛽3𝑒𝑏 + 2𝑎𝛽3𝑏(𝑑 + 𝐸2) (

𝜃(𝑎𝑒 − 1) + 𝛼

𝛼
)

− 3𝐸1𝛼𝛽3𝑏2(1 − 𝜃(𝑑 + 𝐸2)) − 𝐸1𝜃𝑒𝑎𝛽3𝑏2, 

𝐵8 = 𝑎𝛽3𝑏2(𝑑 + 𝐸2) (
𝛼−𝜃

𝛼
) − 𝐸1𝛽3𝑏2(𝛼 − 𝑏𝜃(𝑑 + 𝐸2)). 

So, by Descartes rule of sign, we observe that, Eq. (5) has at least one positive root provided 

that  

                                                                𝐵8 > 0.                                                                     (6) 

Therefore, the interior equilibrium point 𝑦2 exists if condition (6) is satisfied and the next 

condition met   

                                                   (𝑑 + 𝐸2) <
𝑒𝑎𝛽𝑥∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
.                                                    (7) 

 

     Now, we analyse the stability of all the equilibrium points by computing the Jacobian matrix 

𝐽 of system (1) at 𝑦 = (𝑥, 𝑧). 

For the point   𝑦0 = (0,0), 

                                                  𝐽(𝑦0) = [
𝑟 − 𝐸1 0

0 −(𝑑 + 𝐸2)
].                                             (8) 

 

      Clearly, the eigenvalues of 𝐽(𝑦0) can be written as 𝜆01 = 𝑟 − 𝐸1 and 𝜆02 = −(𝑑 + 𝐸2) <
0. Therefore, 𝑦0 is locally asymptotically stable (LAS) if the next condition met 

 

                                                                𝑟 − 𝐸1 < 0.                                                              (9) 

 

The Jacobian matrix at 𝑦1 = (
𝑘(𝑟−𝐸1)

𝑟
, 0) can be written as follows:  

                                  𝐽(𝑦1) = [
−(𝑟 − 𝐸1) −𝑟𝜃�̂� +

𝑟𝜃�̂�2

𝑘
−

𝑎𝛽�̂�

�̂�2+𝛽�̂�+𝛽𝑏

0
𝑒𝑎𝛽�̂�

�̂�2+𝛽�̂�+𝛽𝑏
− (𝑑 + 𝐸2)

].                             (10) 

 

     We observe that the eigenvalues of 𝐽(𝑦1) can be written as 𝜆11 = −(𝑟 − 𝐸1) < 0 and  𝜆12 =
𝑒𝑎𝛽�̂�

�̂�2+𝛽�̂�+𝛽𝑏
− (𝑑 + 𝐸2). Hence, 𝑦1 is (LAS) provided the following condition holds 

                                                            
𝑒𝑎𝛽�̂�

�̂�2+𝛽�̂�+𝛽𝑏
< (𝑑 + 𝐸2).                                                (11) 

 

Finally, the Jacobian matrix at 𝑦2 = (𝑥∗, 𝑧∗) can be written as follows: 

 

                                                          𝐽(𝑦2) = [
𝑎11 𝑎12

𝑎21 𝑎22
],                                                    (12) 
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where 

𝑎11 = −
𝑟𝑥∗

𝑘(1+𝜃𝑧∗)
+

𝑎𝛽𝑥∗𝑧∗(2𝑥∗+𝛽)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2, 

 𝑎12 = −
𝑟𝜃𝑥∗

(1+𝜃𝑧∗)2
+

𝑟𝑘𝜃𝑥∗2

𝑘2(1+𝜃𝑧∗)2
−

𝑎𝛽𝑥∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
, 

𝑎21 =
𝑒𝑎𝑏𝛽2𝑧∗−𝑒𝑎𝛽𝑥∗2

𝑧∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 , and  𝑎22 = −𝛼𝑧∗. 

The characteristic equation of 𝐽(𝑦2) is computed by  

                                                            𝜆2 − 𝑇𝜆 + 𝐷 = 0,                                                      (13) 

where 

 𝑇 = −
𝑟𝑥∗

𝑘(1+𝜃𝑧∗)
+

𝑎𝛽𝑥∗𝑧∗(2𝑥∗+𝛽)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 − 𝛼𝑧∗, 

𝐷 = (−
𝑟𝑥∗

𝑘(1+𝜃𝑧∗)
+

𝑎𝛽𝑥∗𝑧∗(2𝑥∗+𝛽)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2) (−𝛼𝑧∗) − (−

𝑟𝜃𝑥∗

(1+𝜃𝑧∗)2
+

𝑟𝑘𝜃𝑥∗2

𝑘2(1+𝜃𝑧∗)2
−

𝑎𝛽𝑥∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
) (

𝑒𝑎𝑏𝛽2𝑧∗−𝑒𝑎𝛽𝑥∗2
𝑧∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 ). 

Therefore, 𝑇 < 0 and 𝐷 > 0 if the following conditions hold 

                                                 
𝑎𝛽𝑥∗𝑧∗(2𝑥∗+𝛽)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
<

𝑟𝑥∗

𝑘(1+𝜃𝑧∗)
+ 𝛼𝑧∗.                                            (14) 

                                                               𝐺1 − 𝐺2 > 0,                                                           (15) 

where  

𝐺1 =
𝑟𝛼𝑧∗𝑥∗

𝑘(1+𝜃𝑧∗)
+

𝑟𝜃𝑒𝑎𝑏𝛽2𝑧∗𝑥∗

(1+𝜃𝑧∗)2(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 +

𝑟𝜃𝑒𝑎𝛽𝑥∗4
𝑧∗

𝑘(1+𝜃𝑧∗)2(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 +

𝑒𝑎2𝑏𝛽3𝑧∗𝑥∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
3. 

𝐺2 =
𝑎𝛼𝛽𝑥∗𝑧∗2(2𝑥∗+𝛽)

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 +

𝑟𝜃𝑒𝑎𝛽𝑥∗3
𝑧∗

(1+𝜃𝑧∗)2(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 +

𝑟𝜃𝑒𝑎𝑏𝛽2𝑧∗𝑥∗2

𝑘(1+𝜃𝑧∗)2(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
2 +

𝑒𝑎2𝛽2𝑥∗3
𝑧∗

(𝑥∗2+𝛽𝑥∗+𝛽𝑏)
3. 

Hence, the interior equilibrium point 𝑦2is (LAS) provided that conditions (14)-(15) hold. 

 

4. Persist of system (1) 

     The persistence of system (1) is studied. Its known that the existence of any system 

continues if and only if all species exist for all time, which means that the system (1) survives 

if the solution does not have an omega limit set in the boundary planes. 

Now, we use the Dulac function to determine the potential of periodic dynamics in the 𝑖𝑛𝑡. 𝑅+
2  

of the 𝑥𝑧 − plane. 

Let 𝑅(𝑥, 𝑧) =
1

𝑥𝑧
 be the Dulac function. Clearly, the function 𝑅(𝑥, 𝑧) > 0 and it is a continuous 

function in the 𝑖𝑛𝑡. 𝑅+
2  of the 𝑥𝑧 − plane. 

Moreover, we have 

△ (𝑥, 𝑧) = −
𝑟

𝑘𝑧(1+𝜃𝑧)
+

𝑎𝛽(2𝑥+𝛽)

(𝑥2+𝛽𝑥+𝛽𝑏)2
−

𝛼

𝑥
. 

Then △ (𝑥, 𝑧) doesn’t identically to zero in the 𝑖𝑛𝑡. 𝑅+
2  of the 𝑥𝑧 − plane and it doesn’t change 

sign under one of the next conditions: 

                                                   
𝑎𝛽(2𝑥+𝛽)

(𝑥2+𝛽𝑥+𝛽𝑏)2 >
𝑟

𝑘𝑧(1+𝜃𝑧)
+

𝛼

𝑥
                                               (16a) 

or 

                                                  
𝑎𝛽(2𝑥+𝛽)

(𝑥2+𝛽𝑥+𝛽𝑏)2
<

𝑟

𝑘𝑧(1+𝜃𝑧)
+

𝛼

𝑥
 .                                              (16b) 

Note that, by applying the Bendixson-Dulac criterion, there’s no periodic in the 𝑖𝑛𝑡. 𝑅+
2  of the 

𝑥𝑧 −plane for every trajectories that satisfy condition (16a) or condition (16b). Then by using 

the Poincare-Bendixon theorem, 𝑦2 is a unique equilibrium point in the 𝑖𝑛𝑡. 𝑅+
2  of the 

𝑥𝑧 −plane and it will be a globally asymptotically stable (GAS) when its LAS. 

Theorem (2): System (1) is uniformly persistent provided the following condition hold 
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                                                       𝑑 + 𝐸2 <
𝑒𝑎𝛽𝑥

�̂�2+𝛽�̂�+𝛽𝑏
 .                                                       (17) 

Proof: Define the following function 𝜌(𝑥, 𝑧) = 𝑥𝜏1𝑧𝜏2, where 𝜏𝑖 , ∀𝑖 = 1,2 are positive 

constants. Evidently, 𝜌(𝑥, 𝑧) > 0, ∀ (𝑥, 𝑧) ∈ 𝑖𝑛𝑡. 𝑅+
2  and 𝜌(𝑥, 𝑧) → 0 if 𝑥 → 0 or 𝑧 → 0. Let 

𝜑(𝑥, 𝑧) =
𝜌′(𝑥,𝑧)

𝜌(𝑥,𝑧)
 then 

𝜑(𝑥, 𝑧) = 𝜏1 (
𝑟

1+𝜃𝑧
(1 −

𝑥

𝑘
) −

𝑎𝛽𝑧

𝑥2+𝛽𝑥+𝛽𝑏
− 𝐸1) + 𝜏2 (

𝑒𝑎𝛽𝑧

𝑥2+𝛽𝑥+𝛽𝑏
− 𝑑 − 𝛼𝑧 − 𝐸2). 

Then we have that 

𝜑(𝑦0) = 𝜏1(𝑟 − 𝐸1) + 𝜏2(−(𝑑 + 𝐸2)),  

𝜑(𝑦1) = 𝜏2 (
𝑒𝑎𝛽�̂�

�̂�2+𝛽�̂�+𝛽𝑏
− (𝑑 + 𝐸2)) . 

Clearly, by choosing 𝜏1 to be sufficiently large with respect to 𝜏2, this leads to 𝜑(𝑦0) > 0 and  

𝜑(𝑦1) > 0 under condition (17). Then system (1) is uniformly persistent. 

Theorem (3): Assume that 𝑦0 is LAS, then its GAS in the 𝑖𝑛𝑡. 𝑅+
2 . 

Proof: Consider the positive definite function  𝐿1(𝑥, 𝑧) = 𝑥 +
1

𝑒
𝑧   

Note that 𝐿1(0,0) = 0 and 𝐿1(𝑥, 𝑧) > 0 for all (𝑥, 𝑧) ∈ 𝑅+
2  with (𝑥, 𝑧) ≠ (0,0). Now directly 

calculations give that 
𝑑𝐿1

𝑑𝑡
=

𝑟𝑥

1+𝜃𝑧
−

𝑟𝑥2

𝑘(1+𝜃𝑧)
− 𝐸1𝑥 −

𝛼

𝑒
𝑧2 − (

𝑑+𝐸2

𝑒
) 𝑧 . 

𝑑𝐿1

𝑑𝑡
≤ (𝑟 − 𝐸1)𝑥 − (

𝑑+𝐸2

𝑒
) 𝑧 . 

Hence, under condition (9), it is clear that 
𝑑𝐿1

𝑑𝑡
 negative definite. Thus 𝐿1 is a Lyapunov function 

and 𝑦0 is a GAS. 

Theorem (4): Assume that 𝑦1 is LAS, then its a GAS in the 𝑖𝑛𝑡. 𝑅+
2  if the next condition met 

                                                                 𝜃�̂�(2𝑟 − 𝐸1) +
𝑎�̂�

𝑏
< 𝑑 + 𝐸2.                                (18) 

Proof: Consider the function 𝐿2(𝑥, 𝑧) = ∫
𝑛−�̂�

𝑛

𝑥

�̂�
𝑑𝑛 + 𝑧   

Note that 𝐿2(�̂�, 0) = 0 and 𝐿2(𝑥, 𝑧) > 0 for all (𝑥, 𝑧) ∈ 𝑅+
2  with (𝑥, 𝑧) ≠ (�̂�, 0) and 𝑥 > 0. 

Now directly calculations give that 
𝑑𝐿2

𝑑𝑡
≤

𝑟𝜃�̂�𝑧

1+𝜃𝑧
−

𝑟

𝑘(1+𝜃𝑧)
(𝑥 − �̂�)2 +

𝑟𝜃�̂�𝑥𝑧

𝑘(1+𝜃𝑧)
−

𝑎𝛽𝑥𝑧

𝑥2+𝛽𝑥+𝛽𝑏
(1 − 𝑒) +

𝑎𝛽�̂�𝑧

𝑥2+𝛽𝑥+𝛽𝑏
− (𝑑 + 𝐸2)𝑧.  

𝑑𝐿2

𝑑𝑡
≤

−𝑟

𝑘(1+𝜃𝑧)
(𝑥 − �̂�)2 − ((𝑑 + 𝐸2) − (

𝑟𝜃�̂�(𝑘+𝑥)

𝑘(1+𝜃𝑧)
+

𝑎𝛽�̂�

𝑥2+𝛽𝑥+𝛽𝑏
)) 𝑧. 

Thus, with condition (18), its clear that 
𝑑𝐿2

𝑑𝑡
 negative definite. Then 𝐿2 is the Lyapunov function 

and 𝑦1 is a GAS. 

 

5. Numerical Analysis 

     This section involves a numerical analysis of the dynamics of the system (1). This study 

proposes to explain the effects of changing the values of parameters on the system (1) and to 

validate the theoretical outcomes. The numerical analysis is done using the set of values of 

parameters which is given in the following. Now, the set of hypothetical parameters as shown 

below 

                                 
𝑟 = 1.6, 𝜃 = 0.2, 𝑘 = 10, 𝑎 = 2, 𝛽 = 0.8, 𝑏 = 5,
𝐸1 = 0.2, 𝑒 = 0.75, 𝑑 = 0.01, 𝛼 = 0.01, 𝐸2 = 0.1.

                        (19) 

     The trajectories of system (1) is obtained with four various sets of initial conditions 

approaches asymptotically to 𝑦2 = (7.62, 2.40), as shown in Figure 1. 



Ibrahimet et al.                                        Iraqi Journal of Science, 2025, Vol. 66, No. 4, pp: 1650-1663 

 

1656 

 
Figure 1: The trajectories of system (1) with data (19) with various initial points approach 

asymptotically to 𝑦2 = (7.62, 2.40). (a) Time series of prey’s trajectories (b) Time series of 

predator’s trajectories  

 

Clearly, Figure 1 shows that 𝑦2 is GAS. Now, we examine the effect of changing the parameter 

𝑟 , the growth rate, on the dynamics of the system (1) with the data given in Eq.(19), for 0.3 <
𝑟 < 1.6 then the system’s trajectory approaches asymptotically to periodic dynamics. While 

1.6 ≤ 𝑟 then the system’s trajectory approaches asymptotically to 𝑦2. see Figure 2. 

 
Figure 2: The trajectories of system (1) with data (19) and different values of  𝑟. (a) Time 

series with 𝑟 = 1. (b) Time series with 𝑟 = 2. 

 

Now, the impact of fear rate 𝜃 with data (19) is investigated,  for 0.01 < 𝜃 ≤ 0.2 then the 

system’s trajectory approaches asymptotically to 𝑦2, while for 0.2 < 𝜃 then the trajectory 

approaches to periodic attractor, see Figure 3. 

 
Figure 3: The trajectories of system (1) with data (19) and different values of  𝜃. (a) Time 

series of the trajectory with 𝜃 = 0.1 (b) Time series with 𝜃 = 0.3. 
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     The effect of the carrying capacity 𝑘 is investigated in the ranges 1 < 𝑘 ≤ 4, 5 ≤ 𝑘 < 10 

and 10 < 𝑘, respectively. Its clear that the system's trajectory approaches to 𝑦2, periodic 

dynamics and 𝑦1, see Figure 4. 

  

 
Figure 4: The trajectories of system (1) with data (19) and different values of 𝑘. (a) System 

(1) approaches to 𝑦2 for 𝑘 = 3. (b) Time series for (a). (c) Asymptotic stable periodic attracter 

for 𝑘 = 8. (d) Time series for (c). (e) Time series with 𝑘 = 13.  

 

The impact of changing the parameter 𝑎, the attack rate, on the dynamical behavior is studied. 

For 0.1 ≤ 𝑎 < 2, the trajectory approaches to 𝑦1. Moreover, for 2 < 𝑎 then the trajectory 

approaches to periodic dynamics as illustrated in Figure 5. 

 
Figure 5: The trajectories of system (1) with data (19) and different values of 𝑎. (a) Time series 

with 𝑎 = 1. (b) Periodic attracter for 𝑎 = 3. (c) Time series for (b).  
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     The influence of changing the direct measurement of the predator immunology from prey 

𝛽 on the dynamical behavior in different ranges is investigated. It is clear that for 0.1 ≤ 𝛽 <
0.8, the trajectory approaches to 𝑦1. Whilst for 0.8 < 𝛽 then the trajectory approaches to 

periodic dynamics, see Figure 6. 

 
Figure 6: Time series of the trajectory of system (1) with data (19) and different values of 𝛽. 

(a) Time series with 𝛽 = 0.5. (b) Time series with 𝛽 = 1. 

 

Now, the effect of varying the half saturation level 𝑏 of the dynamical system is studied. In the 

range 1 ≤ 𝑏 < 5, the trajectory approaches to periodic dynamics, while for 5 ≤ 𝑏, the 

trajectory approaches to 𝑦2, as is illustrated in Figure 7. 

 
Figure 7: Time series of the trajectory of system (1) with data (19) and different values of 𝑏. 

(a) Time series with 𝑏 = 3. (b) Time series with 𝑏 = 7. 

 

     The influence of the harvesting efforts for the prey 𝐸1  is investigated in the different ranges. 

It is clear that, for 0.01 ≤ 𝐸1 < 0.2 the trajectory approaches to 𝑦1, and for 0.2 < 𝐸1 < 0.7 the 

trajectory approaches to periodic dynamics. Also, for 0.7 ≤ 𝐸1 < 1.7 the trajectory approaches 

to 𝑦2. Now, to illustrate the obtained analytical outcomes that are given by condition (9) and 

for 1.7 ≤ 𝐸1 leads to the harvesting rate (𝐸1) exceeds the growth rate (𝑟) and the trajectory 

approaches to 𝑦0, see Figure 8. 

 



Ibrahimet et al.                                        Iraqi Journal of Science, 2025, Vol. 66, No. 4, pp: 1650-1663 

 

1659 

 
 Figure 8: Time series of the trajectory of system (1) with data (19) and different values of 𝐸1. 

(a) Time series 𝐸1 = 0.01. (b) Time series 𝐸1 = 0.5. (c) Time series with 𝐸1 = 0.8. (d) Time 

series with 𝐸1 = 2 . 

 

Now, the effect of changing the conversion rate 𝑒 is studied. In the range 0.05 ≤ 𝑒 < 0.75 the 

system's trajectory approaches asymptotically to 𝑦1. Whilst, for 0.75 ≤ 𝑒 the trajectory 

approaches to periodic dynamics as its illustrated in Figure 9. 

 
Figure 9: Time series of the trajectory of system (1) with data (19) and different values of 𝑒 . 

(a) Time series with 𝑒 = 0.3. (b) Time series with 𝑒 = 0.9.  
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     The influence of changing the death rate 𝑑 on the dynamical behavior in various ranges is 

investigated. It is clear that for 0.001 ≤ 𝑑 < 0.01  the trajectory approaches to periodic 

dynamics and for  0.01 < 𝑑 the  trajectory approaches to 𝑦1 , see Figure 10. 

\ 

 
Figure 10: Time series of the trajectory of system (1) with data (19) and different values of 𝑑 

. (a) Time series with 𝑑 = 0.005. (b) Time series with 𝑑 = 0.05.  

 

     The effect of the intra-specific competition rate 𝛼 is investigated in the different ranges. For  

0.001 ≤ 𝛼 < 0.01 the trajectory approaches to periodic dynamics. Furthermore, for 0.01 < 𝛼 

the trajectory approaches to 𝑦2, see Figure 11. 

 
Figure 11: Time series of the trajectory of system (1) with data (19) and different values of 𝛼 

(a) Time series with 𝛼 = 0.005. (b) Time series with 𝛼 = 0.05.  

 

     The impact of changing the harvesting efforts for the predator 𝐸2  on the dynamics system 

is investigated. In the ranges 0.01 ≤ 𝐸2 < 0.1 and 0.1 < 𝐸2, respectively. Its shown that the 

trajectory approaches to periodic dynamics and 𝑦1 as its illustrated Figure 12. 
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Figure 12: Time series of the trajectory of system (1) with data (19) and different values of  

𝐸2. (a) Time series with 𝐸2 = 0.01. (b) Time series with 𝐸2 = 0.5.  

 

6. Conclusions 

     In this paper, the fear effect of the harvested prey-predator model with intra-specific 

competition is suggested and studied. The survival condition of the coexistence of each species 

in the system (1) is also established. Moreover, all equilibrium points of system (1) are 

investigated. The stability analysis (local and global) of all equilibrium points of system (1) are 

carried out. The Persist constraints are investigated. Numerical analysis is used to explain the 

impacts of changing the values of parameters on the system (1) and to validate the theoretical 

outcomes. By utilizing the set of hypothetical parameters that are given in Eq. (19), the 

following outcomes are obtained: (1) The solution to the system (1) approaches to 𝑦2 =
(7.62, 2.40) when it begins from various initial points. (2) Its clear that any decrease in the 

parameter 𝑟 below a given value leads to the system's trajectory approaches to the periodic 

dynamics. (3) An increase in the parameter 𝜃 above a specific value leads to the system's 

trajectory approaching to the periodic dynamics. (4) A decrease in the parameter 𝑘 below a 

given value leads to the system's trajectory approaches to the periodic dynamics while 

increasing the parameter 𝑘 above a given value lead to the trajectory approaches to 𝑦1. The 

same observation will be got with decreasing and increasing in the parameters 𝑑, 𝐸2. (5) A 

decrease in the parameter 𝑎 below a given value leads to the system's trajectory approaches to 

𝑦1 while an increase the parameter 𝑎 above a given value leads to the system's trajectory 

approaches to the periodic dynamics. The same scenario will be got with decreasing and 

increasing the parameters 𝛽, 𝑒. (6) A decrease in the parameter 𝑏 below a given value leads to 

the system's trajectory approaches to the periodic dynamics. (7) A decrease in the parameter 

𝐸1 below a given value leads to the system's trajectory approaches to 𝑦1 while an increase in 

the parameter 𝐸1 above a given value leads to the system's trajectory approaches to the periodic 

dynamics and increasing more above a given value leads to 𝑦2. However, if the harvesting rate 

𝐸1 exceeds the growth rate 𝑟, then the system's trajectory approaches to 𝑦0. (8) A decrease in 

the parameter 𝛼 below a given value leads to the system's trajectory approaches to the periodic 

dynamics while an increase in the parameter 𝛼 above a given value leads to the system's 

trajectory approaches to 𝑦2.  
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