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Abstract
Evolutionary algorithms are better than heuristic algorithms at finding protein

complexes in protein-protein interaction networks (PPINs). Many of these algorithms
depend on their standard frameworks, which are based on topology. Further, many of
these algorithms have been exclusively examined on networks with only reliable
interaction data. The main objective of this paper is to extend the design of the canonical
and topological-based evolutionary algorithms suggested in the literature to cope with
noisy PPINs. The design of the evolutionary algorithm is extended based on the
functional domain of the proteins rather than on the topological domain of the PPIN. The
gene ontology annotation in each molecular function, biological process, and cellular
component is used to get the functional domain. The reliability of the proposed
algorithm is examined against the algorithms proposed in the literature. To this end, a
yeast protein-protein interaction dataset is used in the assessment of the final quality of
the algorithms. To make fake negative controls of PPIs that are wrongly informed and
are linked to the high-throughput interaction data, different noisy PPINSs are created. The
noisy PPINs are synthesized with a different and increasing percentage of misinformed
PPIs. The results confirm the effectiveness of the extended evolutionary algorithm
design to utilize the biological knowledge of the gene ontology. Feeding EA design with
GO annotation data improves reliability and produces more accurate detection results
than the counterpart algorithms.

Keywords: Complex detection, Evolutionary algorithm, Missing PPI, Modularity,
Protein—protein interaction, Unreliable PPI.
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1. Introduction

Networked systems tend to organize nodes into cohesive modules or communities, but
identifying these communities is a challenging task in network research with broad
applications in biological networks, social network modeling, and communication pattern
analysis [1-7]. Protein-protein molecular interactions (PPIs) in every organism are regularly
organized as networks, noted as protein-protein interaction networks (PPINs). PPINs make it
possible for graph theory and network topology to reveal and study the hidden details, like
functional modules or complexes connected with how cells are organized, how processes
work, and how the networks in these organisms do their jobs.

A protein complex is defined as a group of proteins that work together to carry out a
specific biological process or activity. For example, in Yeast Saccharomyces Cerevisiae PPIN
(depicted in Figure 1), there are 990 distinct proteins being connected with 4687 different
interactions. Based on the Munich Information Center for Protein Sequences (MIPS) golden
reference set, the proteins in this PPIN are structured with 78 uncoupled complexes [8]. In
Figure 1, complex C,g with 13 proteins and their interconnections is zoomed out. Figure 2
depicts the names of the 13 proteins and their interconnections. Note that not all biological
processes are connected, and interactions between proteins can be classified as within-
complex (intra-connection) or between-complexes (inter-connection), as shown in Figure 3.
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Figure 1: The yeast Saccharomyces cerevisiae network (left) and one complex (C,g) is

zoomed out in the right
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Figure 2: An illustrative example of complex ( C,g) from yeast Saccharomyces cerevisiae

PPIN with 13 proteins (depicted with their identity names) and their intra connections

Figure 3: A small PPIN of 10 proteins being decomposed into two complexes. The nodes within
a dashed circle form one complex. The edges inside the dashed circle are intra-connections, while
those connecting the two separate complexes are inter-connections.
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Detecting protein complexes from a PPIN is proven to be a non-deterministic polynomial-
time hard (NP-hard) problem, which makes it computationally difficult to solve. Also, one of the
biggest problems with studying protein-protein interaction networks (PPINSs) is that large-scale
experiments often give back a lot of false positives (i.e., interactions that aren't real or aren't
expected) and false negatives (i.e., interactions that aren't there). Such misinformed interactions
considerably increase the topological complexity of the networks, thus making the results
unreliable for complex detection algorithms.

The main goal of this paper is to look into how well evolutionary-based complex detection
algorithms (ECDs) can find things when there are noisy interactions between proteins. Different
types of noise are simulated in the experiments. To this end, several noisy PPINs are synthesized
from the well-known yeast Saccharomyces cerevisiae PPIN. Also, the proposed ECD doesn't just
use topological-based parts; it also uses information from the functional domain of proteins. This
comes from Gene Ontology Annotations (GOA) in Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC). The performance of the proposed Gene Ontology-based
ECD (GO-based ECD) is compared against the performance of two state-of-the-art ECDs. These
are the canonical ECD of Pizzuti and Rombo in [9, 10] and the topological-based ECD of Attea
and Abdullah [11]. The findings in this paper show how important it is to include gene ontology
information when designing ECD because it makes detection much more reliable compared to the
canonical and topological frameworks of ECD.

The remaining sections of this paper are organized as follows: The main ECD approaches
proposed in the literature are mentioned in the next section. A brief presentation of the
foundational ideas relating to this study follows. Problem formulation and algorithm design are
then presented in detail. Results and performance evaluations are reported in Section 5. Finally,
the paper is closed with a conclusion in Section 6.

2. Related works

The literature encompasses different complex detection methods based on meta-heuristic
algorithms, mainly evolutionary algorithms (EAs). The EA-based complex detection methods are
proved to be more reliable than their counterpart local-based complex detection methods such as
Molecular Complex Detection (MCODE) [3], Purification of the bait proteins [4], Dense-
neighborhood Extraction using Connectivity and conFidence Features (DECAFF) [5], Repeated
Random Walk (RRW) [6], Clustering-based on maximal cliques (CMC) [7], and Hierarchical
Link Clustering [7, 12].

Evolutionary-based complex detection algorithms use evolutionary principles, i.e., natural
selection and genetic variation, to search for promising candidates for protein complex structures.
Pizzuti and Rombo proposed one of the earliest evolutionary-based complex detection algorithms
in [9] and [10]. They developed a single-objective genetic algorithm (GA) with different single-
objective models to solve the problem. The remaining components of their algorithm (i.e.,
selection, crossover, and mutation operators) were designed based on their canonical forms. All
their objective function models were defined based on different topological characteristics of the
proteins and their interactions in the networks. The formulation of the objective functions
includes the well-known modularity (Q) function, community score (CS) function, conductance
(CO) function, normalized cut (NC) function, internal density (ID) function, expansion (EX)
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function, and cut ratio (CR) function. Unlike the modularity (Q) function, all the remaining
models explicitly define both the intra-complex structure and the inter-complex structure with
different maximization or minimization scores. Traditional modularity, on the other hand,
explicitly defines the intra-complex structure score only.

Bandyopadhyay et al. [13] and Ray et al. [14] were the first to formulate the problem as a
multi-objective optimization (MOOQ) problem. Both intra-complex structure and inter-complex
structure are reflected in their MOO model. To solve the issue, they created a multi-objective
genetic algorithm according to the well-known non-dominated sorting algorithm (NSGA-II).

In [11], two contradictory topological-based intra- and inter-structures were formulated as a
multi-objective optimization model. The well-known decomposition-based multi-objective
evolutionary algorithm (MOEA/D) served as the frame for the adopted multi-objective
evolutionary algorithm.

In [15], a locally-assisted migration operator is proposed based on the topological properties
of the tested PPINs. The operator has the ability to improve the performance of both single-
objective and multi-objective evolutionary-based complex detection algorithms. These
evolutionary-based algorithms have proven to be more robust than heuristic algorithms,
potentially providing better accuracy and scalability for complex detection in large biological
networks.

Significant exploitation of domain knowledge of the optimization problems can support the
use of EAs to the fullest. Unfortunately, there is a lack of research investigating these
evolutionary-based algorithms to examine the impact of domain knowledge on their design. In
bioinformatics, the utilization of ontologies for genome annotation has brought significant
advances to the field of molecular biology. These bio-ontologies were rarely considered in the
design of evolutionary-based complex detection algorithms. A few months ago, Abdulateef et al.
[16] looked at how to design the mutation operator in the EA (with modularity model) using
biological information from three different gene sub-ontology types. They designed the mutation
operator based on protein pair similarity in four versions: molecular function (MF), cellular
component (CC), biological process (BP), and their combinations.

. Background
3.1 Interactome and interaction graph

The interactome refers to the set of all the molecular interactions within cells, especially
protein-protein physical interactions. It's a global description obtained through various methods
to estimate the entire biological network of protein interactions in an organism [17]. For example,
the interactome of Saccharomyces cerevisiae was estimated to be on the order of 20,000
interactions. However, larger estimates include indirect or predicted interactions from affinity
purification/mass spectrometry (AP/MS) studies.

Mathematically, PPIN is represented as an undirected interaction graph, NV'(P,E), where
P = {p1,p2, .-, Pn} represents a set of n proteins and E = {ey, e,, ..., &;,} represents a set of m
pairwise interactions. To represent the finite graph of V', a square binary symmetric matrix,
A= [aij]nxn is normally used. If proteins p; and p; interact (i.e., adjacent), both entries a;; and
a;; of A are non-zeros; otherwise, both entries are assigned zeros. Further, the diagonal entries of
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the adjacency matrix are assigned zeros. Also, for each protein p;, i=1(a;j) is said to be the
degree d; of p;, while Y, ¥7_,(a;;) is the whole volume of the network. Figure 4 depicts an
illustrative example of ten PPIs from the yeast Saccharomyces cerevisiae PPIN (depicted in
Figure 3). In Figure 3, a total of 16 interactions out of 4687 interactions are mapped to their
corresponding adjacency matrix. In other words, 32 entries in the adjacency matrix are set to 1.
Thus, for the whole yeast PPIN network, there should be 4687 x 2 entries set to 1 in the
counterpart adjacency matrix.

Mathematically, a complex detection problem means to decompose the adjacency matrix A
into a priori unknown number (K) of varying sized sub-matrices. The space 2 of all possible
decomposition solutions determines the complexity of the problem. There is no deterministic rule
to decompose the adjacency matrix A, however, any complex detection algorithm attempts to
figure out the structure of the complex set C = {c;, ¢y, ..., cx} following the general rule of dense
and sparse connectivity features. It is widely assumed that a protein p; € c; should have more
internal connections in(p;) than external connections out(p;). Formally speaking, in(p;) =
ijeck a;j and out(p;) = ijg:Ck a;; express, respectively, the number of intra-connections and

inter-connections of node p; belongs to cluster c. In other words, d; = in(p;) + out(p;).

Table 1: Adjacency matrix for a small PPIN of 10 proteins from the whole PPIN in Figure 3. "1"
indicates that the corresponding pair of proteins physically interacts, otherwise, "0" means no
biological interaction. All diagonal entries are set to “0”

41 %] U3 Vy Vs Ve L4/ Vg Vg V10
2 0 1 1 1 0 0 0 0 0 0
U, 1 0 0 0 1 1 0 1 0 1
Vg 1 0 0 1 0 0 0 0 0 0
Uy 1 0 1 0 0 0 0 0 0 0
A= Vg 0 1 0 0 0 0 0 1 0 0
Vg 0 1 0 0 0 0 1 1 1 1
vy 0 0 0 0 0 1 0 0 0 1
Vg 0 1 0 0 1 1 0 0 1 0
Vg 0 0 0 0 0 1 0 1 0 1
V1o 0 1 0 0 0 1 1 0 1 0

3.2 Annotation of proteins with gene ontology

Gene ontology (GO) is an active species-agnostic ontology used in biology to describe the
semantics or context of gene and gene product attributes in single and multicellular organisms.
As the activity or function of a protein is defined at different levels, the GO domain has been
decomposed into three orthogonal categories or aspects: molecular function (MF), biological
process (BP), and cellular component (CC). Each protein performs elementary molecular-level
activities that are normally independent of the environment and occur at the molecular level, such
as catalytic, transport, or binding activities. Larger cellular processes or biological programs are
accomplished by multiple molecular activities of sets of interacted proteins [18].
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Every GO term has a distinct seven-digit identifier that begins with the letters GO (for
example, GO: 0003714). As an illustrative example, consider Table 1, where the annotations of
five different proteins with their direct GO terms are reported. The annotations are reported in
their MF, BP, and CC sub-ontology terms. The GO terms were downloaded online from the
Saccharomyces Genome Database (SGD) at the following URL: http://genome-
www.stanford.edu/Saccharomyces/.

Table 2: A sample of yeast proteins with their identity numbers, identity names, and direct

GO annotation with MF, BP, and CC sub-ontology terms

Protein GO term
# name BP CcC MF
G0:0000502
[GO:0006511, [co ' .
. . ' G0:0008540, [GO: 0036435,
62 W ARZLDNS 88:88 ig’fgf] GO:0005829. GO:00 31593]
: G0:0005634]
[GO:0000502,
G0:0008180,
G0:0008541,
41 'YDL14TW' [GO:0000338] GO:0034515, [GO:0005515]
G0:0005737,
G0:0008541,
G0:0031595]
[GO:0006511, [GO:0005634, o,
GO:0004175
, , G0:0043248, G0:0008540, : '
Ly vl G0:0042176, GO:0034515, gggggggéﬁ’]
GO:0050790] G0:0000502] :
[GO:0019774,
GO:0005634,
GO:0005789.
[GO:0010498, T
G0:0010499, oy
434 "YER094C' G0:0043161, o oo [G0:0061133]
GO:0006508, D o oaa,
G0:0051603] o orsT.
G0:0005839,
G0:0019774]
[GO:0019774,
[GO:0010498, ggggggsgg [GO:0004175,
G0:0010499, e G0:0004298,
274 'YJILOOIW G0:0043161. GO GO:0016787,
GO:0006508, o orsT, G0:0008233,
G0:0051603] SO G0:0004298]
G0:0005839]
[GO:0005634,
G0:0005739,
[GO:0010499, 2o oaers
G0:0043161, TS, [GO:0003674,
308 'YOLO38W' GO:0006511, e G0:0004298,
GO:0051603, ozl l G0:0004175]
G0:0005737] SOy
G0:0005839]

Each GO term (t) can be structured hierarchically by a directed acyclic graph (DAG),
where each GO term is a node, and the relationships between the terms are edges between the
nodes. Child GO terms are more specialized than their parent GO terms, and a GO term may
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have more than one parent GO term. A relation between two terms (t,, t;) is represented as a
directed edge pointing from t, to t;. There are three main types of directed relationships
between GO terms. These are ‘is_a’, 'part_of’, and ’regulate’ [18]. A straightforward
class-subclass relation is called is_a, where t, is_a t, denotes that GO term t, is a subclass
of GO term t;. A partial ownership relation is a part_of where t; part_of t, means that
whenever t; is present, it is always a part of t,, but t; is not required to be present. The
relation *regulate’ describes a case in which one process directly affects the manifestation of
another process or quality, i.e., the former regulates the latter. Figure 4, depicts the DAG for
cytoplasm (G0:0005737). This GO term has two parents: it is_a cellular anatomical entity,
and it is part_of the intracellular anatomical structure.

[ GO: 0005575 ]

Y

cellular component

| i
s a is_ a
_{ GO: 0005622 J\/l \ﬁf[ GO: 0110165 ]\\\

cellular anatomical
entity

intracellular
anatomical structure

J
»

part_of

is_a
V| GO: 0005737
cytoplasm

Figure 4: Graph-based representation for GO terms and relations

Proteins or gene products are, then, annotated with GO terms either directly or via inheritance,
which implies annotation to all of their ancestor t, terms in DAG (t). An ancestor set, Anc(t), for
some t is defined as:

Anc(t): DAG — {t;|3 path (t, t)} 1)

As an illustrative example, consider the three DAGs for three GO terms for protein "YPL139C "

in Figure 5. The GO terms are: MF (G0O:0003714), BP (G0:0051321), and CC

(GO:005634). For example, the DAG for G0:0051321 (meiotic cell cycle) has six terms

connected with six ‘is_a’ relations and one ‘part_of’ relation. The term GO:0022414

(reproductive process) is considered as is_a subclass of GO: 0008150 (biological process) and
also a part_of GO:0000003 (reproduction).
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GO: 0008150
(

|

| biological_process \l GO: 0110165

L \ is-a |
f is-a cellular anatomical |
isa \ entity

) \ (o),

| cellular process metabolic process GO: 0005575
t J @ Is-a
T T cellular_component GO: 0043226 J‘\ | GO: 0005622

w3 i intracellular anatomical

structure

organelle J

A
cellular metabolic process| isa T |
BP-Aspect : i
is-a part.of
A GO: 0043227 GO: 0043229 |
,l GO: 0003824 L | membrane-bounded i
1l intracellular organelle
catalytic activity organelle
is-a \sra isa Isa
(Gorootersr) | | (Go:o0sast ) |
hydrolase activity ) intracellular membrane-
molecular_function | bounded organelle

is-a
/Ii GO: 0016788 |

hydrolase activity, acting on
ester bonds

iSa GO: 0005634

=2 nucleus
nuclease activity CC-Aspect

MF-Aspect

Figure 5: Three DAGs for three different GO terms for the protein "YPL139C". One MF term
(GO: 0003714) (top left), one BP term (GO: 0051321), and one CC term (GO: 005634) (right).
Solid arrows represent ‘is_a’ relations, while dashed arrows represent ‘part_of ’ relations

3.2.1 GO-based semantic similarity

Gene-ontology-based semantic similarity (S§) gives the opportunity to compare GO terms or
entities annotated with GO terms based on their semantic properties, normally acquired from
corpora. From 8§, a semantic similarity matrix § = [SS]¥*Nis obtained for N GO terms that
annotate n different proteins, where SS;; = §S;; € R* is the semantic similarity between terms
t; and tj

Based on the meaning of semantic value and semantic contribution, Wang et al. [19] proposed
one of the well-known semantic similarity measures. The semantic value $(t): DAG(t) - R* for
a GO term tis computed as the sum of the semantic contributions (SC) of all GO terms in
DAG(t) toterm t, SC:t X t; X DAG(t) » R*, along the best (i.e., maximum) weighted paths to
t. Note that the semantic contribution of the term t in its DAG to itself is 1,
i.e,SC(t,DAG(t)) = 1. The best weighted path for each ancestor is the path that has the
maximum product of the weights on its edges. Wang et al. [19] set w = 0.8 and w = 0.6 for
'Is_a’ and 'part_of," respectively. The formulation in Eq. 2 expresses the semantic contribution of
term t, to term ¢t in DAG (t). The formulation reveals that terms t that are closer to t in DAG (t)
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contribute more to its semantics, whereas terms t, that are farther from t in DAG(t) contribute

less as they are more general terms [19].

SC(ts, DAG(t)) = max{w x SC(t5)|3 e(ts, )} (2)

where the directed relation between t,; and tg is denoted by the expression e(ts, tg). Then, the

semantic value of the term t in its DAG is expressed in Eq. 3.

S() = Tt epaee SC(t DAG(E)) )
Then, the semantic similarity between two GO terms, tand t (as expressed in EQ. 4), is

defined as the ratio of the semantic contributions of all common terms (also known as

intersecting terms) in the DAGs of, t, and t to the semantic values of t; and t,, respectively .

Y teDAG(t1) n DAG(ty) SC(E.DAG(t1))+SC(t,DAG(t2)) 4
S(t1)+8(t2)

55(t1; tz) =

3.2.2 Gene functional similarity

Functional similarity (F§) measures the degree to which two proteins share functional
properties [20]. For n different proteins, then, a functional-based similarity matrix F§ =
[FS;;]™" can be derived. For a pair of proteins, FS requires two sets of protein-level
annotation, i.e., GO terms. Protein-term (J%) representation can be established at two different
levels: 1) the direct annotation scheme and 2) the indirect annotation scheme. In the direct
annotation scheme, proteins are annotated using their direct GO terms across all three sub-
ontology types. In other words, 7, = {M'F, BP, CC}. One of the well-known methods is Jaccard
[20], as defined in Eq. 5.

TS]accard(PerZ) = % (5)
For indirect annotation, each protein is annotated according to its direct GO terms (7»)

and their ancestors in their corresponding DAG structures, i.e., Tp U T;jrez,, Where Tp = ¢ U{t,}

indicates that the term t and all of its ancestors. They statistically consider a combination of the

semantic similarities between the terms 75, and 75, to determine FS between two gene products

P, and P,. For example, maximum functional similarity [20] is defined in Eq. 6.

FSmax(P1, P2) = max[SS(ty,t,)] |ty € Tpy, t; € Tpy (6)

4. Problem formulation and algorithm design
4.1 Synthesizing noisy PPINs

The success of accurate protein complex detection depends on the availability of high-quality
benchmarks. High-throughput experimental techniques typically produce a rich source of
experimentally detected PPI datasets; however, these PPIs are susceptible to noise (i.e., spurious
interactions that do not exist) and incompleteness (i.e., missing interactions). This can arise due
to a variety of factors, such as experimental limitations, technical errors, or even intentional
attempts to manipulate the data.

In this paper, to simulate negative controls, different noisy PPINs were generated by

perturbing the yeast Saccharomyces cerevisiae (S. cerevisiae) dataset. These synthesized PPINs
were generated with varying percentages of misinformed PPIs by randomly adding or removing
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an increasing percentage of interactions from the original PPIN. To follow different noise levels
in the synthesized PPINSs, five increasing percentages (from 10% to 50%) of interactions were
randomly added or removed from the network. The interactions are divided into two types with
respect to the interacted proteins: those interactions connecting proteins with the highest degrees
(weighty proteins) and those interactions connecting proteins with the lowest degrees (light
proteins). Proteins were classified first by Zaki et al. [21] according to the number of interactions
they contribute. They categorize hub proteins into two main categories: genuine hub proteins and
noisy proteins. Hub proteins are those highly connected proteins within complexes and those
essential proteins with few connections but inside too small complexes. Genuine hub proteins
have critical roles in mediating cellular processes. They showed that understanding the protein
complex structure correctly is heavily augmented by differentiating genuine hub proteins from
noisy proteins.

In this paper, three different forms of perturbation are used to add fake interactions or remove
valid interactions. These are perturbing weighty proteins, perturbing light proteins, and
perturbing random proteins. Here, a weighty protein is defined as having a degree greater than
average in the PPIN, whereas a light protein is defined as having a degree less than average in the
PPIN. Thus, a noisy PPIN was generated by adding a percentage (10%-50%) of fake interactions
to either weighty proteins, light proteins, or random proteins. Similarly, a noisy PPIN can be
obtained by removing 10%-50% interactions from either weighty proteins, light proteins, or
random proteins.

Two illustrative examples demonstrate how two light proteins from the yeast Saccharomyces
cerevisiae network (shown in Figure 1) are perturbed with noisy information. The PPIN in Figure
1 is perturbed with 10% noise. Protein #844 (YDR311’) has only three interactions, as depicted
in Figure 6 (left), which are perturbed after adding 10% fake interactions to the whole PPIN.
Adding fake interactions leaves protein #844 (YDR311W) with 4 additional interactions, as
depicted in Figure 6 (right). Figure 7, on the other hand, depicts another illustrative example
while deleting true interactions from protein #618 (YOLO90W). Protein #618 (YOLO090W) has 6
true interactions (left). The 10% noise perturbation leaves this protein with only 4 interactions, as

depicted in Figure 7 (right).
v

8 8

Figure 6: Adding fake interactions to protein #844 (YDR311W)

398



Abdulsahib and Attea Iragi Journal of Science, 2025, Vol. 66, No. 1, pp: 388-408

’65331 3
&7 - @
A 6 Feo-
oo €09 @
I/N /- \
618 579
o (544) 48 >
@ 9 @
& -
£\
243
N

&
Figure 7: Deleting true interactions from protein #618 (YOL090W)

Also, Figure 8 shows how adding or removing 50% noise from the whole yeast
Saccharomyces cerevisiae PPIN (in Figure 1) changes three different types of proteins. The
selected proteins from the PPIN are one weighty protein #38 (YLR033W), one light protein #503
(YFL049W), and one random protein #179 (YPLO16W).

Protein type Selected yeast protein 50% spurious interactions 50% missing interactions
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Figure 8: Adding fake interactions to or removing actual interactions from protein #38
(YLRO33W), protein #503 (YFL049W), and protein #179 (YPLO16W)
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4.2 Algorithm design

To make a strong evolutionary algorithm (EA) that can solve a certain real-life optimization
problem, one of the most important things is to create a heuristic-based evolutionary operator that
works with the EA framework [23]. Several studies followed this rule in designing competitive
EAs for solving different NP-hard problems [24-27].

The general framework for the proposed evolutionary-based complex detection (ECD)
algorithm ECD:1 — I is an iterated transformation function that starts with an initial population
I1={I,1,,..,1Ips} Of genotype/phenotype solutions. The genotype of these solutions is
generated randomly from the whole search space of the problem Q. The encoding scheme is a
locus-based adjacency representation, where each locus of an individual I,<;<, € I corresponds to
a protein j and its allele value represents a neighbor protein with which it can coexist in the same
complex. The global locus-based initialization process designates the direct neighbors of j in A4,
i.e., a;» = 1, to be the possible allele values at locus j. The phenotype solution corresponding to

a set of K complexes is mapped by a decoding function I':1 — C (where C = {cy, ¢y, ..., Ck})
applied to each individual. By this, T" assigns the intra- and inter-relationships among the whole
set of connections in A. Note that for any two solutions /; and I; in the population I, K; and K; do
not necessitate to be equivalent. In other words, their phenotype solutions C; = {cy, ¢y, ..., ¢k, }
and C; = {cy, ¢y, ...,cK].} could be dissimilar. Figure 9 depicts an illustrative example of two

different genotype solutions and their corresponding phenotype solutions for a small PPIN with
15 yeast proteins from the yeast Saccharomyces cerevisiae PPIN (in Figure 9). The genotype is
depicted as three vectors. The 1st vector lists protein labels, while the 2nd assigns the neighbors
as alleles for the corresponding protein labels, and the 3rd vector maps proteins with their
neighbors to complexes. Note that the two genotype solutions in Figure 9 are decoded into two
different solutions with, respectively, two and three complexes. This also revises where the intra-
connections and the inter-connections are to be in the adjacency matrix (as clarified in Figure 9
with black ones and red ones for, respectively, the intra-connections and the inter-connections of
the two solutions).

The quantitative function modularity density (QD in Eq. 7) is adopted as an objective function
to quantitatively measure the quality of the generated solutions. The model of QD [22] is defined
as the sum of the averaged density of the sub-graphs that constitute the whole graph structure. In
each sub-graph, the density is measured as the difference between the intra- and inter-degrees
proportioned to the size of the sub-graph, and it is formulated by:
0D = Zf:l L(Ck,Ck)—lflflck,Ckf,tk)

(7)

where for a set of K complexesC = {cy,c,, ..., cx}, the numerator expresses the difference
between two terms. The first term is the inner degree of a community c,, which is twice the
number of edges in ¢, divided by the number of nodes in the complex c,, The second term is the
outer degree of ¢, which is the number of edges between nodes in ¢, and other nodes in ¢,y
The denominator expresses the number of nodes in cy.
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Figure 9: Two genotypes and their corresponding phenotype solutions for a small PPIN with 15
proteins from the yeast Saccharomyces cerevisiae

Based on the quality values of the solutions, parent solutions are then selected using binary
tournament selection ®g: (1;,0,) X (I,0,) — I, where O is the quality value of the solution
computed by QD. The selection operator prepares a pool of Psize parents. For a pair of parent
solutions I; and I,, uniform crossover operator (®:1; X I, X py — I) is adopted to evenly mix
their n decision making parameters. Crossover occurs to the parent’s pair if the probability of
crossing p is greater than the probability of crossover, p,. Here, pyis setto 0.8.

vi € {1,2,..,NJAVj € {1,2,...,n}

Lo L jif rand < 0.5
b {12, ; otherwise

(8)

where 0.5 refers to uniformly mix the n parameters from the two parents.
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Mutation operator, on the other hand, is named as migration operator (®;o_m: 1 X Py =
I) and it directly operates on the phenotype (or the topological) representation of the PPIN. When
mutation operator is activated on protein j for an individual [;, it will change the complex of this
protein to a new complex, say c, where it could maintain there the maximum functional
similarity (i.e., Xec, FSj; has its maximum value).
vi € {1,2,..,NJAVj € {1,2,..,n}

| j’ |]’ Eck A argmaxckEC(ZIeck T‘Sjl) if rand < Pm (9)
" I j otherwise

This will imply a modification to the genotype representation. The general framework for the
proposed GO-based EA (noted as noted as EA;pn,) With modularity density and GO-based
mutation operator is sketched out in Algorithm 1.

5. Results and discussions

A yeast called Saccharomyces cerevisiae PPIN (see Figure 1) is used in the experiments [24]
to test how well the proposed GO-based EA works. This PPIN has 4687 interactions over 990
proteins. Only 28 proteins have single interactions, while the remaining proteins have two or
more interactions, with an average degree of 9.4687 interactions per protein. The protein
"YCRO57C" (#170) has the highest number of interactions, 52. Thus, weighty proteins are
defined as those with more than 9.4687 interactions, while light proteins are those with degrees
less than 9.4687. From this PPIN, 30 different noisy PPINs are generated using 5 increasing
levels of noise percentage (10%-50%).

Algorithm 1: General framework for the proposed GO-based EA

Input: V,4, §S, FS /IPPIN, topological, Semantic similarity and Functional similarity for n
proteins
Input: Psize, &g, ©, Py, Dx: P
Output: C = {c4, ¢y, ..., Cx } With maximum QD
begin
t « 0; //initial generation
MaxGen < 100; // maximum number of generations
initialize I¥ « {1}, 1%, ..., I55ise )
decode: T'( If.icpsize ): {CE, C, ..., Chgize}s /IPhenotype as a set of complexes for each individual
where
C} = {cy, ¢y, s Ky}
evaluate : I:{QD(C}),QD(C}), ..., QD (Ckgi,e)}: 1! @D for each phenotype
while (t # MaxGen) do
select ®,: 1°*1 « {(Iy, QD1)1<i<psize X (I2,@D2)1<izpsize }:
recombine @, 1" « {(I3 X Iy X Dx)1sispsize};
GO-based mutate @,,: I+ « {I*1L 0 po Y
decode: T Ik psize): (CEHY, CEY, .., CEEL,Y: 1 where CE*Y = {cy, ¢y, .., i }
evaluate: I°*1: {QD(C{*"),QD(C5*"), ..., @D (Chiize)}:
t—t+1;
end while;
return If_; psize With best C = {cy, ¢, ..., cx} With maximum QD;
end
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For each noise percentage, fake interactions are added to the proteins, or true interactions
are deleted from the proteins. Further, for each noise percentage, the perturbation is performed on
either random proteins, weighty proteins, or light proteins. Recall that m for the yeast
Saccharomyces cerevisiae PPIN in Figure 1 equals to 4687, then let mgqxe, Mge, m', max(m),
Mmax(m), aNd Mmincm) t0 denote, respectively, number of added fake interactions, number of
deleted true interactions, total number of interactions in the noisy PPIN, maximum number of
interactions per protein, number of proteins with maximum number of interactions, and number
of proteins with minimum number of interactions. Table 2 and Table 3 report the characteristics
of the synthesized PPINs used in the evaluation.

The reference set, as identified by Cmplx_D1, is used to validate the quality of the detected
complexes over yeast PPIN. This truly complex dataset was created from the Munich Information
Center for Protein Sequences (MIPS) genomes and protein sequences database. It contains 81
true complexes with different sizes ranging from 6 up to 38 proteins.

Table 3: Characteristics of noisy PPINs generated from the yeast Saccharomyces cerevisiae
PPIN by adding different percentages of fake interactions to random proteins, weighty proteins,
and light proteins

Perturbing random proteins

Noise% Meqke m' max(m) i) it
0.10 469 5156 54 1 11
0.20 937 5624 53 1 2
0.30 1406 6093 55 1 13
0.40 1875 6562 54 1 1
0.50 2344 7031 58 1 1

Perturbing weighty proteins

Noise% Meake m' max(m) i) i)
0.10 378 5065 52 1 28
0.20 757 5444 56 1 28
0.30 1135 5822 55 1 28
0.40 1514 6201 58 1 28
0.50 1892 6579 60 1 28

Perturbing light proteins

Noise% Meqke m' max(m) st i)
0.10 91 4778 52 1 17
0.20 181 4868 52 1 11
0.30 272 4959 52 1 5
0.40 362 5049 52 1 4
0.50 453 5140 52 1 7

403



Abdulsahib and Attea Iragi Journal of Science, 2025, Vol. 66, No. 1, pp: 388-408

Table 4: Characteristics of noisy PPINs generated from yeast Saccharomyces cerevisiae PPIN
by deleting different percentage of true interactions from random proteins, weighty proteins, and
light proteins

Perturbing random proteins

Noise% Mye; m’ max(m) hscerei) g
0.10 469 4218 49 1 42
0.20 937 3750 42 1 76
0.30 1406 3281 39 1 116
0.40 1875 2812 32 1 170
0.50 2344 2343 28 1 217

Perturbing weighty proteins

Noise% Mye; m' max(m) Nmax(m) Nmin(m)
0.10 378 4309 45 1 28
0.20 757 3930 41 1 28
0.30 1135 3552 37 1 28
0.40 1514 3173 30 1 30
0.50 1892 2795 31 1 31

Perturbing light proteins

Noise% Myey m' max(m) Nmax(m) Mmin(m)
0.10 89 4598 52 1 57
0.20 178 4509 52 1 98
0.30 268 4419 52 1 152
0.40 357 4330 52 1 126
0.50 446 4241 52 1 143

Three measures are used in the evaluation. These are complex-wise sensitivity
(sensitivity), complex-wise positive predictive value (PPV), and geometric accuracy
(accuracy). Both sensitivity and PPV are based on the size of the intersection between the
detected complexes and the true benchmark complexes [23].

{(S maxl.(c tij
sensitivity = ——=2 10
Y S5 1sil (10)
K K
3.C max. S t;;
PPV == (11)

Kc vKs ...
Yo Loy tij

where t;; acts as the number of proteins shared by both the golden standard complex i and the
predicted complex j, while Ks and K. refer, respectively, to the number of true complexes and
the number of the predicted complexes. The geometric accuracy can be utilized to indicate the
trade-of between sensitvity and PPV.

accuracy = /sensitivity * PPV (12)

The performance of the proposed algorithm is compared with the EA of Pizzuti and
Rombo [9] with a canonical mutation operator (noted as noted as EAcgnm) and the single-
objective EA of Attea and Abdullah [11, 30] with a topological-based mutation operator (noted as
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noted as EAr,,m). The tested algorithms were endorsed for evaluation under a simulation of 30
different runs. Each run is initialized with a random population of 100 individual solutions. The
evolutionary process of each algorithm is allowed to continue for 100 generations. The average of
the 30 different runs (in terms of the best solution obtained) is reported for each algorithm. The
best solution for each algorithm is recognized by its objective function (QD). The results are
reported in Tables 4-9. The best result in each test case is given in bold.

Table 5: Performance evaluation for noisy PPINs generated from the yeast Saccharomyces
cerevisiae PPIN by adding different percentages of fake interactions to random proteins
Sensitivity PPV Accuracy

EAcanm  EAropm EAgom | EAcanm  EAropm  EAgom | EAcanm EAropm  EAgom
0.1 0.8218 0.9565 0.9587 0.5789 0.7445 0.7552 0.6892  0.8438 0.8508
0.2 0.7425 0.8781  0.9248 0.4241 0.6363 0.6412 0.5606  0.6412 0.7696
0.3 0.6918 0.7143 0.8141 0.2873 0.3872 0.4484 0.4443  0.4484 0.6027
0.4 0.6575 0.6398 0.7091 0.2240 0.2444 0.2705 0.3823  0.2705 0.4350
0.5 0.6962 0.6365 0.6330 0.1591 0.1818 0.1949 0.3309 0.3368 0.3497

Noise%

Table 6: Performance evaluation for noisy PPINs generated from yeast Saccharomyces
cerevisiae PPIN by deleting different percentage of true interactions from random proteins
Sensitivity PPV Accuracy

Noise%

EAcanm EATUpm EAgom EAcanm EATOPm EAgom EAcanm EATOI’m EAgom

0.1 0.8893 0.9569  0.9621 0.7496 0.7882 0.7985 0.8162  0.8684 0.8765
0.2 0.8795 0.9466  0.9550 0.7503 0.7849 0.7999 0.8122  0.8619 0.8740
0.3 0.8699 0.9281  0.9417 0.7632 0.7888 0.7932 0.8146  0.8556 0.8642
0.4 0.8413 0.9049  0.9175 0.7684 0.7951 0.7996 0.8038  0.8482 0.8564
0.5 0.8239 0.8735 0.8924 0.7951 0.8145 0.8184 0.8093  0.8434 0.8545

Table 7: Performance evaluation for noisy PPINs generated from the yeast Saccharomyces
cerevisiae PPIN by adding different percentages of fake interactions to weighty proteins
Sensitivity PPV Accuracy

Noise%

EAcanm EATOpm EAgom EAcanm EATOPm EAgom EAcanm EATOPm EAgom

0.1 0.8425 009347 0.9572 | 06066 07522 07575 | 0.7144 0.8384  0.8514
0.2 0.8052  0.8973 0.9320 | 0.4858 06769  0.6859 | 0.6246 0.7790  0.7990
0.3 0.8106  0.8266 0.8878 | 0.4019  0.4983  0.5302 | 0.5697 0.6399  0.6844
0.4 0.8192  0.8448 0.8782 | 03435 04186 0.4286 | 05288 05920  0.6108
0.5 0.8420 009148 0.9402 | 03136 03359 0.3563 | 05125 0.5519  0.5776
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Table 8: Performance evaluation for noisy PPINs generated from the yeast Saccharomyces
cerevisiae PPIN by deleting different percentages of true interactions from weighty proteins
Sensitivity PPV Accuracy

Noise%
EAcanm  EAropm  EAgom EAcanm EAropm  EAgom | EAcanm EAropm  EAgom

0.1 0.8900 0.9544  0.9654 0.7493 0.7859 0.7967 0.8164  0.8660 0.8769
0.2 0.8885 0.9591  0.9642 0.7447 0.7967 0.8043 0.8132 0.8741 0.8806
0.3 0.8658 0.9449  0.9501 0.7669 0.8112 0.8206 0.8147  0.8754 0.8829
0.4 0.8541 0.9380  0.9524 0.7677 0.8247 0.8281 0.8096  0.8795 0.8880
0.5 0.8374 0.9238 0.9365 0.7800 0.8211 0.8313 0.8081  0.8709 0.8823

Table 9: Performance evaluation for noisy PPINs generated from the yeast Saccharomyces
cerevisiae PPIN by adding different percentages of fake interactions to light proteins
Sensitivity PPV Accuracy

Noise%

EAcanm EATOPm EAgom EAcanm EATUPm EAgom EAconm EATUPm EAgom

0.1 0.8776 09571 009670 | 07117  0.7747 0.7883 | 0.7900 0.8610  0.8731
0.2 0.8676  0.9502 009653 | 0.6875  0.7509  0.7731 | 0.7720 0.8446  0.8638
0.3 0.8410 09489 0.9631 | 06532 07539  0.7641 | 0.7408 0.8457  0.8578
0.4 0.8291  0.9479 009614 | 06297 07324  0.7441 | 0.7223 0.8331  0.8457
0.5 0.8131 09425 009625 | 06013 07187  0.7452 | 0.6989 0.8229  0.8468

Table 10: Performance evaluation for noisy PPINs generated from the yeast Saccharomyces
cerevisiae PPIN by deleting different percentages of true interactions from light proteins
Sensitivity PPV Accuracy

Noise%

EAconm  EAropm  EAgom EAcanm EAropm  EAgom | EAcanm EAropm  EAgom

0.1 0.8928  0.9652 009652 | 07396  0.7796  0.7934 | 0.8125 0.8674  0.8751
0.2 0.8858  0.9546 009538 | 07430 07831 07943 | 0.8111 0.8646  0.8704
0.3 0.8546 009184 0.9214 | 07337 07743 07778 | 0.7917 0.8432  0.8465
0.4 08792  0.9513 09548 | 07397  0.7838 07881 | 0.8062 0.8634  0.8674
0.5 0.8791  0.9486 009511 | 07427 07814 0.7855 | 0.8079 0.8609  0.8643

The results reported in the tables prove the ability of the proposed EA with GO-based
mutation operators to outperform the EA with canonical mutation and the EA with topological-
based mutation operators in all evaluation measures and in all noisy PPINs. This performance
suggests that the design of the EA should disclose the significance of injecting biological
information (i.e., GO semantic similarity and protein functional similarity) into its framework
and that acting on this concept can-be satisfying and lead to interesting results.
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6. Conclusions

Identifying protein complexes in protein-protein interaction networks (PPINS) is a challenging
task with broad applications in biological networks, social network modeling, and
communication pattern analysis. PPINs can help to understand the mechanisms that control cell
life, predict the biological functions of unknown proteins, and have important therapeutic
applications. However, the high rate of false positives and false negatives in large-scale
experiments can greatly increase the complexity of the networks and lead to unreliable results for
topological-based detection algorithms. To address this issue, we proposed an evolutionary
algorithm that incorporates information from the functional domain of proteins to detect protein
complexes in PPINs. The algorithm's reliability was tested using noisy PPINs being synthesized
from a yeast PPIN dataset. The results clarify the ability of the proposed algorithm to outperform
both canonical and topological-based EAs in all evaluation measures. In other words, the results
prove the effectiveness of the proposed algorithm to handle noisy PPINSs.
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