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Abstract

Mathematics and the applied sciences both heavily rely on fixed point (FP)
theory. Additionally, this theory has several applications in integral equations and
differential equations to guarantee the solutions' existence and unigqueness. FP
theory relies mainly on the Banach contraction principle. Since this idea first
appeared, it has gained a lot of attention and there has been a lot of development in
this field. In this paper, the concept of generalized Kannan-type(GKJT) mapping is
presented in intuitionistic fuzzy metric space(IFM space), and the FP theory is
proven. The results contain extensions of FP theory in IFM-space which include the
Caccioppoli FP theorem. Additionally, an instance is provided to illustrate the
practical significance of the research's results

Keywords: Intuitionistic fuzzy metric, Fixed point theorem, Cauchy sequence,
Generalized Kannan-type mappings.
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1. Introduction

Functional analysis is a theoretical field of mathematics that emerged from classical
analysis. Currently, functional analytic techniques and conclusions have significant
importance in many areas of mathematics and their practical implementations see [1-8]
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A new age of researching FP theory in fuzzy metric spaces (FMS) has begun with the
introduction of the idea of these spaces. Numerous authors have developed numerous
approaches for FMS, including [9-11]. For instance, Kramosil and Michalek [12] generalized
Menger's notion of probabilistic metric spaces to the fuzzy situation in 1975 to propose the
notion of FMS. On the other hand, the idea of an intuitionistic fuzzy set was first presented
and investigated by Atanassov in 1983. Jin Han Park [13] proposes the definition of
IFMspace utilizing the concepts of intuitionistic fuzzy sets. In this space, he also developed a
Hausdorff topology and demonstrates how any metric produces an intuitionistic fuzzy metric.
Numerous mathematicians, including [14-17], etc., developed several FP theories in the IFM
space.

In the present work, FP theory for a GKXT mapping has proven, and Caccioppoli's FP is
extended in IFM space.

The paper has the following structure. Following the preliminary content, in Section 3 FP
theory for a GKT mapping has proven on IFM space. After that Caccioppoli's FP is extended
in IFM space. The fuzzy Caccioppoli FP theory is supported by the presented example.

2. Preliminaries
This section includes the terms and results that will be used throughout this paper.
Definition 2.1:[18] If a binary operation ®: [0,1] X [0,1] — [0, 1] fulfills the following
conditions for all s,c,d,e € [0, 1], then it is called a t-norm:
M1 ®c=c,
(ilc®e =e®ec,
(iifc®@®e) =(c®A) Be,
(iviifc<eandd <sthenc®d<e®s.
Definition 2.2:[18] If a binary operation ©: [0,1] % [0,1] — [0, 1] fulfills the following
conditions for all s,c,d,e € [0,1], then it is called a t-conorm:
M0 Oc=c,
ic®e =eOec,
([i)cO@Oe)=(cOd e,
(ivyifc<eandd <sthencOd<e(®s.

Definition 2.3:[19] An operation ®: [[,[0,1] - [0,1] is continuous t-norm of the n™
order if ([0,1],®) is commutative topological monoid with
c1®a®.®W<d ®d, ®...d,

whenever ¢; < d; foreach ¢;,d; € [0,1];i = 1,2,...,n.
Definition 2.4:[13] A 5-tuple (L, i, m,®,0), is termed as IFM space if @i, m are fuzzy sets
on L? x (0, ) fulfill the requirements:
1) mxy,7) +ix,y,7») <1;Vr > 0and x,y € L;
(2) m(x,y,0) = 0;
(3) m(x,y,7) =1 ifandonly if x = y;
@) mxy,r) =m(y,x7);
O)mxy,r) ®M(y,z8) <M(xz7r +s8) Vr,8 > 0 andz € L;
(6) M(x,y,.): (0,0) - [0,1];
(7) lim m(x,y,7)=1;

7"—00
(8) fi(x,y,0) = 1;
(fi,) fi(x,y,7) =0ifandonly ifx = y;
(f3) Axy,7) O1(y,3,8) =0(x3,7 +38);
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(fiy) fi(x,¥,.): (0,0) — [0,1] is right continuous;
(fi5) lim fi(x,y,7)=0.
7 —00
where L is an arbitrary set , ® is a continuous t-norm and © is a continuous t-conorm.

Definition 2.5:[13] Let (L, i, m,®,®) be an IFM space. Then
(1) {x,,} is called convergent to x € L if lim 7i(x,, x7)=1and lim fi(x,, x,7) =0 for
,n—>00 ,N—>00

all » > 0.

(2) {x,} is called Cauchy if lim M(x, Xn,7) =1and lim (X, X, 7) =0 for all
m,n—oo m,n—oo

7 > 0.

3. Main result

In this part, FP theorem for a GKJ mapping is proven in IFM space. After that
Caccioppoli's FP is extended in IFM space.
At first, some notations are introduced which are essential for this current work.

Notation1: Let R, stand for the collection of each function 8:[0,1] x [0,1] — [0, 1], having
the properties:

1) @ is increasing and continuous,

2) 6(d,d)>dforall0 < d < 1,

3) 6(1,1) =1; 6(0,0) = 0.

Notation2: Let R, stand for the collection of each function 8:[0,1] x [0,1] — [0, 1], that
possess the following properties:

1) 8 is decreasing and continuous,

2) 6(d,d)<d where0 < d < 1,

3) 6(1,1)=1; 6(0,0) = 0.

Definition 3.1: Let (L,#,#,®,0) be an IFM space and letd; € R, and 8, € R,. A
mapping f: L — L is termed as generalized Kannan-type mapping(briefly GKT mapping) if
forevery x,y € L

- ~ - 7 - 8
M, F@),4) > 01 (7 (% £00, =), 7 (v, 65D 7)) 1
and
(), 6, 8) < 6, (1 (xE,5),7(y 1(),3) ) )
where 7,8 > 0anda, 4 > Owitht = »+ sand0 <a+ & < 1.
Before establishing the main theorem, it is necessary to show the following lemma
Lemma 3.2: Let (L,v,mM,®,©) be IFM space and f be a GKT self-map on L. Let
gl_)rg m(x,y,£ ) =1 and }1_{2) i(x,y,£)=0 for all x,y € L andx, = f(x,-,)be an
iterative sequence generated by x,. € L foralln € Z*,then
lim A (Xn41, X0, 7)) = 1
and
lm A(Xp11, X, ) = 0
forallt > 0.

Proof: Let x,- € L, X, = f(x,—1) and#,8,a, and & be positive real numbers with 0 <
a+ & < 1.Fromtheinequality (1), fort = » + s:
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MXns1, X £ ) = M(E(Xp) , F(Xp—1) , 1)
> 0, (7 (% £, =), 7 (Xt F ), 5))
= él (m (Xn» Xn+1'£) , (X.n—1» Xns %))
=0, (7 (Xnr1 X =), 7 (%0 X1, ) )
and

ﬁ(Xn+1i Xns 1 ) = ﬁ(ﬂ:(x‘n) ’ ﬁ:(Xm—l) ’ t )
<0, (i (Xn» ff(xn),g) 1 (xn-l. ﬁ:(Xn—l):%))

~ ~ 7\ ~ 8
= 62 (Il (Xni Xn+1 ;) , (Xn—lﬂ Xn» Z))
—-N =~ r N s
_92 (Il (Xn+1i X Z) 1 (X‘I‘U Xn-1 Z) )

forall £ > 0, putting » = %,s = %and ¢ = a + & in(3), obtain:
~ A ~ t ~ t
m(Xn+1, Xns 1 ) 2 91 ((m (X'n+11 Xn» Z) ,m (X'n' Xn—1 Z))

and
A1, Xt ) < 0, ((ﬁ (Roe 130 5) 8 (s X, f))

Now to demonstrate that the following inequality is valid:

~ T ~ T ~ t ~ t
m (Xn+1! Xn ;) =m (an Xn-1 ;) and (X‘n+1' Xn Z) =n (an Xn-1, Z)
forall # > 0; n € Z*.
The proof will be done by contradiction, assuming that there is # > 0 with

~ t ~ t ~ t ~ t
m (Xn+1: Xns ;) <m (X‘n' Xn—1 Z) and fi (X‘n+1: Xns ;) > n (Xn' Xn—1 Z) '
By properties of 8, and the inequality (5), obtain:

~ ~ o T ~ 4
m(Xn+1' Xns t) = 91 (m (X‘n+1' Xno ;) M (X‘n' Xn—1 Z))
~ 4 ~ 4
= 0, (m (Xn+1' Xn, ;) ,m (Xn+1' Xn» E))
~ [4
>m (Xn+1,xn, E)

> ﬁan+1, Xn» t)
and by properties of 6, and the inequality (5), get:

~ ~ T\ -~ t
n(Xn+11 Xn: t) S 92 (n (X.n+1; X.n; Z) pe! (X.n; X.n—l: Z))
~ t\ ~ t
< 02 (1’1 (Xn+1' Xn» E) » (Xn+11 Xn z))

~ t
<n (Xn+1ﬂxn' E)
< Xy 41, Xp £)-

©)

(4)

(5)

(6)

Thus, a contradiction exists. Therefore, inequalities (5) and (6) imply that the required

inequality is as follows:

"y ~ t - - t
MXpy1, X, ) = M (Xn,Xn_l,E) and fi(X,,41, X, ) < n(xn,xn_l,z)
for £ > 0;n € Z7.

When applying the process of induction to the inequality stated above, observe that

_ "y t o - t
MXpy1, X, ) = M (Xl,XO,C—n) and (X, 41, X, £) = 11 (Xl,xo,c—n) n € Z*
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Additional assumption ~ on  intuitionistic ~ fuzzy = metric  implies  that
lim m(xl,xo, ) =1land lim @i (xl,xo,cin) = 0. Therefore, by evaluating the limit as n
n—-oo n—-oo

tends to infinity, it is possible to derive that

lim M(X,41,Xp,%£) =1  and lim fi(x,,41,X,, %) = 0.
n—-oco n-—-oo

The results of this study demonstrate in the following.

Theorem 3.3: Let (L, i, m,®,) be a complete IFM space, such that

(1) ® is the 3-rd order £ —norm(minimum) and © is the 3-rd order t-conorm (maximum)

(i) Eim mx,y,£t) =1 and tlim i(x,y,£) =0 for all X,y € L,
(@iii) f: L - L be a GKT mapping.

Then f possesses a unique FP.

Proof: Consider x- € L, X, = f(x,_;) that was generated in the previous lemma. In order to
establish that {x,} is a Cauchy. Assuming it is not, hence by definition, 3 e where 0 < e <
1 for which find £ > 0 and subsequences {xm, } and {xn,} of {x,} with ng, >

mq, >k for all positive integers k such that m(xm(k),xn(k),t) <1l-c¢ and
n (Xm(k),xn(k),t) = &

So, forallr,s > Owitht = r + sanda,b > Owith0 < a + b < 1, obtain:
l-ezm (Xm(k)’ Xn t)
(E(Xm(m DB Gngy )%
(m

N——"

~ r S
=01 (thk)—ﬂﬁ(Xm(k) 1),5),m(xn(k) 1'E(Xn<k>—1)'ﬁ))
2 6, (m (Xm(k) 1 Xme; ),m(xn(k) 1 Xngo; b))
Therefore,
r ~
1—¢>0,( (xm(k) v Xm g ;),m(xn(k) v Xnge b)) where 6; € R, (7)
and
€ < (xm(k),xn(k),’f)

A (F kg, FCng,)
- S
< 02 (n (Xm(k) 1’ ﬂ:(Xm(k) 1 n (X'l’l(k) 1’ ﬂ:(XTl(k)_l)' E))

= 92( (Xm(k) 1 Xmgg? ) (X"(k) v Xngo; b))
Therefore,

~ r
e < 6,(h (xm(k)_l,xm(k),;),n (Xn(k) v Xnge b)) where 8, € R,. (8)

By Lemma 3.2, forall£ > 0,
lim M(X,41,Xp,%2) =1  and lim f(x,,44,%X,, %) = 0.
n—->oo n—oo

*)
»2)

So, it can choose k large enough such that
m(xm(k) o Xme ) >1—¢ and m(xn(k) v Xnge b) >1-c¢ 9
and
i (xm(k) o Xmgey ) < & and il (xn(k) v ¥y b) < &. (10)
Therefore, from (7), (8), (9), (10) and the definition of 8; and 8, it is inferred that,
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1-e>6,(1-¢gl1—¢)>1—c¢ and e< 0,(g8) <e¢
which is a contradiction. Hence, {x,} is a Cauchy and the completeness of IFM space
indicates that lim x,, = x for some x € X.

n—-oo

Now, to assert that x is FP. Given the assumption that it is not, therefore thereist > 0
with 0 < m(x f(x),%) < 1.
Since0 < b < 1, itcanbe choose p;,p,, r,s > 0such that
t =py+p+tr+s and %>t. (11)
Then
m(x, £(x), ) = M(X, Xn, p1) ® M(Xp, Xnt1, P2) ® M(Xpe1, [(X), 1 + 5)

~ ~ ~ r _ S
2 m(x, XnJ pl) @ m(XnJ X‘n+1i pZ) @ 91 (m (Xn' If(Xn)' E) ,ym (Xr If(X), E))

> (%, X, P1) @ (ks Xs1, P2) @ Bs (71 (X Xg, =) 7 (3,60, 2)) (12)
and
ﬁ(Xr [f(X), /t) = ﬁ(X, Xn pl) @ ﬁ(Xn, Xn+1s pZ) @ r‘:i(Xn+1' ﬂ:(X)' r+ S)

< (% X 1) O Ak, X1, 02) © B (A (0 FCx0), 5) 1 (3, £, 2))
< (% X, p1) O A X1, 02) © B (A (X X1, =), 1 (%,£GO, 2))

where §; € R, and 0, € R,.
According to Lemma 3.2 and the convergence of {x,}, there is N1 (positive integer) such
that for each n > N1,

m(x, Xn» pl) ® ﬁl(xn' Xn+1» pz) ®m (Xn: Xn+1r£) > m(x, f(x), 1),

% X P1) © Gk, X1, 02) O i (X X1, < A 63, )
Then from (11) and (12), it follows that,
0 £60,8) > 70 169, ) @ 0, (A 100, 6), 7 (x 109, 7))
> i(x, £(x), 1) ® 0, (Ai(x, £(x), £), m(x, £(x), 1))
> m(x, f(x), %)
and
(x £(x),£) > (% £(x),£) © B,(filx, F(x), £), 7 (x, If(x),%))
> fi(x, f(x), 1) © 0,(fi(x, £(x), 1), i(x, F(x), ¥))
> fi(x, f(x), %)
which is a contradiction.

Hence, m(x, f(x),#) = 1 and fi(x,f(x),#) = 0 forall # > 0, therefore, x is a FP for f.
Assume that f admits two FPs x and u. In light of the aforementioned assertions about on
a,b,and r,s, foreach £ > 0, obtain:

m(x,u, %) = m(f(x),f(u),*)

> 0, (i (x, f(x), g) , M (u, f(w), %))
= 0,7 (xx, g) i (u, %))
0,(1,1) =1,

)

and
i(x,u, %) = i(f(x), f(u), %)

> 0, (i (X, f(x), 2) , 0 (U, f(u), %))
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=0, (% %), 1 (wu,2))= 6,(0,0) = 0.
Thusx =u.
The Caccioppoli FP theorem in IFM space is now stated and shown.

Theorem 3.4: Assume that (L,1,mM,®,0©) is complete IFM space and T:L — L is a
mapping satisfies:
For any positive integer n and ¢ > 0,
m(T"x, T"y, k,t) = M(x,y,%)

and i(T"x, T"y, k,%) < 0(x, v, 1), (13)
forall x,y € L, k, > 0 being independent of x,y. If k, — 0, then T possesses a unique FP
in X.

proof: Assume x € L; x,, = T"x; n € N. Now, {x,} is a sequence of points of L such that
Xy = Tx, x, = TXq, ...,Xps1 = TXx,; n € N.
1>2m (xn, xn+p,t)

_ t
1=zm (Xn:Xn+1: )® m (Xn+1'Xn+2: )® NOX! (Xn+p—1'xn+p'5)

> m (X Xl’pkn) ®m (x X1, an) ®.®m (x, Xl,#ﬂj_l) by (13)

and

0< (xn, Xntps t)

t
0< (XnJ Xn+1 ) On (Xn+1rxn+2: ) O .01 (Xn+p—1'xn+p' E)
(X X1, ) On (x, Xl’pkLnH) O..0On (X, Xl,#ﬂ’_) by (13)

lim m (xn, xn+p,t)—1 and lim (xn,xn+p,t) =0asn - o
n— oo n— oo

=t

=

<

=

forall # > 0,p > 05so {x,} isa Cauchy. Because L is complete there is y € L with x,, —
yasn — oo, Thus,

N N t
1= m(y, Ty, t) 2 (y, Xn+1) )@ m (Xn+1:Ty,E>

i (Xns1,7,5) @7 (xn7,55) by (29)

v

and
T
0< ﬁ(y'Ty't) <i (y'xn+1ﬂ >®1’1 (Xn+1"]ry'§)

~ t
<h (Xn+11y' )O n (Xn'ylm) by (13)
Asn - ooforallt > 0,m (y,Ty,£) =1andii(y,Ty,£) =0. Thus Ty = yaFP of T.
To demonstrate uniqueness, consider w € L such that Tw = w. Getthat T"y =y , T"w = w
foralln € N.

Now,

1> m(y,w, ) = m(Thy, T'w,£) = m (y, w, :—n>
and,

0< d(y,wt) < ia(T'y, T'w,t) < ﬁ(y, w, :—n>

Asn — oo forall # > 0, obtain that 7i(y, Ty,#) = 1 and i (y, Ty,#) = 0. Thus y = w.
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Example 3.5: Let L = [0,1] and 9(x,y) = |x—y|for every x,y € L. Then (L,9) is a
complete metric space. Consider m and fi to be a fuzzy set in L? x (0, ) specified by:

~ _ 9xy) . - _ . _
0 and fi(x,y,%) = paw if £>0and Aii(x,y,0) =0 witha ® b =

min {a,b}anda © b = max{a, b} forevery a,b € [0, 1].

(L, 1, m,®,©) is a complete IFM space[20]. Let T:x — x be given by Tx = E for each x €
L.

Now,

m(T"x; T"y; k™t) =

m(x,y,£) =

k™t
k"t + 9(T"x, T"y)
1
1

- .
=————2—withk ==
Fat T x=T"y| 2

_ T

e+ Bnix-yl T £HI(xy)
foreveryx,y € L,t > 0,n > 0.
and

=m(x,y,t)

(T Thy; k™) = I(T™x, T"y)
' ' k"t + 9(T"x, T"y)
- M with & = 2
2—n+|TnX—Tny| 2

Ix=yl . 9G¥
== <
G t+lx-y| — tHIxY)

Also, k™ = zin — 0. As a result, the requirements of Theorem 3.4 are fulfilled. The unique FP
of T is zero.

=fi(x,y,%)

4. Conclusions

This study presents the idea of GKT mappings in the IFM space. The existence of FP
theorem in IFM space is then proven. After that, in the same space, Caccioppoli's FP theorem
is proved and a specific example is given to highlight the advantages of the outcomes.
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