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Abstract  

     In recent years, land surface temperature (LST) has become an increasing 

concern because of the rise in urban temperatures and the accompanying 

microclimatic warming. The utilization of artificial intelligence models to predict 

variations in LST is highly beneficial for assessing and forecasting the dynamic 

climatic changes occurring worldwide. However, the prediction of LST is a difficult 

task because slight errors in its short-term forecasts can accumulate to become 

significant errors over longer periods of time. In this paper, a hybrid model that 

utilizes a bi-directional long short-term memory (BiLSTM) framework is presented 

for improving the accuracy of long-term LST prediction. The goal is to forecast the 

future patterns of LST and their possible effects on the urban microclimate of 

Baghdad city. A high-resolution land cover and land use map for Baghdad City, as 

well as data collected from satellite photos, were used in this work to construct a 

surface temperature forecast model. Based on the data analysis, Baghdad 

experienced the greatest temperature rises from 2001 to 2018, where a fast 

staggering in LST occurred at >35°C in 2018 due to the net change in the Baghdad 

area, which was 12.8%. The prediction results show that the proposed BiLSTM 

model can significantly increase the accuracy of long-range weather forecasts for 

Baghdad. The results show that the mean-squared error of 0.53 and the correlation 

coefficient of 0.84 between the predicted and actual LST indicate good accuracy. 

Hence, the proposed model can be used to estimate future LSTs in Baghdad with 

low error. 
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 الخلاصة 
      ( الأرض  سطح  حرارة  درجة  أصبحت  الأخيرة،  السنوات  ارتفاع  LSTفي  بسبب  متزايد،  قلق  مصدر   )

درجات الحرارة في المناطق الحضرية وما يصاحب ذلك من ارتفاع درجة حرارة المناخ المحلي. يعد استعمال  
في   بالتغيرات  للتنبؤ  الاصطناعي  الذكاء  التي    LSTنماذج  الديناميكية  المناخية  التغيرات  لتقييم  للغاية  مفيدًا 

مهمة صعبة لأن الأخطاء الطفيفة في    LSTتحدث في جميع أنحاء العالم والتنبؤ بها. ومع ذلك، فإن التنبؤ بـ  
تنبؤاتها قصيرة المدى يمكن أن تتراكم لتصبح أخطاء كبيرة على فترات زمنية أطول. في هذا البحث، تم تقديم  

 ( الاتجاه  ثنائية  المدى  الذاكرة طويلة  إطار  يستعمل  تنبؤ  BiLSTMنموذج هجين  دقة  لتحسين   )LST    طويل
وتأثيراتها المحتملة على المناخ الحضري لمدينة بغداد. تم    LSTالمدى. الهدف هو التنبؤ بالأنماط المستقبلية لـ  

استعمال خريطة عالية الدقة للغطاء الأرضي واستعمال الأراضي لمدينة بغداد، بالإضافة إلى البيانات التي تم  
جمعها من صور الأقمار الصناعية، في هذا العمل لبناء نموذج للتنبؤ بدرجة حرارة السطح. بناءً على تحليل  

الحرارة من عام   أكبر ارتفاع في درجات  ، حيث حدث ارتفاع  2018إلى عام    2001البيانات، شهدت بغداد 
بسبب التغير الصافي في منطقة بغداد، والذي    2018درجة مئوية في عام    35عند أكثر من    LSTمذهل في  

نتائج التنبؤ أن نموذج  12.8بلغ   المقترح يمكن أن يزيد بشكل كبير من دقة التنبؤات    BiLSTM٪. أظهرت 
  LSTبين    0.84ومعامل الارتباط    0.53الجوية طويلة المدى لبغداد. أظهرت النتائج أن متوسط مربع الخطأ  

لتقدير   المقترح  النموذج  يمكن استخدام  يدل على دقة جيدة. وبالتالي،  المستقبلية    LSTsالمتوقع والفعلي مما 
 لبغداد مع خطأ منخفض.

 

1. Introduction 

     The measurement of LST using satellites has become an essential data source for research 

on modern climate change and the corresponding warming of the urban landscape. LST is 

closely linked to changes in the primary states of the Earth’s systems, including the amounts 

of water vapor in the air, water in the soil, evaporation, and freezing and thawing of the land 

surface [1]. Furthermore, LST is an essential tool for studying the biological and physical 

processes occurring on the Earth’s surface on both a global and regional scale. Variable 

changes in the Earth’s surface describe the main states of the Earth's systems, which are also 

closely linked to LST. As a result, LST is extensively used in various academic fields, 

including ecology, climate research, hydrology, environmental studies, and meteorology, as 

well as the agricultural industry to improve crop yields [2]. 

 

     Currently, three methods are used to calculate LSTs: measurements taken in the field or in 

situ [3], observations made by satellite [4], and model simulations. LSTs can be collected 

continuously using field and in situ observations, and these data are not easily impacted by the 

weather or other external influences. On the other hand, the utility of such data is severely 

limited since field stations are scattered in only a few locations [5]. The MERRA (Modern-

Era Retrospective Analysis for Research and Applications) dataset from the National Center 

for Environmental Prediction and the ERA-Interim18 dataset are two of the most common 

model re-analysis datasets that can provide global LSTs that are continuous in space and time. 

However, the numerical models typically output these re-analysis datasets with coarse 

resolutions, only approximating the surface property effects on LSTs. As a result, these 

numerical models cannot meet the requirements of several applications, which necessitate 

LST data with fine resolution. Therefore, satellite remote sensing technologies are becoming 

increasingly widespread for the purpose of observing LSTs across the globe at appropriate 

temporal and spatial resolutions [6]. 

     Several studies have successfully predicted the temperature from LST, but they face 

numerous challenges and limitations. Some studies utilized traditional techniques of time 

series analysis based on linear prediction. However, it is not very accurate, and it is essential 

to investigate non-linear time series techniques in order to make accurate predictions 

regarding LST. Machine learning techniques such as neural networks accomplish the 
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prediction of LST time series. Adding additional parameters can significantly influence an 

increase in accuracy. The introduction of new approaches and the investigation of deep 

learning techniques, which have recently gained popularity, have improved performance in 

recent years. However, there is an area to improve models by reducing the error, since even 

slight errors in their short-term forecasts can accumulate to become significant errors over 

longer periods of time. In order to address these issues, this research introduces a hybrid 

model that employs a bi-directional long short-term memory (BiLSTM) framework to 

enhance the precision of long-term LST prediction. 

     The remaining sections of this work are organized as follows: Section two includes a 

review of the related work. Section three provides a formal problem definition and 

background on the LSTM architecture. Section IV describes the proposed framework. Section 

five presents experimental data, followed by the conclusions in Section six. 

 

2. Related Works 

   To recover missing data in LSTs with remotely sensed datasets, numerous techniques have 

been devised and implemented, and each can be categorized as a method based on the 

following types of information:  

● Spatial [7]. 

● Multi-temporal [8]. 

● Spatiotemporal [9]. 

Invalid data can be recovered using cokriging interpolation algorithms, spline functions, 

inverse distance weighting, and pixel-disaggregating. The spatial reconstruction methods 

primarily use valid pixels surrounding the missing data pixel to restore the erroneous data 

[10]. These methods are simple to implement, functioning well in situations where the terrain 

is relatively uniform and the erroneous data is minimal. The main algorithms used to figure 

out what happened in the past are the longitudinal Fourier analysis method [15], the harmonic 

analysis method [11], the diurnal temperature cycle approach [13], the asymmetric Gaussian 

function fitting approach [14], and the temporal Fourier analysis method [11]. These 

techniques employ complementary temporal images for the desired regions at adjacent times 

to recover missing pixels. As previously noted, geostationary satellite LST data reconstruction 

typically uses the diurnal temperature cycle (DTC) method [16] to fully expose the diurnal 

shift in LSTs [17]. 

 

     While these time-domain approaches are effective when filling in missing LSTs, their 

usefulness decreases when the number of accurate data points is insufficient to generate the 

model parameters. Furthermore, identifying the appropriate model to describe the DTC can be 

challenging, as can acquiring the optimal solution using these methods [16]. Although the 

results obtained from the spatial and temporal information-based methods did not meet 

expectations, several approaches based on spatiotemporal data for LST reconstruction have 

been suggested. Liu et al. [18] provided a spatiotemporal reconstruction approach for the 

Feng Yun-2F (FY2F) LST missing data in their work. Experiments based on simulated and 

real data showed that the strategy has the potential to function well, with RMSE (root mean 

square error) staying under roughly 2°C in the majority of the situations. In similar research, 

Malamiri et al. [19] provided a gap-filling strategy for LST image time-series data (TSD). 

Their approach used data from surrounding time periods and other more distant time periods 

(such as multi-year datasets or calendar dates).  

However, none of these methods adequately consider spatial and temporal information 

concurrently. First and foremost, they require a sufficient number of data points in addition to 

a significant amount of human engagement. Second, if the area to be recreated is large, the 

procedures described above do not perform well. This is primarily because these algorithms 
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cannot understand the highly dynamic spatiotemporal interactions of LSTs when only a 

limited amount of information is available.  

     Convolutional neural networks (CNNs) have received increased use in the processing of 

remote sensing data during the past few years. They can automatically learn the inherent 

complicated correlations between different types of data [20]. Malek et al. [21] and Wu et al. 

[22] used a contextualized autoencoder CNN architecture to fix cloud-contaminated 

information in remote sensing images at both the pixel and patch levels. Mustafa et al. (2020) 

presented a model using polynomial fitting curve analysis to predict the future variation in 

land surface temperatures at Freetown. The study employed two land cover indices, namely 

MNDWI and UI, and applied a multi-regression equation to forecast future land surface 

temperatures (LST). The Urban Index (UI) and Modified Normalized Difference Water Index 

(MNDWI) accurately predicted surface temperature, with a mean relative rate percentage of 

5.88% and 4.41%, respectively. The root mean square error for UI and MNDWI were 1.63 ˚C 

and 1.31 ˚C, respectively. The ratio of RMSE to standard deviation (RMSE/std) was 0.5 for 

2010 and 0.44 for 2018. The process of urban expansion will lead to an increase in surface 

temperatures, particularly in the western metropolitan area of Freetown. Nimish and Bharath 

(2020) presented a method-based artificial neural network (ANN) and geographic technology 

to predict LST. The LST data from 1991 to 2000, 2009, and 2017 were used to determine the 

pattern and then figure out how to predict LST. The results show that as surface temperatures 

rise, there is a link between more concrete areas and fewer open and vegetated areas. The 

predicting equation that was made from the model is pretty good at making predictions. The 

study's results showed that ANN models can accurately predict surface temperature by taking 

into account a wide range of factors in a complex and changing physical world. Al-Faisal et 

al. (2021), Based on projected land surface temperatures (LSTs), it is expected that 

temperatures in the highest temperature category (over 35 °C) will rise by 13% and 20% 

during the summer and winter seasons, respectively, between 2020 and 2030. Every map was 

thoroughly analyzed to ensure accuracy and exhibited a significant level of estimation, as 

indicated by kappa values exceeding 80%. Ghani et al. (2821) present information for future 

urban planners by looking at how rising temperatures will affect the comfort of city dwellers. 

We used data from Landsat 7 ETM in addition to Landsat 8 OLI-TIRS to look at land cover 

and LST in the Kuta Selatan Sub-district over time and space for 2006, 2015, and 2020, as 

well as their forecasts for 2033, by employing the CA-Markov model. The findings showed 

that urban areas and LST increased significantly in Jimbaran, Benoa, and Tanjung Benoa in 

2033. The mean LST in the Kuta Selatan Sub-district would also rise, from 25.63°C in 2006 

to 33.07°C in 2033. LST is higher in built-up places and bare soil than in vegetation and 

bodies of water. So, plants and sources of water are very important for reducing LST. These 

findings show that LST in Kuta Selatan Sub-district will be warmer in the future than it is 

now. Similarly, in 2021, Wang et al. [23] suggested a single deep CNN to retrieve missing 

data in imagery from remote sensing through three different conditions (medium, high and 

low-spatial-resolution critical in thermal infrared (TIR) remote sensing datasets). Both 

approaches had good results when the missing areas were represented as neighborhoods 

sufficiently typical of the whole. In addition, in contrast to LST, the surface reflectance, also 

known as the digital number (DN), shifts subtly during the course of passing time. As a 

consequence, these models are not appropriate for reconstructing LSTs with a high level of 

spatiotemporal dynamics for vast missing sections. Ahmad et al. (2022) proposed a semi-

automated classification approach to estimate land surface temperature (LST) from the years 

2000 to 2020. Subsequently, the module of cellular automata-artificial neural networks (CA-

ANN) was used to forecast forthcoming patterns of land surface temperature (LST) for the 

years 2030 and 2040, respectively. Our analysis indicates that the land surface temperature in 

Lahore has grown by an average of 2.8 °C over the past two decades, namely from 37.25 °C 

to 40.10 °C between 2000 and 2020. In addition, according to CA-ANN models, the land 
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surface temperature is expected to rise by 2.2 °C by 2040. By that time, the average land 

surface temperature is forecast to climb from 40.1 °C to 42.31 °C. The CA-ANN model was 

verified for future land surface temperature (LST) simulations. The validation resulted in an 

overall Kappa value of 0.82 and an accuracy rate of 86.2% for the years 2030 and 2040. The 

model used modules to evaluate land-use change. The study further suggests that land surface 

temperature plays a crucial role in driving environmental change. Li and Zheng (2023) 

introduced a technology that can forecast urban development plans and generate related heat 

maps of land surface temperature (LST). They have successfully developed and evaluated a 

Generative Adversarial Network (GAN) to anticipate city plans and the related LST heat 

maps. They selected New York City as a case study, utilizing light detection in addition to 

ranging (LiDAR) data, land surface temperature data, and other pertinent data to construct a 

training set of seven hundred image pairs. This training set was then used to train the model 

for predicting the distribution of land surface temperature (LST). By using untrained pairings 

and the test set, the approach is capable of rapidly and precisely generating LST maps when 

provided with city designs as input. Following the accuracy analysis, various scenarios are 

simulated to evaluate the model's ability to forecast the environmental effects of plan 

adjustments on land surface temperature. The scenario simulation showcases the possibilities 

of using this model to provide valuable insights to environmental designers regarding their 

detailed work. 

 

3. Study Region and Data 

3.1. Study Region 

     This study focuses on Baghdad, the capital and largest city of Iraq. It is situated in the 

middle of Iraq between 33° 18' 46.0980" North and 44° 21' 41.3568" East (Figure 1A). The 

study area encompasses roughly 5098 km2 (Figure 1B) [24], with an average elevation of 32.1 

meters above sea level. The climate of Baghdad is a semiarid and subtropical desert 

characterized by warm summers and cold winters [25], [26].  

 

 
(A) 

 
(B) 

Figure 1: (A) Study area within Iraq’s national border, where the red outline indicates the 

study area’s boundary within Baghdad, and (B) a satellite image’s base map [24] 
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3.2. Data 

     Data were collected from the Landsat satellites, which include Landsat 8 and Thematic 

Mapper, at the site of the United States Geological Survey. These photos from 1984–2018 

were obtained for July and August (through the summers of every year to eliminate seasonal 

bias between research years) over the study area. The spatial resolution is 100 m to 30 mm 

[27]. 

 

4. Methodology 

4.1 Dataset 

     The Landsat set of satellites has consistently produced space-based remote sensing data 

with modest resolution for over forty years. Starting on July 23, 1972, a total of 8 series of 

Landsat satellites have been launched specifically for the purpose of Earth Observation (EO). 

Landsat 6 had been the sole satellite that did not successfully attain orbit. Over the past forty 

years, the remaining satellites have been a valuable asset for studying and applying world 

change in several fields, such as agriculture, cartography, geophysics, forestry, planning for 

the region, surveillance, and education. For the purpose of retrieving land surface temperature 

(LST), a total of fifteen pictures from each Landsat series (5, 7, and 8) were used in this 

investigation. The Landsat data acquisition spans from 2000 until 2019, and only photos taken 

under clear-sky conditions were taken into account. The chosen dates guarantee the 

availability of in-situ data and an equal number of photos for all three Landsat missions. 

Landsat data is available for free download from the USGS 'Earth Explorer' website. 

With a spatial resolution of 30 meters, Landsat 5 TM and Landsat 7 ETM+ feature six 

reflective bands, including visible, near-IR, and short-wavelength infrared. Additionally, they 

have one band in the thermal infrared (TIR) area, specifically Band 6. The thermal band has 

an inherent spatial resolution of 120 meters and 60 meters for TM and ETM+ sensors, 

respectively. However, the USGS achieves a higher resolution of 30 m by applying cubic 

convolution resampling. The Landsat 8 OLI sensor consists of nine reflecting bands that 

provide a spatial resolution of 30 meters. Additionally, the Landsat 8 TIRS sensor includes 

two bands specifically designed for thermal infrared radiation, known as Band 10 and Band 

11. The USGS resampled and released the thermal bands at a higher resolution of 30 meters, 

despite their original natural spatial resolution of 100 meters. 

 

4.2. LST Forecasting Method 

     The normalized difference vegetation index 𝑁𝐷𝑉𝐼 can be derived from the spectral 

reflectance of Landsat imagery [28] [29]: 

                                                           𝑁𝐷𝑉𝐼  =
(𝑁𝐼𝑅−𝑅𝑟 )

(𝑁𝐼𝑅+𝑅𝑟 )
,                                                           (1) 

 

where 𝑁𝐼𝑅 is the near-infrared (N-IR) spectral reflectance, where the reflectance being at the 

top of the canopy is most prominent, and 𝑅𝑟 is the reflectance in the red section of the 

spectrum, where chlorophyll absorbs a significant amount of light. 

   The normalized difference built-up index NDBI can be derived from the shortwave-infrared 

(SW-IR) spectral reflectance [30]: 

 

                                                          𝑁𝐷𝐵𝐼  =  
(𝑆𝐼𝑅−𝑅𝑟)

(𝑆𝐼𝑅+𝑅𝑟)
,                                                            (2) 

 

where the properties of spectral reflectance from the N-IR toward the SW-IR make 

differentiating between the built-up areas and the desolate land and other aspects of the terrain 

possible. The values of 𝑁𝐷𝐵𝐼 range from −1 to +1, with 0 representing woodland and 

agriculture, −1 representing water bodies, and +1 representing built-up pixel coverage in the 
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research region. The built-up regions quantified from the NDBI pictures were utilized in this 

study to evaluate the impact urbanization has on the spatial variability of LST in the area of 

the study. 

 

     The data from Landsat were changed such that they correspond to the spectral radiance of 

the top-of-atmosphere (TOA) 𝐿𝜆 (W/(m2·srad·μm), defined as [31]: 

                                                           𝐿𝜆  =  𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿,                                                      (3) 

 

where 𝑄𝑐𝑎𝑙 is the pixel DN and 𝑀𝐿and 𝐴𝐿 represent band-specific multiplicative and additive 

rescaling factors, respectively.  

 

     Brightness temperature (TB) in Kelvin is a measurement of thermal radiation that moves 

vertically toward a satellite from the TOA [32]: 

                                                            𝑇𝐵 =  
𝐾1

𝑙𝑛 (
𝐾2
𝐿𝜆

+1)
,                                                            (4) 

where 𝐾1 and 𝐾2 are constants (W/m). 

 

  The temperature is then converted to Celsius by subtracting 273.15 from the original reading 

[32], [33]: 

                                                          𝑇𝐵 =  
𝐾2

𝑙𝑛 (
𝐾2
𝐿𝜆

+1)
− 273.15,                                               (5) 

      

The LST maps in years 1985, 2001, and 2018 are derived from Landsat 5 and 8 images in a 

respective year and can be calculated from: 

                                                          𝐿𝑆𝑇 =  
𝑇𝐵

1+(𝜆(𝑇𝐵)×𝑙𝑛 (𝜀/𝜌))
,                                               (6) 

 

where LST is in units of Celsius, 𝑇𝐵 is the brightness temperature at-sensor (°C), ε is the 

emissivity of the land surface, and λ (11.5 μm) is the wavelength of the emitted radiance 𝜌, 

which is equal to the following: 

                                                      𝜌 =  𝑃
𝑐

𝛿
=  1.438 × 10−2 m·K,                                        (7) 

where 𝑃 is Planck’s constant, 𝛿 is the Stefan–Boltzmann constant, and c is the light velocity. 

 

4.3. Classification 

     This section divides the study area into zones that share similar LST characteristics. To 

forecast the LSTs for the time steps, a long short-term memory (LSTM)-based deep neural 

network is used. Figure 2 shows the LSTM architecture. The study can utilize LSTM as an 

acute model of deep learning due to its impressive learning potential. The benefit of using 

LSTM is that it can solve fading error backflow because of its default behaviors in capturing 

long-term dependence, and it prevents the practical loss of tiny time lags. 

 

     Allow sequence data in the notation 𝑥 =  (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡) as an input to estimate the 

output state using ℎ =  (ℎ1, ℎ2, ℎ3, … , ℎ𝑡) and cell state 𝑐 =  (𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑡), respectively. 

The initial value in a sequence 𝑥 (𝑥1) in implemented in the first LSTM unit, resulting in the 

initial value of the updated cell state 𝑐1 and the hidden state ℎ1.  
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Figure 2: LSTM architecture 

 

     From time step t, the input vector 𝑥𝑡 and output vector of the previous step ℎ𝑡−1 pass 

through the memory cells. After adjusting the three gates, the LSTM outputs ℎ𝑡 and updates 

the cell state 𝑐𝑡. The terms 𝑊𝑓 , 𝑊𝑐,  𝑊𝑖, 𝑎𝑛𝑑 𝑊𝑜 are weight matrices in the Equations (8–10, 

12). 

 

   At time step t, the memory cells are exposed to the input vector 𝑥𝑡 and the output vector 

ℎ𝑡−1. The LSTM changes the cell state once the three gates are adjusted and then produces ℎ𝑡, 

using the following steps: 

1. The LSTM network ascertains the specific information to be discarded from the 

preceding cell state, denoted as 𝑐𝑡−1. The forget gate unit calculates the input vector 𝑥𝑡 and 

the outputs ℎ𝑡−1 of the memory cells from the previous step, along with the forget gate bias bf 

[34]: 

                                                 𝑓𝑡  =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑓),                                      (8) 

 

     The range of the function 𝑓𝑡  is adjusted by the application of the sigmoid function σ, which 

restricts the output values between 0 (indicating total removal) and 1 (indicating complete 

retention). 

2. The LSTM model ascertains the content to be stored as new information within the 

cell state, denoted as 𝑐𝑡. This involves the incorporation of an additional candidate value 𝑐�̂� 

into the cell state, as well as the process of updating information within the cell state [34]: 

                                                         𝑐�̂�  =  𝑡𝑎𝑛ℎ(𝑊𝑐[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑐),                                     (9) 

                                                         𝑖𝑡  =  𝜎(𝑊𝑖[𝑥𝑡, ℎ𝑡−1] + 𝑏𝑖),                                           (10) 

3. The cell state is updated using the output values obtained from the previous stage: 

                                                           𝑐𝑡  =  𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑐�̂�),                                                   (11) 

4. The LSTM model determines the output ℎ𝑡: 

                                                     𝑜𝑡  =  𝜎(𝑊𝑜 [𝑥𝑡, ℎ𝑡−1] + 𝑏𝑜),                                            (12) 

                                                     ℎ𝑡  =  𝑜𝑡𝑡𝑎𝑛ℎ (𝑐𝑡),                                                            (13) 

 

     In addition to LSTM, the activation function type (leaky ReLUs) is utilized, and the 

regularization of dropouts is introduced to minimize overfitting. Both of these features are 

applied in conjunction with dropout regularization. As a candidate for the optimization 

function, the adaptive moment estimate is selected. Many different hyperparameters are 

involved in the learning process associated with deep neural networks, involving several 

factors such as training iterations, momentum, dropout ratio, initial learning rate, the number 

of layers, the number of hidden neurons, and the learning rate schedule.  
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Figure 3: Proposed LSTM model 

    

     In this research, we present a bi-directional LSTM (BiLSTM) model to overcome the 

individual shortcomings of LSTM and take full advantage of its respective features. Figure 4 

displays the typical BiLSTM architecture. We created our BiLSTM model specifically using 

BiLSTM layers. This model consists of nine layers. Every other layer is a dropout layer, and 

to prevent the model from becoming overly specific, the model removes 20% of the random 

nodes from the layer below. It has three additional layers of simple LSTM on top of the one 

layer of BiLSTM it has. We start our model with the first layer of BiLSTM, add three layers 

of BiLSTM, and then insert dropout layers between each stage. 

 

     The problem of overfitting occurs when a model’s parameters become excessively fixed 

based on the training set and the validation datasets. The model performs extremely well on 

the training datasets, but not as well on the test datasets or in predicting. To address this issue, 

we include dropout layers after each successive layer.  

 

     Cross-validation, feature selection, and regularization are a few of the potential alternatives 

that may help circumvent the overfitting phenomenon. Because we train data for several types 

by partitioning them into portions, cross-validation is computationally intensive and time-

consuming. When a limited number of training samples are available but a large number of 

features are available, the feature selection approach should be used. To prevent the model 

from becoming overly specific, only the most critical features are chosen for its training using 

feature selection methods, such as computing the correlation coefficient and selecting 𝐾𝐵𝑒𝑠𝑡.  

 

     The process of adding a penalty to the error function is referred to as regularization, which 

allows the coefficients to be modified in a way that prevents the predictions from taking on 

excessively high or low values. In this particular scenario, we use dropout layer approaches 

because the number of features is insufficient for the feature selection method to be useful, 

and cross-validation requires significant processing resources. Regularization is not helpful, 

as we have already removed the outliers. Therefore, even if we do not utilize these 

procedures, the outcomes remain relatively unchanged. 

L𝑺𝑻𝑨𝒕−𝒙+𝟏 L𝑺𝑻𝑨𝒕−𝟏 L𝑺𝑻𝑨𝒕 
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Figure 4: Typical BiLSTM architecture 

 

5. Results and Discussion 

5.1. Historical LST Analysis 

First, we analyzed both predicted and actual LST values of satellite images using our 

proposed color segment and percentage calculations, as shown in Figure 5. 

 

 
(a) 

 
(b) 

Figure 5: LST color variation analysis for Baghdad for 1984. (a) Actual LST and (b) 

predicted LST [27] 

 

     From Figure 5, both images are similar, where we extracted the area (in black/white) 

outside the Baghdad border, which is about 46.3% of the total image. Using the mean-squared 

error (MSE) as well as the correlation coefficient R, we can assess the qualitative and 

quantitative accuracy of the calculated LST plot in relation to the observation. The spread of 

plans seen in 1984 and those predicted for 2018 exhibit very good agreement. In 2018, the 

mean error is small, while the R and MSE between the predicted and actual LST are 0.84 and 

0.53, respectively, showing a significant correlation between the two. Figure 6 shows the 

estimated LSTs for 1984, 2001, and 2018, together with the predicted LSTs for 2030–2050. 
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(a) (b) (c) 

Figure 6: LST variation in Baghdad for three periods of time: (a) 1984, (b) 2001, and (c) 

2018 [27] 

    

     LST patterns were forecasted using three separate Landsat scenes from the corresponding 

years. The Figure 6 color scheme represents the temperature gradient from colder to warmer 

conditions in the research area, with green and red indicating lower and higher temperatures, 

respectively.  

 

     Based on the data, it appears that the northeast (NE) and southeast (SE) have experienced 

the greatest temperature rises from 2001 to 2018. In 1984, the low temperature covered about 

90% of the Baghdad area, in which the LST zones were <15°C covered 22.1%, <20°C 

covered 15.5%, <25°C covered 23.4%, <35°C covered 25.8%, and >35°C covered the 

smallest area. In 2018, a fast-staggering LST occurred at >35°C due to the net change in the 

Baghdad area, which was 12.8% over the previous year, 2001, as presented in Table 1 and 

Figure 7. 

 

Table 1: LST distribution (% area of Baghdad) for 1984, 2001, and 2018 [27] 
LST 

Year 
<15°C <20°C <25°C <35°C >35°C 

1984 22.1 15.5 23.4 25.8 13.2 

2001 19.3 6.9 18.3 26 29.5 

2022 7.5 6.4 14.9 28.9 42.3 

 

 
Figure 7: Distribution of LST in Baghdad in 1984, 2001, and 2018 [27] 
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5.2. Analysis of Predicted LST for Future 

   The predicted LST of Baghdad changes significantly from 2030 to 2050, as shown in Figure 

8.  

(a) (b) (c) 

Figure 8: Predicted LST for Baghdad: (a) 2030, (b) 2040, and (c) 2050 

 

     To detect potential implications of climate change and ecosystems in the region, accurate 

predictions of LST patterns are essential. By examining historical LST trends, the proposed 

model could provide predictions for 2030, 2040, and 2250. Figure 9 and Table 2 display the 

prediction results. 

 

Table 2: Expected LST distribution (% area of Baghdad) for 2030, 2040, and 2050 
LST 

Years 
<25°C <30°C <35°C <40°C >40°C 

2030 20.4 10.1 16 15.3 38.2 

2040 17.3 9.8 16.7 16.5 39.7 

2050 7.5 6.4 22.4 11.8 48.1 

 
Figure 9: Distribution degree of LST in Baghdad from 2030 to 2050 

 

   From Figure 9 and Table 2, we determine that the average LST of Baghdad from 2030 to 

2050 ranges from 25°C to 48°C, indicating that the average LST in the future will be higher 

than in the past by 2.83°C. 
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6. Conclusion  

     The precise estimation of LST is critical in thermal infrared (TIR) remote sensing. Based 

on the thermal radiance transmission equation, the results recorded in each channel are 

influenced by emissivity, atmospheric factors, and LST. The present study employed the 

BiLSTM model to forecast LST by including LST data from preceding years and elevation 

input parameters into the LSTM model. When compared to other gold-standard models, our A 

deep learning model-based Bi-LSTM model shows promising validation results. The MSE 

and the correlation coefficient R between the predicted and actual LST of 0.84 and 0.53, 

respectively, indicate good accuracy and a significant correlation between the observed and 

the anticipated LST. The prediction results for the average LST of Baghdad from 2030 to 

2050 show a range from 25°C to 48°C, indicating that the average LST in the future will be 

higher than 20 years prior by 2.83°C. Through an application-based deep learning approach, 

our research on LST prediction can inform government authorities and urban planners in Iraq 

to take protective measures for the country’s natural resources. In the future, we hope to 

classify hyperspectral data using real-time scenarios and use the bands from hyperspectral 

data to derive the temperature levels associated with each pixel.  
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