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Abstract

The aim of this paper is to introduce and study a new kind of graphs associated to
an ideal of a commutative ring. Let R be a commutative ring with identity, and 1(R)
be the set of all non-trivial ideals of R with Sel(R). The sum ideal graph associated
to S, denoted by Y(R, S), is the undirected graph with vertex set {A€l(R):
ScA+B, for some Bel(R)} where two ideal vertices A and B are adjacent if and
only if A#B and ScA+B. In this paper we establish some of characterizations and
results of this kind of graph with providing some examples.

Keywords: Sum ideal graphs, Maximal ideals, Connected graphs.
L) clilad) 8 dagles ddliay A5j\ial) il pan cilily

2)5.& Ogdan i3 ‘ZJALE\.\,\D O .ﬂf)é ‘*IJAU L.QJLA d-di
cabal ¢ dul el 2 a daals Al A0S byl o
bl ¢ Jeage ¢ Jeage daals ¢ lualylly Csalall agle LS (lualyl) and’

ladal)
A dalall daslae Allay ddatsell UL e 2as o8 Aoy Chipad sa Gl 13 8 Caagl)
Ol Ciyr R ARl dgih ye e desene [(R) Oly ¢ wlaall peainll ae L) dals R oS3
{AEI(R): SCA+B, _a 4uss) desane W plall 4l Lo S dgils ye &l A3lad) i) pas
&b -SCATB 13 Ly 13 cpyslaie By A cpibine cpllie cpddy ol ols cfor some Bel(R)}

ALY s elacl pa Ol g gsl) 13g) iaally il mey and Cage il
1. Introduction

A graph consists of two sets , vertex set and edge set , such that each edge assigned as unordered
pair of two distinct vertices. Recently, some kinds of graphs were introduced and studied whose vertex
set are elements or ideals of a given ring, and the binary operations of the ring makes the adjacency of
the graph. The zero divisor graph was first introduced by Beck 1. in [3]. The annihilating-ideal graph
of a commutative ring R was introduced by Behboodi M. in [4]. This kind of graph has been studied,
see[1,2,7,8].

In this paper, we introduce and study the notion of sum ideal graph associated to an ideal of a
commutative ring with identity in which the set of maximal ideal has a main role to obtain most of its
results and characterizations.

Throughout this paper all rings will be finite and commutative with identity, and some basic
definitions in [5, 6] will be used. Also we use R, S, M(R), J(R), V(¥ ) and E(¥ ) to denote a
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commutative ring, a non-trivial ideal of R, the set of maximal ideals, the Jacobson radical of R, the
vertex set and the edge set of (R, S) respectively.
2. The sum ideal graph associated to a given ideal of R

In this section, we introduce the notion of sum ideal graph associated to a given ideal, we give
some of its basic properties.
Definition2.1: Let R be a commutative ring with identity, and I(R) be the set of all non-trivial ideals
of R with SEI(R). The sum ideal graph associated to S, denoted by W(R, S), is an undirected graph
with vertex set {A€l(R): ScA+B, for some Bel(R)} where distinct ideal vertices A and B are
adjacent if and only if S is a proper subset of A+B.
Examplel: Let R=Z43 and S= (6). The graph W( Z g, (6)) is:

(2)

(4)
(24)

(16) (6)

” ©)
(12) &

Figure 1- The graph ¥( Z 4, (6))

Before starting our main results, we give the following lemma.
Lemma 2.2: Let {I, J} be an edge in ¥(R, S). If K € I(R) such that IcK, then K is adjacent to J in
Y(R, S).
Proof: Suppose that {I, J} is an edge in ¥(R, S). Then Scl+J. Since IcK, we have ScK+J. This
means that, K is adjacent to J in (R, S).
We start this section with the following main result.

Proposition2.3:
1. If E(¥) #0, then M(R)NV(¥) #@. Furthermore, for every I, J EM(R) with I#], I and J are adjacent
in ¥(R,S).
2. Forevery I, J EM(R) with 1], ¥(R, 1) and ¥(R, J) are identical.
Proof:
1. Assume that E(¥)#0. Let | eV(¥), then there exists a vertex J of ¥ (R,S) such that Sci+]. If
either IEM(R) or JEM(R), then the prove terminates. Now, assume that I€¢M(R). Then there exists
MEeM(R) such that IcM. If J=M, then the prove completed. Suppose that J#M. Then by Lemma 2.2,
M is adjacent to J in W(R, S). Thus M is a maximal ideal vertex in M(R). Assume that I, JEM(R).
Then Scl+J=R. Thus {l, J} is an edge in ¥(R, S).
2. Let I, JeM(R) with 1#). If {A, B} is an edge in W(R, 1), then IcA+B. Then the maximally of |
gives that A+B=R. Obviously, JCA+B. Thus {A, B} is an edge in ¥(R, J). Similarly, we can show
that every edge of (R, J) is an edge of ¥(R, I). Hence W(R, I) and W(R, J) are identical.

The next result shows that (R, S) is a null graph under certain conditions.
Proposition2.4: Let SEM(R). Then W(R, S) is a null graph if and only if R is a local ring .
Proof: Suppose that R is a local ring. Then M(R) ={S}. Since every non-trivial ideal contained in S,
we have S¢l1+], for every |, J€ I(R). Thus W(R, S) is a null graph.
Conversely, suppose that P(R, S) is a null graph. Then by Proposition2.3, R has exactly one maximal
ideal. This means that R is a local ring.
Remark2.5: Let KeV(W)-{S}. Then {K, S} is an edge in ¥ (R,S) if and only if SCS+K, this means
that S+K#S. Equivalently, K¢S.

The next result shows the adjacency between S and all ideal vertices in ¥(R,S).
Proposition2.6:
1. If E(¥) # 0, then the ideal vertex S is adjacent to all IEM(R).
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2. If KeEV(Y) is adjacent to S, then K is adjacent to at least one maximal ideal in ¥(R,S).

3. If S is a minimal ideal vertex of R, then S is adjacent to all ideal vertex K in ¥(R, S).

Proof:

1. Let IEM(R)-{S}. It is clear that SSS+I and I¢S. Thus ScS+1. Hence S adjacent to | in W(R, S) for
every ideal vertices I#S.

2. Since K and S are adjacent, ScS+K. If S eM(R), then the prove terminates. If K eM(R), then by
Proposition 2.3, K is adjacent to all elements of M(R). Assume that S, K& M(R). Then S contained
properly in a maximal ideal say M. It follows from ScS+K that ScM+K. Thus K is adjacent to a
maximal ideal M.

The proof of the third part follows from Remark 2.5.

Next, we turn to the following result.

Proposition2.7: Let |, JEM(R) with IA]. If K is an ideal vertex of (R, S) which is not contain in J,
then K and J are adjacent ideal vertex in ¥(R, S).

Proof: By Proposition 2.3 Scl+J. Since K¢&J, we have JcK+J. Then the maximally of J gives K+J=R.
Thus S cK+J. Hence {K, J} is an edge in ¥(R, S).

In the next result we demonstrate the partite of W(R, ).

Theorem2.8: If R has exactly two maximal ideals | and J, then:

1. KZI1+J, for all KeV(¥)-{l, J}.

2. P(R, 1) and P(R,J) are complete bipartite graphs.

Proof:

1. Since I, J € M(R), we have {l, J} is an edge of ¥(R,I). Let K be any non-maximal ideal vertex in
Y(R,I). Then there exists an ideal vertex L in W(R,I) such that ICK+L and L#K. Now we have the
following cases for L.:

Casel: If L=l, then IcK+L follows that IcK+Il. Since 1€ M(R), |+K=R#£l. Therefore K& I. Thus
KclJ. Similarly, we can verify that Kc I, but K& J when L=J.

Case2: If L#1,J, then there exists e M(R) such that Lcl. Since IcK+L, we have IcK+l. It follows
that K+1=R. Thus K¢l and KcJ. Similarly, if L contained properly in J we get K¢J and Kcl.

2. From Proposition 2.3, ¥(R,l) and ¥(R,J) are identical. It is enough to show that ¥(R,l) is a bi-
partite graph. If Kcl and K¢, for all KeV(¥)-{l,J}, then by Proposition2.7, J is adjacent to every
ideal vertex K in W(®,1) and we take V; ={I}JU{KeV(¥); K& J}, V,={J}. Similarly, if KcJ and K¢l
for all KeV(¥)-{l,J}, we can choose V;={1}, V,={J}U{KeV(¥); K& I}. In both cases, the graph is
star. Assume that some of ideal vertices T, MeV(¥)-{l, J} contained properly in | and J, respectively.
Now, we can take V;={13U{TeV(¥); T¢ J} and V,={J}U{MeV(¥); M¢ I}. Since T¢ ] and M¢ I,
IcT+M it means that {T, M} is an edge in ¥(R,1), in this case the graph is a complete bipartite graph.
Similarly, we can prove that ¥(R,J) is a complete bipartite graph.

Example2: Consider the ring of integers modulo 30, Z .

) (4)

3) 9)

Figure 2-The graph ¥(Zss, (3))

Obviously, W( Z s, (3)) is a complete bipartite graph.

Corollary 2.9: If M(R)={S, K}with S#K, then the girth of ¥(R,S)) is either equal to 4 or co.
Proof: The prove follows from Proposition 2.3 and Theorem?2.8.

Next, we shall give the converse of Theorem 2.8.

Proposition2.10: If W(R, S) is a bipartite graph, then | M(R) | <2
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Proof: Let W(R, S) be a bipartite graph with partite sets V;,and V,. Since every two distinct maximal
ideal vertex are adjacent, then each of V; and V, contains at most one maximal ideal vertex. Thus
| M(R) | <2.

The next main result shows the adjacency between maximal and non-maximal ideals of R in ¥(R, S).
Theorem?2.11: Every non- maximal ideal vertex in W(R,S) is adjacent to at least one maximal ideal
vertex.

Proof: Let KEM(R) be an ideal vertex in ¥(R, S). We have the following cases:

Casel: Let M(R)={l}. If S=I, then by Proposition2.4, W(R, S) is null graph. Suppose that S#I.
Clearly, Scl. Thus ScI+S. Let K#£S be any ideal vertex of W(R, S). If ScK, then by Lemma 2.2, K is
adjacent to | in W(R, S). Assume that S¢K. Since S €S+K and S contains properly in I, then I
adjacent to K in ¥(R, S).

Case2: Let | M(R) | > 2. From Proposition2.6, S is adjacent to all maximal ideal vertices. If S €M(R),
there exists HEM(R) such that ScH. It follows from S €S+K that ScH+K. Thus K is adjacent to H.
Now assume that SEM(R). Then we have two subcases for K and S:

Subcasel: Let K&S. Then S# S+ K. Thus ScK+S. Hence K is adjacent to S.

Subcase2: Let KcS. Since S €S+K and S is a maximal ideal then S+K=S. Thus we have =S¢ S+K.
That means, S and K are not adjacent ideal vertices in the graph ¥(R, S). Since K is an ideal vertex in
Y(R, S), then there exists Le V(¥) such that Sc K+L. Now, if LEM(R), then the proof is completed.
Otherwise, there exists WeM(R)contains properly L. It follows that SCK+LcK+W. Thus K is
adjacent to W in ¥(R, S).

Example3: The following graph shows that every non-maximal ideal vertex is adjacent to a maximal
ideal vertex.
(22) (14)

2) 3

(7)
(6)

Figure 3-The graph W(Zs,, (7))

The next result shows that (R, S) contains a star with the same vertex set of ¥(R, S).
Proposition2.12: If SEV(¥)- M(R), then M(R) contains an element that adjacent to all ideal vertices
of ¥(R, S). Moreover, ¥(R, S) and I(R) has the same cardinality.

Proof: Since SEM(R), there exists MEM(R) such that ScM Thus Scl+M, for any IEI(R)-{S,M}.
This means that, M is adjacent to all ideal vertices of ¥(R, S). Consequently, the order of the graph
P(R, S) is equal to the number of all non-trivial ideals of R.

In the next result we give the necessary and sufficient condition for an ideal of R to be ideal vertex

of ¥(R, S).

Theorem?2.13: Let S€ M(R). Then KeV(W) if and only if KZJ(R).

Proof: Let KeV(W) assume that KSJ(R). Then K+M=M, for every Me M(R). Therefore, S¢K+M for
every MEM(R). This means that K is not adjacent to every 1€ M(R). This contradicts Theorem2.11.
Therefore, KZJ(R).

Conversely, assume that KZJ(R), then there exists 1€ M(R) such that Ke&l. Since IcK+I, then
ScR=K+l. This means that KeV(P).

Example 4: Consider the ring Z s,.
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3)

@ (9)

(27)

Figure 4-The graph ¥(Z =4, (3))

Clearly, the ideals (6) and (18) are not vertices of W(Zs,, (3)), since (6), (18) SJ(R)=(6)

In the next result we find the upper bound of the girth of ¥(R,S).

Theorem2.14: If W(R, S) contains a cycle, then the girth of W(R,S)) is less than or equal to four.
Proof: If R is a local ring and ¥(R,S) is a null graph, then Sg¢M(R) by Proposition2.4. Let IEM(R)
and KeV(¥) such that K&S. Then by Remark 2.5, S is adjacent to K in W(R, S). Furthermore, we
have | adjacent to both S and K. Thus Cal, S, K, I is a cycle in (R, S). If | M(R) | >2, then by
Proposition2.3 we can easily find a cycle of length three. Suppose that M(R)={l, J} with I# J.
Obviously, I and J are adjacent ideal vertices because I+J= R. If either S=I or S=J, then by
Corollary2.9, the girth of ¥(R,S)) is equal to 4. Assume that neither S=I nor S=J. This yields that
SEZM(R). From Proposition2.6, S is adjacent to both | and J. Thus Cs: I, S, J, l is a cycle in (R, S).

In the following result, we find the value of girth of ¥(R,S).

Proposition2.15: If (R, S) contains an edge {I,J}such that I, JEM(R) and neither 1SJ nor I€J. Then
the girth of W(R, S) is equal to three.

Proof: Suppose that {l,J}is an edge in ¥(R, S) such that I, JEM(R) and neither ISJ nor ISJ. Then we
have I+J#I and I+J#]. Thus I, Jcl+J. Since |, JEM(R), then I+J£R. By Lemma 2.2, I+J is adjacent to
both I and J. Thus Ca: I, (I+J), J, l is a cycle in (R, S). Hence the girth of ¥(R, S) is equal to three.

3. Connectivity of ¥(R, S)

In this section we investigate the connectivity of ¥(R,S) and some basic concepts related to
connectivity.

We start this section with the following main result.

Theorem 3.1: The graph W(R, S) is connected with diam(¥(R, S))<3.

Proof: Let I, JEV(Y) with I#]. If I+J=R, then by Proposition2.3 | is adjacent to J in W(R, S). Assume
that [+J#R. We have the following cases for | and J:

Casel: If IEM(R) and JEM(R), then by Theorem2.11, there exists MEM(R) adjacentto J in  ¥(R,
S). If M=l, then Py I, J is a path in W(R, S). Suppose that M#L. From Proposition2.3, M is also
adjacent to I. Thus P,: J, M, | is a path in P(R, S). Similarly, we can find a path between | and J of
length at most two, when JEM(R) and 1€M(R).

Case 2: If I, JEM(R), then by Theorem2.11, there exist H, L eM(R) such that | and J are adjacent to H
and L respectively. If H=L, then we have a path P,: I, H, J in W(R, S). Suppose that H#L. By
Proposition2.3, H and L are adjacent ideal vertices in ¥(R, S). Thus Pa:l, H, L, Jis a path in ¥(R, S).
From each case, we have shown that the graph W(R, S) is connected and diam(¥(R,S))<3.

In the next result we show that the central vertex set of ¥(®,S) contains a maximal ideal of R.
Theorem3.2: There exists at least one maximal ideal of R which is a central vertex of W(R, S).
Proof: If R is a local ring and W(R, S)#0, then by Theorem2.12, W(R, S) contains a maximal ideal
which is a central vertex of ¥(R, S). Now, suppose that R is not a local ring and SEM(R). Again by
Theorem2.12, there exists 1€ M(R) such that | is adjacent to all ideal vertex of W(R, S). Thus rad(‘¥(R,
S))= e()=1. Thus 1 is a central vertex of W(R, S). Suppose that S € M(R). From
Proposition2.4, | M(R) | >1. We have the following cases:

Casel: If M(R)={S, I}with S#I, then by Theorem2.8, the graph W(R, S) is a bi-partite graph with
partite sets V; and V,. If ¥(R, S) is a star, then either S or I is a central vertex. Assume that P(R, S) is
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not a star. Then by the same theorem the partition V; and V, are V ={1}U{KeV(¥);K ¢ S}and
V,={S}U{KeV(¥); K & I}. Thus rad(¥(R,S))=2=e(l). This means that | is a central of ¥(R, S).
Case2: Suppose that | M(R) | >2. If V(?)=M(R), then the prove is done. Assume that Y(R, S) has
a non-maximal ideal vertex K. By Theorem 2.13, KZJ(R), then there exists IeM(R) which does not
contain K. Hence ScK+I=R. Clearly, if there exists MEM(R) such that Kc M, then S¢K+M=M. It
follows that W(R,S) is not complete. From Theorem 2.11 and Proposition 2.3, rad(¥(R,S))=¢e(P), for
some PEM(R) adjacent to K in ¥(R,S).

Example5: In the following graph, e((2))= rad(W(Zss (4)) and the maximal ideal (2) is a central
vertex of W(Z s, (4)). (2)

(28)

(14) 4)

(8) ()
Figure 5- The graph W(Z sg, (4))

In the next result we demonstrate that M(R) includes all cut vertices of ¥(R, S).
Theorem3.3: If | is a cut vertex of ¥(R, S), then | is a maximal ideal of R.
Proof: Suppose that | is a cut vertex of ¥(R, S). Then the graph P(R, S)-1 is disconnected. Assume
that 1€M(R). Let V; and V; be any two components of W(R, S)-1 with Ne V; and M€ V,. If M,
N&M(R), then by Theorem2.11 there exist K, Le M(R) such that {M, K} and {N, L} are edges in V;
and V, respectively. By Proposition 2.3, K and L are adjacent in  W(R, S). Suppose that MEM(R)
and NgM(R). Then there exist HEM(R) NV, such that N is adjacent to H in V,. If M, NEM(R) we
get the same result. In each case we conclude that there exists two adjacent vertices in different
component. This is impossible. Therefore IEM(R).
4. Completeness of (R, S)

In this section we explain the minimally of S and the completeness of ¥(R, S).

We start this section with the following results.
Theorem 4.1: If the graph ¥(R, S) is complete, then S is a minimal ideal of R.
Proof: Suppose that (R, S) is complete graph and S is not a minimal ideal. Then there is a non-trivial
ideal K of R such that KcS. It follows that S¢S+K. This means that S and K are not adjacent ideal
vertices. This contradicts that W(R, S) is a complete. Hence S is a minimal ideal of R.

The converse of Theorem4.1 may not be true, as the following example shows.
Example6: Consider the ring of integers modulo 54.

V/ (6)
/

Figure 6- The graph W( Z s4, (27))

(27)

Clearly, S=(27) is a minimal ideal, but W( Z =4,(27)) is not a complete graph.
The converse of Theorem4.1 will be true, if we determine the number of ideals of R.
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Proposition4.2: Suppose that R has four-non-trivial ideals I, J, K and S with M(R)={l, J} and
S=L.J#(0). Then the graph W(R, S) is complete if and only if S is a minimal ideal of R.

Proof: It is obvious from Theorem4.1 that S is a minimal ideal of R when W(R, S) is complete.
Conversely, let S be a minimal ideal of R. Since I and J are maximal ideals, then S is adjacent to I, J
and K by Theorem2.6. Since K&éM(R), K contained in at least one maximal ideal of R, let be I. Then
Scl+K and ScJ+K=R. This means that, both | and J are adjacent to K. Hence any two distinct ideal
vertices of I, J, K and S are adjacent in (R, S).

Example7: The graph W( Z ,(6)) is a complete graph.

)

(9) )

(6)

Figure 7- The graph ¥( Z 13, (6))

The next result investigate the completeness of ¥(R, S).
Theorem 4.3: If I(R) consists of the chain S= I, I,c...cl, =I, then ¥(R, S) is complete graph.
Proof: Obviously, | is adjacent to all JEI(R) in ¥(R, S).
Since S= I, l,c...cl=I, we have Scl+l;, for every i, j=1,2,...,n with i#j. Thus S is adjacent to I; for
i=2,...,n and every two distinct ideals of R are adjacent in P(R, S). Hence ¥(R, S) is a complete graph.
In the next result we find the chromatic number of ¥(R, S).
Theorem 4.4: If the ideals of R consists of the chain I, I,c... |I,.; cl, with n> 3, then the chromatic
number of ¥(R, Iy) is y(P(R, I)) =n — (m — 1), for every m=1, 2, ..., n-1.
Proof: If m=1, then the graph P(R, |, is complete and the formula is satisfied. Let m=2. Then I,c
li+1;, for all i, j=2,...,n with i=j. Thus there is a complete subgraph K., of ¥(R, 1,) whose vertices are
I, I5 ..., I,. So, we have n-1 different colours of K, ;. On the other hand I,c I, and I,& I+ I,. This
means that I, is not adjacent to I;. Thus I; and I, have the same colour. Hence x(¥(R, 1,))=n-1=n-(m-
1), when m=2. In general, if 1<m<n-1, then ¥(R, |,,) contains a complete subgraph whose vertices
are Iy, Ines,..., In1. Since IL,c l,c...c |, , every two of vertices Iy, I,,..., I, are not adjacent. So, the
vertices I, Ins1,..., Ina have n-m different colours but Iy, I,..., I, have the same colour. Thus x(¥(R,
Im)) =n-m+1=n — (m — 1).
Example8: Consider the following graphs:

(16) (2) (16)

8
(2) (8) (8)

(4)
(4)

Figure 8- The graph Y(Z 3, (4)) Figure 9- The graph W(Z 3,, (8))
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It is clear from Figure- that W(Z 3, ,(4)) is Ky 3, S0 we can choose two distinct colours for the sets {(2)}
and {(16), (8), (4)} respectively. Hence y(¥( Z 3,,(4)))=2.

From Figure-9, we can choose three distinct colours for the sets {(2)} and {(16), (8)} and {(4)}
respectively. thus y(W( Z 3,,(4)))=3
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