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Abstract   

     The significance of media alerts in influencing public perception and response 

during disease outbreaks is of paramount importance. This research investigates how 

media alerts affect the epidemiological model by taking into account both 

asymptomatic and symptomatic cases. Media alerts serve as a powerful tool for 

raising awareness about the disease, driving people to undergo testing and diagnosis, 

and promoting adherence to public health measures. This, in turn, contributes to 

better reporting and surveillance of cases, leading to a more accurate representation 

of disease spread in the model. The proposed model introduces a five-dimensional 

compartment system that includes susceptible, asymptomatic, symptomatic, 

recovered populations and media. This research addresses various aspects of the 

model, such as its uniqueness, boundedness, and existence of solutions. The 

determination of all possible model equilibrium points is thoroughly explored. To 

study the global dynamics of the proposed models, appropriate Lyapunov functions 

are employed. Additionally, numerical simulation is also carried out to investigate 

the influence of parameters affecting the dynamics of the model and to support the 

gathered analytical findings of the model. 
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 دراسة تأثير التنبيهات الإعلامية على النموذج الوبائي المتضمن للحالات التي لا تظهر عليها أعراض. 
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 الخلاصة  
إن أهمية تنبيهات وسائل الإعلام في التأثير على الإدراك العام والاستجابة أثناء تفشي الأمراض لها أهمية        

مراعاة   خلال  من  الوبائي  النموذج  على  الإعلام  وسائل  تنبيهات  تأثير  كيفية  في  البحث  هذا  يبحث  قصوى. 
الحالات التي لا تظهر عليها الأعراض والحالات التي تظهر عليها الأعراض. تعمل التنبيهات الإعلامية كأداة  
بتدابير   الالتزام  وتعزيز  والتشخيص،  للاختبار  للخضوع  الناس  ودفع  المرض،  حول  الوعي  مستوى  لرفع  قوية 
الصحة العامة. وهذا بدوره يساهم في تحسين الإبلاغ عن الحالات ومراقبتها، مما يؤدي إلى تمثيل أكثر دقة  
لانتشار المرض في النموذج. يقدم هذا البحث نظام من خمسة مكونات تدعى الافراد المعرضين للإصابة ,  
الافراد المصابين الذين لا تظهر عليهم اعراض , الافراد المصابين الذين تظهر عليهم اعراض, المتعافين واخيرا  
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وسائل الاعلام. تمت مناقشة وحدانية ووجود الحل . تم ايجاد جميع نقاط التوازن المحتملة للنموذج . تم دراسة  
المقترح من خلال استخدام وظائف لابونوف المناسبة.   وأخيرا ,تم إجراء المحاكاة  الديناميات العالمية للنموذج 

   العددية لدراسة تأثير المعلمات على ديناميات النموذج المقترح ودعم النتائج التحليلية . 
 

1. Introduction  

     An epidemiological model serves as a mathematical representation of how infectious 

diseases spread and evolve within a population. Through this model, researchers and public 

health experts can gain insights into the dynamics of disease transmission, forecast its 

progression over time, and assess the potential impact of different interventions or control 

measures. The influence of media alerts on the epidemiological model is noteworthy, 

considering both asymptomatic and symptomatic cases. Such alerts can have a complex and 

multifaceted impact on various aspects of disease transmission and public health response. 

Media alerts can significantly influence public behavior and compliance with guidelines. 

When the media consistently emphasizes the importance of adhering to guidelines, people are 

more likely to follow them, potentially influencing the model's projections and outcomes. 

Conversely, if media alerts spread misinformation or induce panic, there can be adverse 

consequences. Misinformation may lead to ineffective or harmful responses, while panic can 

disrupt public health efforts and worsen disease spread. Both of these factors introduce biases 

and inaccuracies into the epidemiological model, affecting its predictive capabilities. Hence, it 

is crucial to handle media alerts carefully to ensure they contribute positively to disease 

management and control. Pathogens have a variety of life history methods, from acute 

disorders like syphilis to chronic conditions like influenza A viruses [1–2]. Understanding 

infections' evolutionarily stable strategies (ESSs), which are constantly subject to selective 

pressures, might provide important information for the prevention and treatment of disease. 

Researchers have studied ESSs concerning aspects like virulence, persistence, and recovery. 

The understanding of pathogen pathogenicity evolution has significantly advanced because of 

classic research by Anderson and May [3] and Dwyer et al. [4-8].  Regarding various 

characteristics of pathogens, King et al. [9] investigated pathogen evolution by considering a 

trade-off between persistence and invasion. On the other hand, Alizon [10] explored the 

evolutionary consequences of pathogens when there is a trade-off between transmission and 

host recovery, incorporating explicit immune dynamics into the study. Another key life 

history strategy for a pathogen is its capacity to display milder symptoms or a time of latency 

at the beginning of an infection, in addition to virulence, persistence, and recovery. Such 

"hidden" infections provide the pathogen with a number of benefits in a variety of settings. 

Additionally, in both animals and humans, symptoms often act as a cue for susceptible 

individuals to avoid infectious hosts [11–12], and a hidden infection would reduce this 

avoidance. Fraser et al. [13] found that the effectiveness of disease control strategies depends 

significantly on the number of asymptomatic transmissions before the full development of 

symptoms. Hence, these less symptomatic stages of infection are critical and present 

significant epidemiological challenges.An infection's ability to spread from an infected person 

to an unknowing host is strongly influenced by the severity of the sickness. Having fewer 

symptoms lowers transmission in situations where symptoms themselves are frequently 

connected to enhanced transmission (e.g., through coughing, sneezing, or rashes) [14]. Lower 

pathogen loads can also result in milder symptoms and less shedding, which lowers 

transmissibility. Several epidemiological models have been studied, and each model focuses 

on an infectious epidemiological disease. Among these studies, Watheq Ibrahim Jasim et al. 

[15]. They suggested a study of  the shigellosis bacteria disease model with awareness effects. 

Chadi M. Saad-Roy et al.[16] studied the dynamics in a simple evolutionary-epidemiological 

model for the evolution of an initial asymptomatic infection stage. Nourridine Siewe et al.[17] 

studied the mathematical model of the role of asymptomatic infection in outbreaks of some 
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emerging pathogens. Anirban Ghatak et al.[18] they suggested a generalized epidemiological 

model with dynamic and asymptomatic population. Ahmed A. Mohsen et al.[19] studied the 

awareness effect of the dynamical behavior of SIS epidemic model with Crowley-Martin 

incidence rate and holling type III treatment function. Shurowq K. Shafeeq et al.[20] studied 

the bifurcation analysis of a vaccination mathematical model with application to COVID-19 

pandemic. Ahmed A. Mohsen et al. [21] conducted a study on the dynamics of Coronavirus 

pandemic disease model in the existence of a curfew strategy. Similar studies have also been 

conducted by other researchers [22–24].The main focus of this research is to develop a 

mathematical model that incorporates the influence of media alerts on epidemiological 

dynamics, considering both asymptomatic and symptomatic cases. This article is organized as 

follows: 

• Section 2 presents the mathematical modeling of the novel media alert, taking into account 

asymptomatic and symptomatic cases. 

• In section 3, various essential characteristics of the model are discussed, including the 

boundedness of solutions and the existence of equilibrium points. 

• The local stability analysis using Gersgorin's theorem is covered in Section 4. 

• In section 5, the Lyapunov function is used to examine the proposed model's overall stability 

at all equilibrium locations. 

•  Finally, numerical simulations are carried in section 6 to examine the effects of changing 

every system parameter. 

 

2. Mathematical model 

     In this section, we create a mathematical representation to study the impact of media alerts 

on an epidemiological model that considers both asymptomatic and symptomatic cases. The 

remaining parameters can be found in Table 1. 

 

Table 1: Parameters description utilized in the system(1). 

Parameters  Interpretation 

𝑆(𝑡)  Susceptible population. 

𝐼𝑎(𝑡)  Individuals asymptomatic infected. 

𝐼𝑠(𝑡)  Individuals symptomatic infected. 

𝑅(𝑡)  Recovered population. 

𝑀(𝑡)  Media. 

𝛬  Birth rate. 

𝛽 
 

 

The contacts rate between the susceptible and symptomatic infected 

population. 

ℎ  The amount disease control due to the media. 

𝜇  Natural death rate. 

𝑝  Fractional rate,  0 ≤ 𝑝 ≤ 1. 

𝜎  
Rate of progression from asymptomatic infected to symptomatic infected 

stages. 

𝛼𝑖 , 𝑖 = 1,2.  Recovery rates . 

𝜌 , 𝜃  The influence rate of media campaigns. 

𝛿 The reduction rate of media campaigns. 

 

      Hence, the behavior of the system suggested above can be described using the following 

set of 1st. non-linear differential equations, and the graphical representation of this system is 

depicted in Figure 1. 
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Figure 1: The diagram illustrating the system (1). 

 
𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝑆𝐼𝑠

1+ℎ𝑀
− 𝜇𝑆                                                                 

𝑑𝐼𝑎

𝑑𝑡
=

𝑝𝛽𝑆𝐼𝑠

1+ℎ𝑀
−

𝜎𝐼𝑎

1+ℎ𝑀
− (𝜇 + 𝛼1)𝐼𝑎                                          

𝑑𝐼𝑠

𝑑𝑡
=

(1−𝑝)𝛽𝑆𝐼𝑠

1+ℎ𝑀
+

𝜎𝐼𝑎

1+ℎ𝑀
− (𝜇 + 𝛼2)𝐼𝑠                                     

𝑑𝑅

𝑑𝑡
= 𝛼1𝐼𝑎 + 𝛼2𝐼𝑠 − 𝜇𝑅                                                            

𝑑𝑀

𝑑𝑡
= 𝜌𝐼𝑎 + 𝜃𝐼𝑠 − 𝛿𝑀                                                               

                                             (1)                         

 

With the initial conditions , 

𝑆(0) > 0  , 𝐼𝑎(0) ≥  0 , 𝐼𝑠(0) ≥  0  , 𝑅(0) ≥  0   , 𝑀(0) ≥  0 

Where (𝑆(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡),𝑀(𝑡)) ∈ 𝑅+
5 .It is suppose that for all 𝑡 ≥ 0 the functions  

𝑆(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡),𝑀(𝑡) and their derivatives are continuous, making them Lipschitzian. 

As a result, the system (1) has a unique and existing solution. Furthermore, the theorem 

presented below demonstrates the bounded nature of the solution for the system (1). 

 

Theorem (1) :  Every solution to the system (1) of equations that begins with 𝑅+
5  as the initial 

value remains uniformly bounded. 

Proof:  

        The solution (𝑆(𝑡), 𝐼𝑎(𝑡), 𝐼𝑠(𝑡), 𝑅(𝑡),𝑀(𝑡)) to system (1) is obtained from non-

negative initial values (𝑆(0), 𝐼𝑎(0), 𝐼𝑠(0), 𝑅(0),𝑀(0)) , and let   

          𝐻(𝑡) = 𝑆(𝑡) + 𝐼𝑎(𝑡) + 𝐼𝑠(𝑡) + 𝑅(𝑡) + 𝑀(𝑡)  , then  

         
𝑑𝐻

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐼𝑎

𝑑𝑡
+

𝑑𝐼𝑠

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
+

𝑑𝑀

𝑑𝑡
 

Next, by deriving 𝐻 with regard to time, we obtain: 

   
𝑑𝐻

𝑑𝑡
≤ Λ − 𝜇𝐻       

The Gronwall lemma [25] is now used to prove that 

        𝐻(𝑡) ≤
Λ

𝜇
+ (𝐻0 −

Λ

𝜇
) 𝑒−𝜇𝑡, 

Where    𝐻0 = (𝑆(0), 𝐼𝑎(0), 𝐼𝑠(0), 𝑅(0),𝑀(0)). 

So, (𝑡) ≤
Λ

𝜇
 ,  as 𝑡 → ∞. 

 

3. Existence of the equilibrium points 

     It has been noted that the first three equations and the fifth equation of system (1) do not 

contain the variable R, which stands for the recovery rate. Hence, an alternative system can be 
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solved instead of the original system (1). By solving this alternative system and substituting 

the obtained values of 𝐼𝑎 and 𝐼𝑠 into the second and third equations of system (1), we can treat 

them as linear differential equations with respect to the variable 𝑅. Consequently, we obtain 

the solution for the fourth equation as t approaches infinity, which can be expressed as 

follows:  

           𝑅(𝑡) =
𝛼1𝐼𝑎+𝛼2𝐼𝑠

𝜇
,                                                                                                       (2)   

The solution values for the following system (3) are represented by 𝐼𝑎 and 𝐼𝑠.Therefore, we 

will focus on studying the system (3) instead of the original system (1). 
𝑑𝑆

𝑑𝑡
= 𝛬 −

𝛽𝑆𝐼𝑠

1+ℎ𝑀
− 𝜇𝑆                                                                 

𝑑𝐼𝑎

𝑑𝑡
=

𝑝𝛽𝑆𝐼𝑠

1+ℎ𝑀
−

𝜎𝐼𝑎

1+ℎ𝑀
− (𝜇 + 𝛼1)𝐼𝑎                                          

𝑑𝐼𝑠

𝑑𝑡
=

(1−𝑝)𝛽𝑆𝐼𝑠

1+ℎ𝑀
+

𝜎𝐼𝑎

1+ℎ𝑀
− (𝜇 + 𝛼2)𝐼𝑠                                     

                                                            
𝑑𝑀

𝑑𝑡
= 𝜌𝐼𝑎 + 𝜃𝐼𝑠 − 𝛿𝑀                                                               

                                             (3) 

There are three equilibrium points in system (3), and they are as follows: 

•   The first equilibrium point (FEP) is 𝐹0 = (𝑆,̅ 0,0,0) ,  
where  

  𝑆̅ = Λ
𝜇⁄    .                                                                                                        (4) 

• The second equilibrium point (SEP) is  𝐹1 = (�̃�, 0, 𝐼𝑠, �̃�) when 𝑝 = 0 , 

where  

  �̃� =
(1+ℎ�̃�)(𝜇+𝛼2)

𝛽
  ,                                                                                           (5) 

  𝐼𝑠 =
(1+ℎ�̃�)(Λ−𝜇�̃�)

𝛽�̃�
  ,                                                                                          (6) 

  �̃� =
𝜃𝐼𝑠

𝛿
 ,                                                                                                           (7) 

exists, if: 

  𝜇�̃� < Λ  .                                                                                                           (8) 

 

• The third equilibrium point (TEP) is 𝐹2 = (𝑆∗, 𝐼𝑎
∗ , 𝐼𝑠

∗, 𝑀∗) , 
where  

  𝑆∗ =
Λ(1+ℎ𝑀∗)

𝛽𝐼𝑠
∗+μ(1+ℎ𝑀∗)

  ,                                                                                          (9) 

  𝐼𝑎
∗ =

𝑝𝛽𝑆∗𝐼𝑠
∗

𝜎+(1+ℎ𝑀∗)(𝜇+𝛼1)
  ,                                                                                   (10) 

  𝐼𝑠
∗ =

𝜎𝐼𝑎
∗

𝑝𝛽𝑆∗+(1+ℎ𝑀∗)(𝜇+𝛼2)−𝛽𝑆∗  ,                                                                       (11) 

  𝑀∗ =
𝜌𝐼𝑎

∗+𝜃𝐼𝑠
∗

𝛿
 ,                                                                                                 (12) 

exists, if: 

  𝛽𝑆∗ < 𝑝𝛽𝑆∗ + (1 + ℎ𝑀∗)(𝜇 + 𝛼2).                                                              (13) 

 

4. Local stability analysis  

     In this section, the linearization method is used to examine the local stability of the             

system (3).The Jacobian matrix (J.M.) of system (3), at 𝐹 = (𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) is  𝐽 =
(𝑎𝑖𝑗)4×4    

; 𝑖, 𝑗 = 1,2,3,4, 

Here 
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𝑎11 = −(
𝛽𝐼𝑠

1 + ℎ𝑀
+ 𝜇)   , 𝑎13 =

−𝛽𝑆

1 + ℎ𝑀
 , 𝑎14 =

𝛽𝑆𝐼𝑠ℎ

(1 + ℎ𝑀)2
 , 𝑎21 =

𝑝𝛽𝐼𝑠
1 + ℎ𝑀

 ,                     

𝑎22 = −(
𝜎

1 + ℎ𝑀
+ 𝜇 + 𝛼1)    , 𝑎23 =

𝑝𝛽𝑆

1 + ℎ𝑀
 , 𝑎24 =

−ℎ

(1 + ℎ𝑀)2
(𝑝𝛽𝑆𝐼𝑠 − 𝜎𝐼𝑎) ,                    

𝑎31 =
(1 − 𝑝)𝛽𝐼𝑠
1 + ℎ𝑀

, 𝑎32 =
𝜎

1 + ℎ𝑀
 , 𝑎33 =

(1 − 𝑝)𝛽𝑆

1 + ℎ𝑀
− (𝜇 + 𝛼2) , 𝑎12 = 𝑎41 = 0 ,             

 𝑎34 =
−ℎ

(1 + ℎ𝑀)2
((1 − 𝑝)𝛽𝑆𝐼𝑠 + 𝜎𝐼𝑎) , 𝑎42 = 𝜌 , 𝑎43 = 𝜃 , 𝑎44 = −𝛿.                                      

                                                                        
      

      

 

                                                                                                                                      

………..(14)                                                                 

Theorem 2: 𝐹0 is locally asymptotically stable  (L.A.S.) if the conditions are satisfied: 

  𝛽𝑆̅ < 𝑝𝛽𝑆̅ + 𝜎 + 2𝜇 + 𝛼1 + 𝛼2,                                                          (15a) 

 𝛽𝑆̅(𝜎 + 𝜇 + 𝛼1) < 𝑝𝛽𝑆̅(𝜇 + 𝛼1) + 𝜇(𝜎 + 𝜇 + 𝛼1 + 𝛼2) + 𝛼2(𝜎 + 𝛼1).        (15b) 

Proof: the (J.M) at 𝐹0 is:  

  𝐽(𝐹0) =

[
 
 
 
 
−𝜇 0 −𝛽𝑆̅ 0

0 −(𝜎 + 𝜇 + 𝛼1) 𝑝𝛽𝑆̅ 0

0 𝜎 (1 − 𝑝)𝛽𝑆̅ − (𝜇 + 𝛼2) 0
0 𝜌    𝜃    −𝛿]

 
 
 
 

               (16)                                                                                                                  

The characteristic equation (C.E.) of 𝐽(𝐹0) is : 

  [−𝜇 − 𝜆][−𝛿 − 𝜆][𝜆2 + 𝐴1𝜆 + 𝐴2] = 0                                              (17a) 

Here  

  𝐴1 = 𝑝𝛽𝑆̅ + 𝜎 + 2𝜇 + 𝛼1 + 𝛼2 − 𝛽𝑆̅, 

  
𝐴2 = 𝑝𝛽𝑆̅(𝜇 + 𝛼1) + 𝜇(𝜎 + 𝜇 + 𝛼1 + 𝛼2) + 𝛼2(𝜎 + 𝛼1) −     

  𝛽𝑆̅(𝜎 + 𝜇 + 𝛼1).
          

The equation (17a) has four roots, representing the eigenvalues of 𝐽(𝐹0): 

  

𝜆2,3 = −
𝐴1

2
∓

1

2
√𝐴1

2 − 4𝐴2

𝜆1 = −𝜇 < 0                        
𝜆4 = −𝜎 < 0                       

 }                                                                                     

(17b) 

Then, all the eigenvalues will be non-positive and hence 𝐹0 is (L.A.S.) , if the conditions 

(15a) - (15b) holds. 

 

Theorem 3: 𝐹1 becomes (L.A.S.) when the specified conditions are met:  

𝛽�̃� < (1 + ℎ�̃�)(𝜇 + 𝛼2)                                                                                            (18a) 

  𝐼𝑠ℎ𝜃 < (1 + ℎ�̃�)𝛿                                                                            (18b) 

Proof: the (J.M.) at 𝐹1 is 

 𝐽(𝐹1) = (𝑑𝑖𝑗)4×4
   ;  𝑖, 𝑗 = 1,2,3,4 

here  

 

𝑑11 = −(
𝛽𝐼𝑠

1+ℎ�̃�
+ 𝜇)  , 𝑑13 = −

𝛽�̃�

1+ℎ�̃�
    , 𝑑14 =

𝛽ℎ�̃�𝐼𝑠

(1+ℎ�̃�)2
 ,                                                    

𝑑22 = −(
𝜎

1+ℎ�̃�
+ 𝜇 + 𝛼1)  , 𝑑31 =

𝛽𝐼𝑠

1+ℎ�̃�
 , 𝑑32 =

𝜎

1+ℎ�̃�
  ,                                                   

  
  𝑑33 =

𝛽�̃�

1+ℎ�̃�
− (𝜇 + 𝛼2)  , 𝑑34 = −

𝛽ℎ�̃�𝐼𝑠

(1+ℎ�̃�)2
 , 𝑑42 = 𝜌 , 𝑑43 = 𝜃  ,                                           

   𝑑44 = −𝛿 ,  𝑑12 = 𝑑21 = 𝑑23 = 𝑑24 = 𝑑41 = 0 .                                                                            
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………(19)                                        

The (C.E.)  of 𝐽(𝐹1) is : 

       [− (
𝜎

1+ℎ�̃�
+ 𝜇 + 𝛼1) − 𝜆] [𝜆3 + 𝐷1𝜆

2 + 𝐷2𝜆 + 𝐷3] = 0                                (20) 

Hear  
𝐷1 = −(𝑑11 + 𝑑33 + 𝑑44),                                                                                              

𝐷2 = (𝑑11𝑑33 − 𝑑13𝑑31) + (𝑑33𝑑44 − 𝑑34𝑑43),                                                        

𝐷3 = 𝑑11(𝑑34𝑑43 − 𝑑33𝑑44) + 𝑑31(𝑑13𝑑44 − 𝑑14𝑑43).                                           

 

While  

           ∆= 𝐷1𝐷2 − 𝐷3 , that is 
             ∆= 𝑑11(𝑑13𝑑31 − 𝑑11𝑑33 − 𝑑11𝑑44) + 𝑑33(𝑑13𝑑31 − 2𝑑11𝑑44 − 𝑑33𝑑44+𝑑34𝑑43) +                  

𝑑44(𝑑13𝑑31 − 𝑑11𝑑44 − 𝑑33𝑑44 + +𝑑34𝑑43) − (𝑑11𝑑33
2 + 𝑑13𝑑31𝑑44) + 𝑑14𝑑31𝑑43.

 

So, either  

  [− (
𝜎

1+ℎ�̃�
+ 𝜇 + 𝛼1) − 𝜆],                                                                         (21a) 

or  

  [𝜆3 + 𝐷1𝜆
2 + 𝐷2𝜆 + 𝐷3] = 0,                                                              (21b) 

from equation (21a) we obtain that  

  𝜆2 = −(
𝜎

1+ℎ�̃�
+ 𝜇 + 𝛼1) < 0 

The eigenvalue of the Jacobian matrix is consistently negative. 

However, it is easy to confirm that 𝐷1 > 0 𝑎𝑛𝑑 𝐷3 > 0  under the conditions (18a) -  (18b) . 

While Δ > 0  under the condition (18a). So, all the eigenvalues 𝜆1 , 𝜆3𝑎𝑛𝑑 𝜆4 of Eq.(21b) 

have negative real parts. So, 𝐹1 is (L.A.S.) , if the conditions (18a-18b) are holds. 

 

Theorem 4: 𝐹2 is (L.A.S.) in the subregion Ω ∈ 𝑅+
4  which meets the conditions:                                                                                                        

  𝜌 < 𝜇 + 𝛼1,                                                                                           (22a) 

  
2𝛽𝑆∗

1+ℎ𝑀∗ + 𝜃 < 𝜇 + 𝛼2,                                                                     (22b) 

ℎ(𝑝𝛽𝑆∗𝐼𝑠
∗ + 2𝛽𝑆∗𝐼𝑠

∗ + 𝜎𝐼𝑎
∗) <  𝛿(1 + ℎ𝑀∗)2 + ℎ𝜎𝐼𝑎

∗(1 + ℎ𝑀∗) + ℎ𝑝𝛽𝑆∗𝐼𝑠
∗    

                              
.                (22c) 

 

Proof: the (J.M.) at 𝐹2 is 

  𝐽(𝐹2) = (𝑟𝑖𝑗)4×4
   ;  𝑖, 𝑗 = 1,2,3,4 

here  

 

 

𝑟11 = −(
𝛽𝐼𝑠

∗

1+ℎ𝑀∗
+ 𝜇)   , 𝑟13 =

−𝛽𝑆∗

1+ℎ𝑀∗
 , 𝑟14 =

𝛽𝑆∗𝐼𝑠
∗ℎ

(1+ℎ𝑀)2
 , 𝑟21 =

𝑝𝛽𝐼𝑠
∗

1+ℎ𝑀∗
 ,                        

𝑟22 = −(
𝜎

1+ℎ𝑀∗
+ 𝜇 + 𝛼1)    , 𝑟23 =

𝑝𝛽𝑆∗

1+ℎ𝑀∗
 , 𝑟24 =

−ℎ

(1+ℎ𝑀∗)2
(𝑝𝛽𝑆∗𝐼𝑠

∗ − 𝜎𝐼𝑎
∗) ,         

𝑟31 =
(1−𝑝)𝛽𝐼𝑠

∗

1+ℎ𝑀∗
, 𝑟32 =

𝜎

1+ℎ𝑀∗
 , 𝑟33 =

(1−𝑝)𝛽𝑆∗

1+ℎ𝑀∗
− (𝜇 + 𝛼2) , 𝑟12 = 𝑟41 = 0 ,          

 𝑟34 =
−ℎ

(1+ℎ𝑀∗)2
((1 − 𝑝)𝛽𝑆∗𝐼𝑠

∗ + 𝜎𝐼𝑎
∗) , 𝑟42 = 𝜌 , 𝑟43 = 𝜃 , 𝑟44 = −𝛿.              

                                                                        
      

      

                                                                                                                   

                                                                                                                               …………(23) 

If the requirement is met, the Gersgorin theorem [26] can be used,  

  |𝑟𝑖𝑖| > ∑ |𝑟𝑖𝑗|
4
𝑖=1
𝑖≠𝑗

.                                                                                                                                   

So, all the eigenvalues of (J.M.) at (𝐹2) exists in Ω , where  

  Ω =∪ {𝑈∗ ∈ 𝐶: |𝑈∗ − 𝑟𝑖𝑗| < ∑ |𝑟𝑖𝑗|
4
𝑖=1
𝑖≠𝑗

} 
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Consequently, every eigenvalue of 𝐽(𝐹2) lies within the disk centered at 𝑟𝑖𝑖. Hence, when the 

diagonal elements are negative and conditions (22a)-(22c) are satisfied, all the eigenvalues 

will reside in the left half-plane, resulting in the (L.A.S.) of the (TEP). 

 

5. Global stability analysis  

     In this section, the theorems that demonstrate the global stability of all (E.Ps.) in system 

(3) have been presented. 

Theorem 5: Assume that 𝐹0 is (L.A.S.),then it is a globally asymptotically stable (G.A.S.) if: 

   𝜌 < 𝜇 + 𝛼1,                                                                                                                 

(24a) 

   𝛽𝑆 + (1 + ℎ𝑀)𝜃 < (𝜇 + 𝛼2)(1 + ℎ𝑀).                                        (24b) 

Proof:  we define: 

   𝑊1(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) =
(𝑆−�̅�)2

2
+ 𝐼𝑎 + 𝐼𝑠 + 𝑀, 

It is evident that 𝑊1 is a positive definite function and 𝑊1: 𝑅+
4 ⟶ 𝑅 is a continuously 

differentiable function, 

𝑊1(𝑆̅, 0,0,0) = 0 and 𝑊1(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) > 0 , ∀(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) ≠ (𝑆̅, 0,0,0). 
Further,  

   

𝑑𝑊1

𝑑𝑡
= (𝑆 − 𝑆̅) [Λ −

𝛽𝑆𝐼𝑠

1+ℎ𝑀
− 𝜇𝑆] − (𝜇 + 𝛼1 − 𝜌)𝐼𝑎                     

                                                      − [𝜇 + 𝛼2 − (
𝛽𝑆

1+ℎ𝑀
+ 𝜃)] 𝐼𝑠 − 𝛿𝑀 ,

   

 

Hence we obtain 

   
𝑑𝑊1

𝑑𝑡
≤ (𝑆 − 𝑆̅) [

𝛽𝑆𝐼𝑠

1+ℎ𝑀
+ 𝜇] − 𝛿𝑀. 

Consequently, due to the conditions above , we get  
𝑑𝑊1

𝑑𝑡
≤ 0, hence 𝑊1 is Lyapunov function 

with respect to 𝐹0. Thus ,(FEP)  is a (G.A.S.). 

 

Theorem 6: Assume that  𝐹1  is (L.A.S.), then it is a (G.A.S.) , if: 

�̃�𝑀(𝑆 + 1) + 𝑆�̃�(�̃� + 𝐼𝑠) < 𝑆�̃�(𝑆 + 𝐼𝑠) + �̃�𝑀(�̃� + 𝐼𝑠),                                          (25a) 

   𝐼𝑠 < 𝐼𝑠 + 1,                                                                                   (25b) 

   𝑀𝜌 < 𝜇 + 𝛼2 + �̃�𝜌 + 𝜃𝑀,                                                             (25c) 

   𝑀 + �̃� < �̃�,                                                                                (25d) 

   𝛼2𝑘 + 𝛽𝑆 + 𝛽ℎ�̃�𝑆 < 𝜇 𝑘,                                                             (25e) 

   𝑃12
2 < 4𝑃11𝑃22.                                                                                  (25f)                                                                                                                                 

Where, 𝑃𝑖𝑗  , 𝑖, 𝑗 = 1,2 is given in the proof. 

Proof: we define: 

   𝑊2(𝑆, 𝐼𝑎 , 𝐼𝑠, 𝑀) =
(𝑆−�̃�)2

2
+ 𝐼𝑎 +

(𝐼𝑠−𝐼𝑠)
2

2
+

(𝑀−�̃�)2

2
 

It is evident that 𝑊2 is a positive definite function and 𝑊2: 𝑅+
4 ⟶ 𝑅 is a continuously 

differentiable function, 

 𝑊2(�̃�, 0, 𝐼𝑠, �̃�) = 0 and 𝑊2(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) > 0 , ∀(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) ≠  (�̃�, 0, 𝐼𝑠, �̃�). 

Furthermore, by differentiating 𝑊2 with respect to time and simplifying the resulting 

expressions, we obtain the desired outcome as follows: 

 
𝑑𝑊2

𝑑𝑡
= (𝑆 − �̃�) [Λ −

𝛽𝑆𝐼𝑠
1 + ℎ𝑀

− 𝜇𝑆] −
𝜎𝐼𝑎

1 + ℎ𝑀
− 𝜇𝐼𝑎 − 𝛼1𝐼𝑎                                          

                    +(𝐼𝑠 − 𝐼𝑠) [
𝛽𝑆𝐼𝑠

1 + ℎ𝑀
+

𝜎𝐼𝑎
1 + ℎ𝑀

− (𝜇 + 𝛼2)𝐼𝑠] + (𝑀 − �̃�)[𝜌𝐼𝑎 + 𝜃𝐼𝑠 − 𝛿𝑀]

 

  



7088  - 3707Iraqi Journal of Science, 2024, Vol. 65, No. 12, pp:                          Husseiny-Saadi and Al

      

7081 

𝑑𝑊2

𝑑𝑡
= − [𝑃11(𝑆 − �̃�)

2
− 𝑃12(𝑆 − �̃�)(𝐼𝑠 − 𝐼𝑠) + 𝑃22(𝐼𝑠 − 𝐼𝑠)

2]                                    

               

−
𝛽ℎ𝐼𝑠
𝑘

[𝑆2�̃� + �̃�2𝑀 + �̃�𝑀𝐼𝑠 + 𝐼𝑠�̃�𝑆 − (�̃�(𝑆𝑀 + 𝑆�̃� + 𝑀) + 𝑆�̃�𝐼𝑠)]

 
− 

𝜎𝐼𝑎
1 + ℎ𝑀

[𝐼𝑠 + 1 − 𝐼𝑠] − 𝐼𝑎[𝜇 + 𝛼2 + �̃�𝜌 + 𝜃𝑀 − 𝑀𝜌]                        

 −𝜃[�̃�𝐼𝑠 − (𝑀𝐼𝑠 + �̃�𝐼𝑠)],                                                                                  

         
 

 Where,  𝑘 = (1 + ℎ𝑀)(1 + ℎ�̃�). 

Consequently, by using the conditions (25a – 25f) it follows that: 

   
𝑑𝑊2

𝑑𝑡
≤ −[√𝑃11(𝑆 − �̃�) − √𝑃22(𝐼𝑠 − 𝐼𝑠)]

2
. 

where , 

 𝑃11 =
𝛽 𝐼𝑠

𝑘
+ 𝜇  , 𝑃12 =

𝛽

𝑘
[𝐼𝑠 − 𝑆 − ℎ𝑆�̃�]  , 𝑃22 = [𝜇 − (𝛼2 +

𝛽𝑆

𝑘
+

𝛽ℎ�̃�𝑆

𝑘
)] 

Obviously, 
𝑑𝑊2

𝑑𝑡
≤ 0 , hence 𝑊2 is Lyapunov function. Thus, (SEP) is a (G.A.S.). 

 

Theorem 7: Assume that  𝐹2  is (L.A.S.),then it is a (G.A.S.) if: 

   𝐶1 < 𝐶2,                                                                                        (26a) 

   (1 − 𝑝)𝛽(𝑆 + 𝐼𝑠
∗) < 𝑘1(𝜇 + 𝛼2)                         (26b) 

   𝐷12
2 <

4

6
𝐷11𝐷22,                                                                              (26c) 

   𝐷13
2 <

4

6
𝐷11𝐷33,                                                                      (26d) 

   𝐷23
2 <

4

9
𝐷22𝐷33,                                                                      (26e) 

   𝐷24
2 <

4

6
𝐷22𝐷44,                                                                               (26f) 

   𝐷34
2 <

4

6
𝐷33𝐷44.                                                                              (26g) 

Where , 

    
𝐶1 = 𝑆𝑀∗(𝑆 + 𝑝𝐼𝑎

∗ + (1 − 𝑝)𝐼𝑠
∗) + 𝑆∗𝑀(𝑆∗ + 𝑝𝐼𝑎 + (1 − 𝑝)𝐼𝑠),

𝐶2 = 𝑆𝑀∗(𝑆∗ + 𝑝𝐼𝑎 + (1 − 𝑝)𝐼𝑠) + 𝑆∗𝑀(𝑆 + 𝑝𝐼𝑎
∗ + (1 − 𝑝)𝐼𝑠

∗).
 

   

𝐷11 =
𝛽𝐼𝑠

∗

𝑘1
+ 𝜇 , 𝐷12 =

𝑝𝛽𝐼𝑠
∗

𝑘1
 , 𝐷22 =

𝜎

𝑘1
(1 + ℎ𝑀∗) + (𝜇 + 𝛼1) ,   

 𝐷13 =
𝛽𝑆

𝑘1
(1 + ℎ𝑀∗) −

(1−𝑝)𝛽𝐼𝑠
∗

𝑘1
, 𝐷23 =

𝑝𝛽𝑆

𝑘1
, 𝐷44 = 𝛿, 𝐷34 = 𝜃,

𝐷33 = (𝜇 + 𝛼1) −
(1−𝑝)𝛽𝑆

𝑘1
−

(1−𝑝)𝛽𝐼𝑠
∗

𝑘1
, 𝐷24 =

𝜎ℎ𝐼𝑎
∗

𝑘1
+ 𝜌.               

   

Proof: we define: 

   𝑊3(𝑆, 𝐼𝑎 , 𝐼𝑠, 𝑀) =
(𝑆−𝑆∗)2

2
+

(𝐼𝑎−𝐼𝑎
∗)2

2
+

(𝐼𝑠−𝐼𝑠
∗)2

2
+

(𝑀−𝑀∗)2

2
 

 

      It is evident that 𝑊3 is a positive definite function and 𝑊3: 𝑅+
4 ⟶ 𝑅 is a continuously 

differentiable function, 

 𝑊3(𝑆
∗, 𝐼𝑎

∗ , 𝐼𝑠
∗, 𝑀∗) = 0 and 𝑊3(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) > 0 , ∀(𝑆, 𝐼𝑎, 𝐼𝑠, 𝑀) ≠  (𝑆∗, 𝐼𝑎

∗ , 𝐼𝑠
∗, 𝑀∗). 

Furthermore, it can be shown that by differentiating 𝑊3 with respect to time and simplifying 

the resulting expressions, we obtain the desired outcome. 

 

      
𝑑𝑊3

𝑑𝑡
= (𝑆 − 𝑆∗) [Λ −

𝛽𝑆𝐼𝑠
1 + ℎ𝑀

− 𝜇𝑆] + (𝐼𝑎 − 𝐼𝑎
∗) [

𝑝𝛽𝑆𝐼𝑠
1 + ℎ𝑀

−
𝜎𝐼𝑎

1 + ℎ𝑀
− (𝜇 + 𝛼1)𝐼𝑎]        

                        +(𝐼𝑠 − 𝐼𝑠
∗) [

(1 − 𝑝)𝛽𝑆𝐼𝑠
1 + ℎ𝑀

+
𝜎𝐼𝑎

1 + ℎ𝑀
− (𝜇 + 𝛼2)𝐼𝑠] + (𝑀 − 𝑀∗)[𝜌𝐼𝑎 + 𝜃𝐼𝑠 − 𝛿𝑀]
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𝑑𝑊3

𝑑𝑡
= −[

𝐷11

2
(𝑆 − 𝑆∗)2 − 𝐷12(𝑆 − 𝑆∗)(𝐼𝑎 − 𝐼𝑎

∗) +
𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗)2]    

          − [
𝐷11

2
(𝑆 − 𝑆∗)2 + 𝐷13(𝑆 − 𝑆∗)(𝐼𝑠 − 𝐼𝑠

∗) +
𝐷33

3
(𝐼𝑠 − 𝐼𝑠

∗)2]   

                

− [
𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗)2 − 𝐷23(𝐼𝑎 − 𝐼𝑎
∗)(𝐼𝑠 − 𝐼𝑠

∗) +
𝐷33

2
(𝐼𝑠 − 𝐼𝑠

∗)2]       

      − [
𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗)2 − 𝐷24(𝐼𝑎 − 𝐼𝑎
∗)(𝑀 − 𝑀∗) +

𝐷44

2
(𝑀 − 𝑀∗)2] 

         − [
𝐷33

3
(𝐼𝑠 − 𝐼𝑠

∗)2 − 𝐷34(𝐼𝑠 − 𝐼𝑠
∗)(𝑀 − 𝑀∗) +

𝐷44

3
(𝑀 − 𝑀∗)2]

−
𝛽ℎ𝐼𝑠

∗

𝑘1
[
𝑆𝑀∗(𝑆 + 𝑝𝐼𝑎

∗ + (1 − 𝑝)𝐼𝑠
∗) + 𝑆∗𝑀(𝑆∗ + 𝑝𝐼𝑎 + (1 − 𝑝)𝐼𝑠) −

(𝑆𝑀∗(𝑆∗ + 𝑝𝐼𝑎 + (1 − 𝑝)𝐼𝑠) + 𝑆∗𝑀(𝑆 + 𝑝𝐼𝑎
∗ + (1 − 𝑝)𝐼𝑠

∗))
]
     

      

 

Where,  𝑘1 = (1 + ℎ𝑀)(1 + ℎ𝑀∗). 

 

Consequently, by using the conditions (26a – 26g) it follows that: 

 

            

𝑑𝑊3

𝑑𝑡
≤ −[√

𝐷11

2
(𝑆 − 𝑆∗) − √

𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗)]

2

− [√
𝐷11

2
(𝑆 − 𝑆∗) + √

𝐷44

3
(𝐼𝑠 − 𝐼𝑠

∗)]

2

  

            

             

 − [√
𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗) − √
𝐷33

2
(𝐼𝑠 − 𝐼𝑠

∗)]

2

− [√
𝐷22

3
(𝐼𝑎 − 𝐼𝑎

∗) − √
𝐷44

2
(𝑀 − 𝑀∗)]

2

  − [√
𝐷33

3
(𝐼𝑠 − 𝐼𝑠

∗) − √
𝐷44

2
(𝑀 − 𝑀∗)]

2

 .                                                                        

 

Obviously, 
𝑑𝑊3

𝑑𝑡
≤ 0 , hence 𝑊3 is Lyapunov function. Thus, (TEP) is a (G.A.S.). 

 

6. Numerical simulation 

     To validate our findings and gain a better understanding of how altering parameter values 

affects the system's dynamics, we conducted numerical simulations in this section. We 

initiated the numerical solution of the system using different initial conditions, following the 

application of hypothetical parameter values. The trajectories generated were illustrated using 

MATLAB 2014a.  

 
Λ = 5000 , 𝛽 = 0.0003 , ℎ = 0.00002 , 𝑝 = 0.02 , 𝛼1 = 0.005 ,

𝜎 = 0.01 ,   𝜃 = 0.003 , 𝛼2 = 0.4 , 𝜌 = 0.03 , 𝛿 = 0.01, 𝜇 = 0.01.
            (27) 

 
Figure 2: Trajectories of the system (3) for (27) which approaches to 𝐹2 = (0.1807 , 0.4369 ,
1.1989 , 1.5240). 
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     The results of our analytical effort are validated by the phase diagram provided by Figure 

2,which clearly demonstrates that the (TEP) of the system (3) indicated by 𝐹2 =
(0.1807 , 0.4369 , 1.1989 , 1.5240) is a (G.A.S.). Now, in order to illustrate the effect of the 

parameter values of system (3) on the dynamical behavior of the system, the system is 

numerically solved for the data supplied in  (27) while changing one or more parameters each 

time. It is noted that when the parameter 𝛽 = 0.0000003  is changed for the remaining data 

in Eq. (27), the trajectories of system (3) approach asymptotically to 𝐹0 = (4.7511 , 0 , 0 , 0) 

as illustrated in Figure 3. 

 

 
Figure 3: The trajectories of the system (3) for (27) with changing the parameter  𝛽 =
0.0000003  , which approaches to 𝐹0 = (4.7511 , 0 , 0 , 0). 

 

     The trajectories of system (3) approach asymptotically to 𝐹1 =
(0.1462 , 0 , 1.2159 , 0.3477) as illustrated in Figure 4 by changing the parameter 𝑝 = 0  
while maintaining the rest of the parameter values as in Eq. (27). 

 

 
Figure 4: Trajectories of the system (3) for (27) with changing the parameter  𝑝 = 0  , which 

approaches to 𝐹1 = (0.1462 , 0 , 1.2159 , 0.3477). 
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Now, we discuss the effect of the contacts rate between the susceptible and symptomatic 

infected 𝛽, for the Eq.(27) with different values of 𝛽 < 0.00003 , the trajectories of system 

(3) approaches to (FEP)  as shown in Figure 5. 

 
Figure 5: Trajectories of the system (3) for(27) with changing the parameters  𝛽 < 0.00003, 

which approaches to (FEP). 

 

However  for  0.00003 ≤ 𝛽 ≤ 0.003 it is observed that system (3) as shown in Figure 6. 

 
 

Figure 6: Trajectories of the system (3) for (27) with 0.00003 ≤ 𝛽 ≤ 0.003. 

Now, the effect of the amount disease control due to the media ℎ, for the Eq.(27) with 

different values of ℎ < 0.009 , the trajectories of system (3) approaches to (TEP)  as shown in 

Figure 7. 
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Figure 7: Trajectories of the system (3) for (27) with ℎ < 0.009, which approaches to (TEP). 

 

However  for  0.009 ≤ ℎ ≤ 0.02 it is observed that system (3) as shown in Figure 8. 

 
   Figure 8: Trajectories of the system (3) for (27) with 0.009 ≤ ℎ ≤ 0.02. 

Now, the effect of the recovery rate 𝛼1, for the Eq.(27) with different values of 𝛼1 < 6.8 , the 

trajectories of system (3) approaches to (TEP)  as shown in Figure 9. 

 
Figure 9: Trajectories of the system (3) for (27) with changing the parameters  𝛼1 < 6.8, 

which approaches to (TEP). 
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However for  6.8 ≤ 𝛼1 it is observed that system (3) approaches to (SEP) as shown in Figure 

10. 

 
Figure 10: Trajectories of the system (3) for (27) with changing the parameters  6.8 ≤ 𝛼1, 

which approaches to (SEP). 

Finally , we discuss the effect of the recovery rate 𝛼2, for the Eq.(27) with different values of 

𝛼2 ≤ 1.5 , the trajectories of system (3) approaches to (TEP)  as shown in Figure 11. 

 
Figure 11: Trajectories of the system (3) for(27) with changing the parameters  𝛼2 ≤ 1.5, 

which approaches to (TEP). 

 

However  for  1.6 ≤ 𝛼2 it is observed that system (3) as shown in Figure 12. 

 
Figure 12: Trajectories of the system (3) for(27) with 1.6 ≤ 𝛼2. 
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7. Conclusion and discussion 

     In this article, we examined the impact of media alerts on an epidemiological model using 

a case with no symptoms. The study's objective is to comprehend how media influence is 

included in epidemiological models in order to gather knowledge on how it affects disease 

dynamics, transmission rates, and intervention tactics. The boundedness of the system has 

been investigated. The existence conditions of all potential system equilibrium points have 

been established. Both local and global stability are examined for all possible (E.Ps.). The 

qualitative dynamical behavior as a result of changing the parameter values is investigated 

using both analytical and numerical methods. Finally, the hypothetical data set that is 

physiologically plausible as given in (27) is numerically solved for the system (3), and the 

results are explained in a few standard visuals. The results are summed up as follows: 

1- With the parameter values specified in (27), the system (3) demonstrates a state of 

(G.A.S.), denoted by 𝐹2 = (𝑆∗, 𝐼𝑎
∗ , 𝐼𝑠

∗, 𝑀∗). 

2- Upon reducing the contact rate 𝛽 between the susceptible and symptomatic infected 

populations to a certain threshold, the system (3) follows an asymptotic trajectory toward  the 

(FEP). 

3- When the fractional rate 𝑝 = 0 as a condition of existence, the system(3) exhibits an 

asymptotic trajectory toward the (SEP). 

4- Media alerts and public health messaging have the potential to enhance awareness and 

understanding within the general population regarding asymptomatic cases and their pivotal 

role in disease transmission. This, in turn, might lead to improved compliance with preventive 

measures and heightened rates of testing among individuals who could potentially carry the 

infection without showing symptoms. 
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