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Abstract

The significance of media alerts in influencing public perception and response
during disease outbreaks is of paramount importance. This research investigates how
media alerts affect the epidemiological model by taking into account both
asymptomatic and symptomatic cases. Media alerts serve as a powerful tool for
raising awareness about the disease, driving people to undergo testing and diagnosis,
and promoting adherence to public health measures. This, in turn, contributes to
better reporting and surveillance of cases, leading to a more accurate representation
of disease spread in the model. The proposed model introduces a five-dimensional
compartment system that includes susceptible, asymptomatic, symptomatic,
recovered populations and media. This research addresses various aspects of the
model, such as its uniqueness, boundedness, and existence of solutions. The
determination of all possible model equilibrium points is thoroughly explored. To
study the global dynamics of the proposed models, appropriate Lyapunov functions
are employed. Additionally, numerical simulation is also carried out to investigate
the influence of parameters affecting the dynamics of the model and to support the
gathered analytical findings of the model.

Keywords: Asymptomatic , Symptomatic ,Media, Mathematical model, Stability.

£

bl lgle el Yl el Gacsiall Sl z3sail) e dadle) cilgunll b dulp

sl Jalh s, 217 o 30y ()
Ghall, dlany, ok daals , ashell LIS, Claall) s
Gball, dany, Adhall Zaslall  Aurighl LIS, lSudl) o

dadal)
el gl (i) chi ol Alaially slall oY) o il 3 Dley) diley cilgas daal o)
Bebe DA e gl zisall o DoY) dilay g 5k LA 3 ) 1 Giay L gyead
3alC ey clgall Jasd - pahe ) lale ek Al eVl bl gl jeka ¥ Al eV
ony N Gageng ¢ panidilly HLEAM gaadll Gl adyg cpapal) dos osl) (e g3 Ao
aay S0 Jia ) sag Lee clgiiles OV e £3LY1 Grend b adly oyon 1305 L Aalal) daal)
;LD Cpayeall AV o lisKe Aused (e allas Cand) 138 ady zdsall 8 Gl LimY
Dadly cpdlaiall |, abie) agile jedan ol cubeaddl aAY), (aliel agale Hedan Y ) cpuleadd) 2)3Y)

*Email :

rami.raad1103a@sc.uobaghdad.edu.iq
7073



mailto:rami.raad1103a@sc.uobaghdad.edu.iq

Saadi and Al-Husseiny Iragi Journal of Science, 2024, Vol. 65, No. 12, pp: 7073 - 7088

SISl el @ sy Alidl Cigigl Ciillag sl D& (e ) 7 3pall Zualledl claalisl
Al Sl ae sy 7l 3padl el e cildedd) i Ayl Aol

1. Introduction

An epidemiological model serves as a mathematical representation of how infectious
diseases spread and evolve within a population. Through this model, researchers and public
health experts can gain insights into the dynamics of disease transmission, forecast its
progression over time, and assess the potential impact of different interventions or control
measures. The influence of media alerts on the epidemiological model is noteworthy,
considering both asymptomatic and symptomatic cases. Such alerts can have a complex and
multifaceted impact on various aspects of disease transmission and public health response.
Media alerts can significantly influence public behavior and compliance with guidelines.
When the media consistently emphasizes the importance of adhering to guidelines, people are
more likely to follow them, potentially influencing the model's projections and outcomes.
Conversely, if media alerts spread misinformation or induce panic, there can be adverse
consequences. Misinformation may lead to ineffective or harmful responses, while panic can
disrupt public health efforts and worsen disease spread. Both of these factors introduce biases
and inaccuracies into the epidemiological model, affecting its predictive capabilities. Hence, it
is crucial to handle media alerts carefully to ensure they contribute positively to disease
management and control. Pathogens have a variety of life history methods, from acute
disorders like syphilis to chronic conditions like influenza A viruses [1-2]. Understanding
infections' evolutionarily stable strategies (ESSs), which are constantly subject to selective
pressures, might provide important information for the prevention and treatment of disease.
Researchers have studied ESSs concerning aspects like virulence, persistence, and recovery.
The understanding of pathogen pathogenicity evolution has significantly advanced because of
classic research by Anderson and May [3] and Dwyer et al. [4-8]. Regarding various
characteristics of pathogens, King et al. [9] investigated pathogen evolution by considering a
trade-off between persistence and invasion. On the other hand, Alizon [10] explored the
evolutionary consequences of pathogens when there is a trade-off between transmission and
host recovery, incorporating explicit immune dynamics into the study. Another key life
history strategy for a pathogen is its capacity to display milder symptoms or a time of latency
at the beginning of an infection, in addition to virulence, persistence, and recovery. Such
"hidden" infections provide the pathogen with a number of benefits in a variety of settings.
Additionally, in both animals and humans, symptoms often act as a cue for susceptible
individuals to avoid infectious hosts [11-12], and a hidden infection would reduce this
avoidance. Fraser et al. [13] found that the effectiveness of disease control strategies depends
significantly on the number of asymptomatic transmissions before the full development of
symptoms. Hence, these less symptomatic stages of infection are critical and present
significant epidemiological challenges.An infection's ability to spread from an infected person
to an unknowing host is strongly influenced by the severity of the sickness. Having fewer
symptoms lowers transmission in situations where symptoms themselves are frequently
connected to enhanced transmission (e.g., through coughing, sneezing, or rashes) [14]. Lower
pathogen loads can also result in milder symptoms and less shedding, which lowers
transmissibility. Several epidemiological models have been studied, and each model focuses
on an infectious epidemiological disease. Among these studies, Watheq Ibrahim Jasim et al.
[15]. They suggested a study of the shigellosis bacteria disease model with awareness effects.
Chadi M. Saad-Roy et al.[16] studied the dynamics in a simple evolutionary-epidemiological
model for the evolution of an initial asymptomatic infection stage. Nourridine Siewe et al.[17]
studied the mathematical model of the role of asymptomatic infection in outbreaks of some
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emerging pathogens. Anirban Ghatak et al.[18] they suggested a generalized epidemiological
model with dynamic and asymptomatic population. Ahmed A. Mohsen et al.[19] studied the
awareness effect of the dynamical behavior of SIS epidemic model with Crowley-Martin
incidence rate and holling type 1l treatment function. Shurowq K. Shafeeq et al.[20] studied
the bifurcation analysis of a vaccination mathematical model with application to COVID-19
pandemic. Ahmed A. Mohsen et al. [21] conducted a study on the dynamics of Coronavirus
pandemic disease model in the existence of a curfew strategy. Similar studies have also been
conducted by other researchers [22—-24].The main focus of this research is to develop a
mathematical model that incorporates the influence of media alerts on epidemiological
dynamics, considering both asymptomatic and symptomatic cases. This article is organized as
follows:

e Section 2 presents the mathematical modeling of the novel media alert, taking into account
asymptomatic and symptomatic cases.

eIn section 3, various essential characteristics of the model are discussed, including the
boundedness of solutions and the existence of equilibrium points.

¢ The local stability analysis using Gersgorin's theorem is covered in Section 4.

e In section 5, the Lyapunov function is used to examine the proposed model's overall stability
at all equilibrium locations.

e Finally, numerical simulations are carried in section 6 to examine the effects of changing
every system parameter.

2. Mathematical model

In this section, we create a mathematical representation to study the impact of media alerts
on an epidemiological model that considers both asymptomatic and symptomatic cases. The
remaining parameters can be found in Table 1.

Table 1: Parameters description utilized in the system(1).

Parameters Interpretation
S(t) Susceptible population.
1,(t) Individuals asymptomatic infected.
I;(t) Individuals symptomatic infected.
R(t) Recovered population.
M(¢) Media.
A Birth rate.
B The contacts rate between the susceptible and symptomatic infected
population.
h The amount disease control due to the media.
U Natural death rate.
D Fractional rate, 0 <p < 1.
- Rate of progression from asymptomatic infected to symptomatic infected
stages.
a;,i=1,2. Recovery rates .
p,0 The influence rate of media campaigns.
) The reduction rate of media campaigns.

Hence, the behavior of the system suggested above can be described using the following
set of 1% non-linear differential equations, and the graphical representation of this system is
depicted in Figure 1.
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Figure 1: The diagram illustrating the system (1).

2, ar?

s BSIs

= — ’uS
dt 1+hM
dlg _ pBSIs  alg
dt ~ 1+hM  1+hM (u+a)l,
dals (1-p)BSIs olg
dt = 1+hM T 1+hM (b + @)l @
% = 0(11a + 0(215 - ,Ll,R
am

—pI + 01, — M

With the initial conditions ,

S(0)>0, 1,(0) = 0, ,(0)=0,R(0)=0 ,M(O)=0
Where (S(t),1,(t),1,(t), R(t),M(t)) € R3.It is suppose that for all t >0 the functions
S(t),1,(t), L(t), R(t),M(t) and their derivatives are continuous, making them Lipschitzian.
As a result, the system (1) has a unique and existing solution. Furthermore, the theorem
presented below demonstrates the bounded nature of the solution for the system (1).

Theorem (1) : Every solution to the system (1) of equations that begins with R2 as the initial
value remains uniformly bounded.
Proof:
The solution (S(t),1,(t), I;(t),R(t), M(t)) to system (1) is obtained from non-

negative initial values (5(0),1,(0),1;(0),R(0), M(0)) , and let

H(t) =S(t) +1,(t) + I (t) + R(t) + M(t) , then

dH dig dIS

E=dt+ a T +dt+_
Next, by deriving H Wlth regard to time, we obtain:

— < A—uH
The Gronwall lemma [25] is now used to prove that
A _ D\ -ut
H(b) S#+(H0 #)e ,
So, (t) s%, ast — oo,

3. Existence of the equilibrium points
It has been noted that the first three equations and the fifth equation of system (1) do not
contain the variable R, which stands for the recovery rate. Hence, an alternative system can be
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solved instead of the original system (1). By solving this alternative system and substituting
the obtained values of I, and I into the second and third equations of system (1), we can treat
them as linear differential equations with respect to the variable R. Consequently, we obtain
the solution for the fourth equation as t approaches infinity, which can be expressed as
follows:

R(t) = %1 (2)

The solution values for the following system (3) are represented by I, and I;.Therefore, we

will focus on studying the system (3) instead of the original system (1).
E — _ ﬁSIS _ S
dt 1enm M
ﬂ _ DpBSIs __“

Iy
= —_— = aq)l
dt = 1+hM  1+hM (1 +a)l,

dly _ (1-p)Bsls , olg 3)
a = 1enm T Temm (u+ @)l
& = pl, + 01, — M
There are three equilibrium points in system (3), and they are as follows:
e The first equilibrium point (FEP) is F, = (S,0,0,0),
where
§=u - L (4)
e The second equilibrium point (SEP) is F; = ($,0,1;, M) whenp = 0,
where
§= w , (5)
= (1+hi)(A-uS)
s = Tﬂ : (6)
i = %’ , (7)
exists, if:
uS <A . (8)
e The third equilibrium point (TEP) is F, = (§*, 13,15, M) ,
where
« _  AQa+hMY)
5" = BeuGni) (©)
x _ pBS’Is
la = o+(1+hM*) (u+ay) ' (10)
. _ olg
IS - pBS*+(1+hM*)(u+ay)—Bs* ' (11)
« _ plat08ls
. .M - 6 1] (12)
exists, if:
BS* <pBS*+ (1 +hM*)(u+ ay). (13)

4. Local stability analysis

In this section, the linearization method is used to examine the local stability of the
system (3).The Jacobian matrix (J.M.) of system (3), at F =(S,1,,I,M) is ] =
(aij)4><4 ;l;] = 1J2J3J4J
Here

7077



Saadi and Al-Husseiny Iragi Journal of Science, 2024, Vol. 65, No. 12, pp: 7073 - 7088

allz—( ﬁls +M) algz_—[gs a14:M a :ﬂ
1+ hM ’ 1+hM’ (1+hM)2’ 71+ M’
o pBS —h
azz=—(m+ﬂ+“1) 023 =T az4=m(295515—01a),
_ (A1 —=p)BLs o (1 —-p)BS

=TT M T TERM 0T Teaw KO = =0,

—h

a3y = m((l - p),BSIS + O'Ia) yAup = P,043 = 0 y Agg = —4.

Theorem 2: F, is locally asymptotically stable (L.A.S.) if the conditions are satisfied:
BS <pBS+ 0+ 2u+a;+a,, (15a)
BS(c+u+a) <pBSu+ay) +tu(c+pu+a;+ay) +ay(o+ ay). (15b)
Proof: the (J.M) at F is:

- 0 —BS 0
|0 —(oc+u+ay) pBS 0
JE =1 o (1-p)pS—(uta) 0 ()
l o D 6 -5
The characteristic equation (C.E.) of J(F,) is :
[—u—A][-6 —A][A2+ A A+ A,]=0 (17a)

Here
A, =pBS+o+2u+a, +a,—pS,
Ay =pBS(p+a)) tp(o+u+ay+ay) +ay(0+ay) -
BS(oc+ u+ ay).
The equation (17a) has four roots, representing the eigenvalues of J(F):
Aoz = — % + %\m
AM=—u<o0
A =—0<0
(17b)
Then, all the eigenvalues will be non-positive and hence F, is (L.A.S.) , if the conditions
(15a) - (15b) holds.

Theorem 3: F; becomes (L.A.S.) when the specified conditions are met:
BS < (14 hM)(u+ ay) (18a)
I;ho < (1 + hM)s (18b)
Proof: the (J.M.) at F, is
J(F) = (dij),,, 5 LJj=1234

here
— _ (s - __BS _ _Bhsis
dyy = (1+h1\77 + ,u) ydiz = 1+hii ydig = (1+hifz2’
_ o B 0
dyz = (1+hM T+ 0{1) , A3y = 1+hit ’ d3; = 1+hif ’
BS BhST,
33 = Toni M+ ay) ,dzy = ~ Cenin? ydyp = p,dyz3 =06,

dys = —6,di;=dy; =dyz =dyy =dy =0.
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The (C.E.) of J(Fy)is:

|- (555 +#+ @) = 2| 4% + D12% + D, A + D3] = 0 (20)

Hear

D; = —(dqq +d33 + dya),

D, = (dy1d33 — dqy3d31) + (d33das — d3adys),

D3 = dy1(d34dys — d33das) + d31(di3dss — dqadys).
While

A= D,D, — D, , that i

A= dq;(d13d3q — di1d3z — di1das) + ds3(disdsg — 2dy1d4s — d3zdast+dzadys) +

So.eith dys(di3dzs — di1dyg — dazday + +dzadys) — (di1d33 + dizdziday) + digdzidys.
0, eltner

[_ (1+hM thA al) /1] (212)
or
[A3 + DA% + D,A + D3] = 0, (21b)
from equation (21a) we obtain that
A2 = _(1+hM+’u+a1) <0
The eigenvalue of the Jacobian matrix is consistently negative.
However, it is easy to confirm that D; > 0 and D3 > 0 under the conditions (18a) - (18b) .

While A > 0 under the condition (18a). So, all the eigenvalues 1, ,1;and 1, of Eq.(21b)
have negative real parts. So, F; is (L.A.S.) , if the conditions (18a-18b) are holds.

Theorem 4: F, is (L.A.S.) in the subregion Q € R which meets the conditions:

p<p+a, (222)
20 <pu+a,, (22b)
h(pBS™I; +2BS°I; + 013) < §(1+ AM™)? + haly(1 + hM") + hpBS™L; (220)

Proof: the (J.M.) at F, is

](FZ) (TU) 1234
here
— BIs ) _ -BS* _ BS*I5h _ pBI:
= (1+hM* tH) s = e T4 g 0 T2 T T
- _ _ _PBS” .
2 = (1+hM* tHA al) 123 = T T2 = —(1+hM B (PBS™Is —oly),
(1-p)BI; o (1-p)BSs*
31 = 1+hM*S T3 = o 1383 T T (W+ay),rz=1m,=0,

T34 = m((l—p)ﬁb‘ I*+UI) Ty = P, T3 = 0,144 = —6.

If the requirement is met, the Gersgorin theorem [26] can be used,

|ru| > Zl llrljl
i£j

So, all the eigenvalues of (J.M.) at (F,) exists in Q , where

O =uU {U* eC: |U* —Tijl < Z?=1.|Tij|}

1#]
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Consequently, every eigenvalue of J(F,) lies within the disk centered at r;;. Hence, when the
diagonal elements are negative and conditions (22a)-(22c) are satisfied, all the eigenvalues
will reside in the left half-plane, resulting in the (L.A.S.) of the (TEP).

5. Global stability analysis

In this section, the theorems that demonstrate the global stability of all (E.Ps.) in system
(3) have been presented.
Theorem 5: Assume that F, is (L.A.S.),then it is a globally asymptotically stable (G.A.S.) if:

p<u+ta,
(24a)
BS+ (1 +hM)O < (u+ ay)(1 + hM). (24b)
Proof: we define:
(5- 57
Wy(S, 1,1, M) = +I,+ 1+ M,

It is evident that W, is a positive defmlte function and W;:R% — R is a continuously
differentiable function,
W;(5,0,0,0) = 0 and W, (S, I, I, M) > 0,Y(S,1,,1I;, M) # (S,0,0,0).

Further,
d Sls
==L S| - (wta - p)la
S
—[u+a2 _(1th+0)]IS_6M'
Hence we obtain
dW1 SIs
== S)[1+hM+'u]_6M

Consequently, due to the conditions above , we get — N 0, hence W; is Lyapunov function
with respect to F,,. Thus ,(FEP) isa (G.A.S.).

Theorem 6: Assume that F; is (L.A.S.), thenitisa (G.A.S.), if

SM(S+1) +SM(S+15) < SM(S + I,) + SM(S + I), (25a)
I, <I;+1, (25b)

Mp <u+a,+ Mp+ 6M, (25¢)

M+ M<M, (25d)

ayk + BS + BhMS < uk, (25¢€)

P2, < 4P, P,,. (25f)

Where, P;;,i,j = 1,2 is given in the proof.

Proof: we define:

i vaY/
WZ(SI Ia; IS! M) = +I + (Is— IS) + M 2M)

It is evident that W, is a positive defmlte function and W,:R$ — R is a continuously
differentiable function,

W,(S,0,15, M) = 0 and W (S, 1,, I, M) > 0,Y(S, 1,15, M) = (§,0,1, M).

Furthermore, by differentiating W, with respect to time and simplifying the resulting
expressions, we obtain the desired outcome as follows:

(s- S)

_=(S—§)[A— A3 —#S]_

1+ hM ~ o~ aala

a
1+ hM

o (,u—l—az)l]+(M M)[pl, + 615 — M]

S)[1+hM 1+ hM
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sz

—[Pia(5 = 8)" = Pia(S = §)Us = ) + Poa (U = [)?]

hlg . . ~ s < _ _
> [S2M + $2M + SM + [MS — (S(SM + SM + M) + SM)|

Olg
1+hM[I +1—I] —Io|p+ az + Mp + 6M — Mp|

—0[MI; — (MI; + MI,)],
Where, k = (1 + hM)(1 + hM).
Consequently, by using the conditions (25a — 25f) it follows that:

W < —[VPra(s = 8) = VPl - 1],
B Is

Pu=L ey Py =1~ S~ hSHI] Py = [ — (e + £+ E25)]
Obvmusly, P < 0, hence W, is Lyapunov function. Thus, (SEP) is a (G.A.S.).

where ,

Theorem 7: Assume that F, is (L.A.S.),thenitisa (G.A.S.) if:

C; < Gy, (26a)
(1 =p)BES+15) <ki(u+ az) (26b)
Df, < §D11D221 (26c¢)
Df; < §D11D331 (26d)
D}; < %DzzD33v (26e)
D3, < §D22D441 (26f)
D3, < §D33D44- (269)

Where ,
C,=SM*(S+plag+ (1 —p)lg) +S™M(S™ + ply + (1 —p)ly),
C, = SM*(S* + pl, + (1 — p)I,) + S*M(S + pI: + (1 — p)I2).
I3 I:
Dy, = B N D12—& D22=—(1+hM)+(u+a1)

S (1 )BIS
Dy3 =ﬁ_(1+hM )—:;1[} D23=i Dyy =6,D34 =0,

D33 =(u+ay)—

(1- p)ﬁS (1-p)pIs D,y = ohlg
24 —

k4 kq tp

Proof: we define:

(5-5%2% | (Ig—-1)? | (s—12)? | (M—-M*)?
WS, Ig, I, M) = ——+ ==+ ==+ —

It is evident that W; is a positive definite function and W;: R — R is a continuously
differentiable function,
W5(S*, 1,15, M*) = 0and W5(S,I,, 15, M) > 0,VY(S, 1,15, M) = (S*,1;,1;,M").
Furthermore, it can be shown that by differentiating W5 with respect to time and simplifying
the resulting expressions, we obtain the desired outcome.

Ws _ (s—s [A pSI S]+ I,—1 [pﬁs}s 9l +ay)l
a ¢ ) 1+hM Ua=la) |75 13w ~ T @)la
(A =p)BSI al, .
+(15—15)[ e T — (k@) + (M = MY)[pl, + 01, — M)
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dws

?z_'h(g_s*)z D1,(S — S, —I)+D22 - 2)2]

— [R5 =592 + Dia( = $7Us — 1) + 22 (U - 1)?]

— P2 U = 1% = Dy Ua — 1)Uy = 1) + 222Uy — 1)?]

- D“ 22 Iy = 15)? = Daally — 15)(M = M") + 22 (M — M*)?]
[D” (s = 15) = D3g(Us — I5)(M = M*) + 222 (M — M*)?

_pni [SMY(S +pla + (1 = p)Ig) + S™M(S™ +pla + (1 = p)Is) —

ke |[(SM*(S™ +ply + (1 —p)I) + S*™M(S + pl; + (1 — p)IY))
Where, k; = (1 + hM)(1 + hM™).

Consequently, by using the conditions (26a — 269) it follows that:

Be(s -5 - [P0, - Iz)r - [E (s-59+ 20 - I;)r
—[\/%(Ia—lz)—\/%(ls—l;)r—[ B2 (1, — I5) - @(M—M*)r
—[ %(15—1;)—J£(M—M*)r.

Obvmusly, P < 0, hence Wj is Lyapunov function. Thus, (TEP) is a (G.A.S.).

6. Numerical simulation

To validate our findings and gain a better understanding of how altering parameter values
affects the system’'s dynamics, we conducted numerical simulations in this section. We
initiated the numerical solution of the system using different initial conditions, following the

application of hypothetical parameter values. The trajectories generated were illustrated using
MATLAB 2014a.

A =5000,4 =0.0003,h =0.00002,p =0.02,a; = 0.005,

o=0.01, 6§ =0.003, a, =04,p =0.03,5 =0.01, u=0.01.
10000 B 6000
5000 B
2
© 2500 R=
= o0 ‘5 4000 _—
= & 7
S 5000 g : 2000
2 £ 2000F /, 1000
192} (=% /
£ 35
Z
0
0 << 2
5 o 20 30 0 100 200 300
Time Time
x 10
B 15000
L
3
k= L3
-= 10000 <
o S
= B 1
=1 _ 5000 z 5500
3 5000 - 2000 57 3500
= 250 N 250
g 25 5
A 0 0

0 10 20 30 0 100 200 300
Time Time

Figure 2: Trajectories of the system (3) for (27) which approaches to F, = (0.1807,0.4369,
1.1989,1.5240).
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The results of our analytical effort are validated by the phase diagram provided by Figure
2,which clearly demonstrates that the (TEP) of the system (3) indicated by F, =
(0.1807,0.4369, 1.1989,1.5240) is a (G.A.S.). Now, in order to illustrate the effect of the
parameter values of system (3) on the dynamical behavior of the system, the system is
numerically solved for the data supplied in (27) while changing one or more parameters each
time. It is noted that when the parameter § = 0.0000003 is changed for the remaining data
in Eq. (27), the trajectories of system (3) approach asymptotically to F, = (4.7511,0,0,0)
as illustrated in Figure 3.

5 B 2000
2
o 4 5000 ‘E 1500 2000
- 8 2500 5 1000
a 90 8 1000 35
5] g
z?2 g
n 2500
1 ; \
7]
0 < 0
0 200 400 600 800 0 200 400 600 800
Days Days
e 6000
3 2000
51 -
3] 2000 5500
g 1500 ——— 3500
R - 1500 « 4000 35
2 250 '5:-'3‘ 250
£ 1000 =
= 2000
£ 500
2 1
e N ,
A 0 0 -
0 100 200 300 0 200 400 600 800
Days Days

Figure 3: The trajectories of the system (3) for (27) with changing the parameter f
0.0000003 , which approaches to F, = (4.7511,0,0,0).

The  trajectories of system  (3) approach  asymptotically to F, =
(0.1462,0,1.2159,0.3477) as illustrated in Figure 4 by changing the parameter p = 0
while maintaining the rest of the parameter values as in Eq. (27).
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Figure 4: Trajectories of the system (3) for (27) with changing the parameter p = 0 , which
approaches to F; = (0.1462,0,1.2159,0.3477).
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Now, we discuss the effect of the contacts rate between the susceptible and symptomatic
infected g, for the Eq.(27) with different values of f < 0.00003 , the trajectories of system
(3) approaches to (FEP) as shown in Figure 5.
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Figure 5: Trajectories of the system (3) for(27) with changing the parameters 8 < 0.00003,
which approaches to (FEP).

However for 0.00003 < S < 0.003 it is observed that system (3) as shown in Figure 6.
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Figure 6: Trajectories of the system (3) for (27) with 0.00003 < 8 < 0.003.

Now, the effect of the amount disease control due to the media h, for the EQ.(27) with
different values of h < 0.009 , the trajectories of system (3) approaches to (TEP) as shown in
Figure 7.
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Figure 7: Trajectories of the system (3) for (27) with h < 0.009, which approaches to (TEP).
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However for 0.009 < h < 0.02 it is observed that system (3) as shown in Figure 8.
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Figure 8: Trajectories of the system (3) for (27) with 0.009 < h < 0.02.

Now, the effect of the recovery rate a;, for the Eq.(27) with different values of a; < 6.8, the

trajectories of system (3) approaches to (TEP)
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Figure 9: Trajectories of the system (3) for

which approaches to (TEP).
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However for 6.8 < a; it is observed that system (3) approaches to (SEP) as shown in Figure
10.
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Figure 10: Trajectories of the system (3) for (27) with changing the parameters 6.8 < a4,
which approaches to (SEP).

Finally , we discuss the effect of the recovery rate a,, for the Eq.(27) with different values of
a, < 1.5, the trajectories of system (3) approaches to (TEP) as shown in Figure 11.
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Figure 11: Trajectories of the system (3) for(27) with changing the parameters a, < 1.5,
which approaches to (TEP).

However for 1.6 < a, it is observed that system (3) as shown in Figure 12.
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7. Conclusion and discussion

In this article, we examined the impact of media alerts on an epidemiological model using
a case with no symptoms. The study's objective is to comprehend how media influence is
included in epidemiological models in order to gather knowledge on how it affects disease
dynamics, transmission rates, and intervention tactics. The boundedness of the system has
been investigated. The existence conditions of all potential system equilibrium points have
been established. Both local and global stability are examined for all possible (E.Ps.). The
qualitative dynamical behavior as a result of changing the parameter values is investigated
using both analytical and numerical methods. Finally, the hypothetical data set that is
physiologically plausible as given in (27) is numerically solved for the system (3), and the
results are explained in a few standard visuals. The results are summed up as follows:

1- With the parameter values specified in (27), the system (3) demonstrates a state of
(G.AS)), denoted by F, = (S*, 1,15, M™).
2- Upon reducing the contact rate  between the susceptible and symptomatic infected

populations to a certain threshold, the system (3) follows an asymptotic trajectory toward the
(FEP).

3- When the fractional rate p = 0 as a condition of existence, the system(3) exhibits an
asymptotic trajectory toward the (SEP).
4- Media alerts and public health messaging have the potential to enhance awareness and

understanding within the general population regarding asymptomatic cases and their pivotal
role in disease transmission. This, in turn, might lead to improved compliance with preventive
measures and heightened rates of testing among individuals who could potentially carry the
infection without showing symptoms.
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