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Abstract

In this paper, we introduce the concept of generalized strong commutativity
(Cocommutativity) preserving right centralizers on a subset of a 7-ring. And we
generalize some results of a classical ring to a gamma ring.
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1. Introduction

Let M and 7" be additive abelian groups. If there exists a mapping of M x I" x M — M, (a, a, b)
—aab which satisfies the conditions
(i) aab € M (ii) (a + b)ac = aac + bac, a(a + p)C = aac + afc, aa(b+ €) = aab + aac (i) (aab)fc =
aa(bpc) forall a, b,c e Mand o, f € I, then M is called a 7-ring. Every ring M is a 7-ring with M =
I'. However a I'-ring need not be a ring. Gamma rings, more general than rings, were introduced by
Nobusawa [1]. Bernes [2] weakened slightly the conditions in the definition of 7-ring. Let M be a I'-
ring. Then an additive subgroup N of M is called a left (right) ideal of M if MI'N € N (NI M c N). If N
is both a left and a right ideal, then we say N is an ideal of M. Suppose again that M is a 7-ring. Then
M is said to be a 2-torsion free if 2a = 0 implies a =0 for all a € M. A I'-ring M is said to be prime if
al’MT'h = (0) with a, b € M, implies a =0 or b= 0 and semiprime if al'MI'a = (0) with a € M implies a
= 0. Furthermore, M is said to be commutative I-ring if aab = boa for all a, b € M and a €I
Moreover, the set Z(M) ={a € M : aab = baa for all a € I', b € M} is called the center of the 7-ring M.
If M is a 7-ring, then [a, b], = aab — baa is known as the commutator of a and b with respect to a,
where a, b € M and a € I" and (aob), = aab + baa is known as an anticommutator of a and b with
respect to a . We make the basic commutator identities:
[aab, c]s = [a,c]s ab + a[a,f]: b + aa[b, c]s and [a, bacls =[a, bls ac + bla, fla c + ba[a, c]; , for all a,
b.ceMand g, g € I We consider the following assumption:

(A)eeeeireens aabfc = apfboc, forall a,b,ce M,and o, f € I.
According to the assumption (A), the above two identities reduce to

[aab, c]s = [a, c]p ab + aa[b, c]s and [a, bac]s = [a, b]s ac + ba[a, c]g,
which we extensively used. An additive mapping T : M — M is a left(right) centralizer if T(aab) =
T(a)ab (T(aab) = aaT(b)) holds for all a, b € M and « € I'. A centralizer is an additive mapping which
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is both a left and a right centralizer. We shall restrict our attention on left centralizer, since all results
of right centralizers are the same as left centralizers. An additive mapping D : M — M is called a
derivation if D(aab) = D(a)ab + aaD(b) holds for all a, b € M, and o € I" and is called a Jordan
derivation if D(aaa) = D(a)aa + aaD(a) for alla € M and a € T. An additive mapping T : M — M is
Jordan left(right) centralizer if T(aaa) = T(a)aa(T(aaa) = aaT(a)) for all a € M, and a € I'. Every left
centralizer is a Jordan left centralizer but the converse is not true in general. An additive mappings T :
M — M is called a Jordan centralizer if T(aab + baa) = T(a)ab + baT(a), foralla,be Mand a € I
Every centralizer is a Jordan centralizer but Jordan centralizer is not in general a centralizer. Bernes
[2], Kyuno [3] and Luh [4] studied the structure of I-rings and obtained various generalizations of
corresponding parts in ring theory. Borut Zalar [5] worked on centralizers of semiprime rings and
prove that Jordan centralizers and centralizers of this rings coincide. Joso Vukman [6-8] developed
some remarkable results using centralizers on prime and semiprime rings. In [9], Hoque and Paul
proved that every Jordan centralizer of a 2.torsion free semiprime I-ring satisfying a certain
assumption is a centralizer. Also, they proved in [10], if T is an additive mapping on a 2.torsion free
semiprime /-ring M with a certain assumption such that T(aabga) = aaT(b)Aa, for all a,b € M and a,
L €T, then Tis a centralizer. And in [11], if 2T(aabga) = T(a)absa + aabT(a), for all a, b € M and
a, F €I then T is also a centralizer.

In this paper, we generalize some results of Shaker [12] and Abduljaleel [13] in gamma rings,
To prove our main results, we need the following lammas.
Lemma 1.1[9] Le t M be a semiprime 7" -ring. If a, b € M and o, § € I" are such that aaxb = 0 for all
X € M, then aab = baa = 0.
Lemma 1.2 [9]Let M be a semiprime I'-ring and A : M x M — M biadditive mapping. If
A(a,b)awpB(a, b) =0 forall a, b, w € M and ¢, § € I, then A(a, b)awpB(u, v) =0 forall a, b, u,ve M
anda, pET.
Lemma 1.3[9] Let M be a semiprime I" -ring satisfying the assumption (A) and a € M be some fixed
element. If aa[x, y] p=0forall a, b € M and o, p € I, then there exists an ideal U of M such that a €
U cZ(M) holds.
2. Generalized strong commutativity preserving centralizers on semiprime I'-ring.

We will introduce the following definition.
Definition 2.1 . Let N be a subset of a I-ring M. Two right centralizers T, and T, on M are called
generalized strong commutativity preserving (GSCP) on N if [Ty(a), T»(b)]. = [a, b],, forall a, b € N
and @ € I'. And are called generalized commutativity preserving (GCP) on N if [Ty(a), T2(b)], = 0, for
alla,beNand z€ .

Example 2.2 Let M = {(a b), a,b € R,whereR isaring of intergers}and I = {(n 0),

0 O 0 m
n,m € Z,where Z is aring of intergers}. Then M is a [I-ring under usual addition and

0 b

multiplication of matrices. Let N = {(O 0

), b e R}, then N is a left ideal of M. Define mappings T,
T,: M— M as follows:

Tl(g Iz))z(g (())) and Tz(g 1(9)) = (8 _8),for alla,b €R.

Then T, and T, are right centralizers on M and which are GSCP on N.
Lemma 2.3. Let M be a semiprime I'-ring and | be a non-zero ideal of M. If T is a non-zero right
centralizer on M. Then Tis a non-zero on I.
Proof. Assumethat T=0onland leta=aam, forallael, €, me M.
Then,
0 =T(a) =T(aem) = aaT(m),forallael, « eI, me M.
It follows that,
IrT(M) =0 and II'Mr7(m) = {0} Q)
Let P = { p;, i € A} be a family of prime ideals of M such that N p; = {0}. If p; is a typical member
of P, then by (1), it follows that
ITMT'T(M) = {0} = N p; and hence IT'MI'T(M) € p;, forall i € A.
By primeness of p;, we have
Either | € p;or T(M) S p;, for all i € A.
Using the fact that N p; = {0}, we conclude that, Either I =0or T(M) =0,
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a contradiction with assumption, then Tis a non-zero on I.
Theorem 2.4. Let M be a semiprime I'-ring of characteristic different from 2 and N be an ideal of M.
If T:M — M is an additive mapping which satisfies T(aza) = T(a)aa, foralla € N, « € I, then M
contains a central idea.
Proof. By given hypothesis, we have
T(aea)=T(a)aa, forallaeN, eI’ Q)
Replacing a by a + b, where b € N in (1), we get T((a + b)a(a + b)) =T(a + b)a(a + b),
Imply T((a+ b)aa + (a+b)ab)=(T(a)+ T(b))a(a +b),
Then T(aqa) + T(aab + baa) + T(bab) = T(a)ea + T(a)ab + T(b)aa + T(b)ab,
Using (1), we have T(aebh + bea ) = T(a)ab + T(b)ea, for all a, b € N, @« € I’
2)
Replacing b by agb + bga, where £ € I'in (2), we get T(aa(agh + bga) + (apb + bsa)aa) =
T(a)a{asb + bga) + T(asb + bja)aa,
Thus, T(aa(ash + bga) + (ab + bga)aa) =
T(@)a (aph) + 2T(a)a (bpa) + T(b)F (aqa), foralla,beN, @, FET 3)
But this can also calculated in a different way,
T((aaa)pb + bflaaa)) + 2T(aa (bsa)) = T(aaa)pb + T(b)Aaaa) + 2T(aa (bsa)), (by(2)) Using (1),
we have T((aza)pb + bAaaqa)) + 2T(aa (bsa)) = (T(a)aa)pb + T(b)Aaaa) + 2T(aa (bpa)), for all a,
beN, a,ferl (@)
Comparing (3) and (4), we get T(aa (bga)) = T(@)a (bga), for all a, b € N, @, F €T
(5) Replacing a by a + ¢, where ¢ € N in (5), we have T((a + ¢c)a (bg(a+c)) =T(a+c)a(bf (a + c)),
Imply T((a + c)a(bFa+bgc)) =T(a+c)a(bhFfa+bsc)), So
T(az(bga) + ca(bpa) +aa (bpc) + ca(bgc) = (T(a) + T(c))« (bga) + (T(a) + T(c))a(bsc)
Thus T(az(bga)) + T(aa (bpt) + ca (bpa)) + T(ca (bpt)) = T(a)a (bsa) + T(a)a(bst) + T(c)a (bsa)
+T(c))a(bgc), foralla,b,ceN, @, FET.
Using (5), we get T(aa (bst) + ca (b)) = T(@)a(bst) + T(c)a (bpa), foralla,b,ceN, @, F €T.
(6)
Now, we shall compute
J =T(aabstybaa + baastyaab) in two different ways, where - € I'. Using (5), we have
J = T(aaf(bstrb)ar) + T(ba((astya)ab) = T(a)«((bstyb)ar) + T(b)a((astya)ab), ()
And using (6), we get
J=T((aab)sebar) + (baa)feaab)) = T(aab)sebar) + T(bar) st Maab), (®)
Comparing (7) and (8), we have T(aab)slcbaa)) — (T(a)ab)slcUbaa)) + T(baa)Acp(aab)) —
(T(b)aa)Acaab)) =0,
Hence
(T(aab) — T(a)ab)Acbaa)) + (T(baa) — T(b)aa) Acp{aab)) =0, foralla,b,ceN, @, F, yeT
9)
Equation (2) can be written as T(aab) — T(a)aeb = —(T(baa) — T(b)za), foralla,beN, € I".
Using this relation in (9), we get

(T(aab) — T(a)ab)st) y[b,al,=0,foralla,b,ceN, «,F, y€I. (10)
Using Lemma 1.2, we have
(T(aab) — T(a)ab)st) y[u,v], =0, foralla,b,c,u,veN, @, F, yeT. (11
Now fix some a, b in N and write B instead of T(aab) — T(a)ab), we get
BTIcllu,v],=0,forallc,u,veN, « €. (12)
Applying Lemma 1.1, we have
BIMu,v],=0,forallu,veN, « €. (13)

And by using Lemma 1.3, we get There exists an ideal | of M such that B € | € Z(M).
Theorem 2.5. Let M be a prime 7-ring of characteristic different from 2 and | a non-zero ideal of M. If
T, and T, be two non-zero right centralizers on M such that T, and T, are GCP on I. Then M contains a
non-zero central ideal.
Proof. By the given hypothesis, we have

[Ty(@), T2(b)],=0,foralla,beland €. Q)
Replacing a by bga, where £ € I"in (1), we get

0 = [Ty(bsa), To(b)]u = [bF'Tu(a), T2(b)].
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=[b, T2(b)]. £ T1(a) + b [T1(a), To(b) = [b, T2(b)]. £ T1(a), by (1).

[b, To(b)]. A Ti(a) =0, foralla,beland &, FET. (2
Replacing a by cya, where c € I, € I"in (2), we have
0 =[b, T2(b)]. £ T:(cra)
= [b, To(b)]. FcpTi(a), foralla,b,celand @, 5, y€TI.

Thus

Then
[b, To(b)]o 11" Ty(a) =0, foralla,be land @ € I 3)
And hence,
[b, Ta(b)]. ' IIM I'Ty(a) = {0}, foralla,beland #€I. (4)
Since M is a semiprime, then it must contain a family P = { p;, i € A} of prime ideals of M such that N
pi = {0}. If p; is a typical member of P, then by (4), it follows that
[b, To(0)]. T ITM I'Ty(a) = {0} = N p; and hence [b, T,(b)]. ' ITMI'Ty(a) < p;, forall i €

A.
By primeness of p;, we have

Either Ty(a) e pyor [b, To(b)]. ' IS p;, foralla,beland z€ T, i€A. (5)
Now, using the fact that N p; = {0}, we get

Either Ty(@) =0or [b, To(b)].I'I=0,foralla,beland z€T. (6)
Since Ty is non-zero on M, then by Lemma 2.3, we have T, is non-zero on I.
Thus

[b, To(b)], ' 1=0, forallbeland «€ I, and hence [b, Ty(b)], /M I'T= {0} =N p;, forall b €l and
a€l.
Then, [b, To(b)]. IM IT< p;, forall beland @€, i€ A.
So,
Either | < pjor [b, Ty(b)]. € pi, forall beland @€, i€ A. (7)
Using the fact that N p; = {0}, we conclude that,
Either =0 or [b, To(b)].=0, forall beland #€I. (8)
Since | is a non-zero ideal, then [b, T,(b)], =0, forall be land € I.
Therefore,
Ta(bab) = baT,(b) = Ty(b)ab, forall b e land @ € I', by T, is right centralizer.
Hence
To(bab) = Ty(b)ab, forall b eland @€ T. 9)
Therefore, M contains a non-zero central ideal by Theorem 2.4.
Corollary 2.6. Let M be a prime I-ring of characteristic different from 2 and | a non-zero ideal of M.
If T, and T, be two non-zero right centralizers on M such that T, and T, are GCP on I. Then M is a
commutative 7-ring.
Theorem 2.7. Let M be a semiprime 7™-ring of characteristic different from 2 and | a non-zero ideal of
M. If T, and T, be two non-zero right centralizers on M such that T, and T, are GSCP on |. Then M
contains a non-zero central ideal.
Proof. By the given hypothesis, we have
[T:(@), To(D)].=[a, b],, foralla,beland 2 € I. 1)
Replacing a by bga, where £ € I"in (1), we get [Ti(bga), T.(b)]. = [bsa, b, foralla,beland «, &
er.
Then [bgTi(a), Ta(b)]. = [bsa, b],, foralla,beland @, FET.
Thus,
[b, T2(b)]. £ Ta(a) + b [Tu(a), T2(b)]. = [b, b],S2 + bF[a, b.
Using (1), we have
[b, T,(b)]. £ATi(a) =0, foralla,beland @, FET. 2
By the same method of proof in Theorem 2.5, we complete the proof.
Corollary 2.9. Let M be a prime 7-ring of characteristic different from 2 and | a non-zero ideal of M.
If T, and T, be two non-zero right centralizers on M such that T, and T, are GSCP on I. Then M is a
commutative 7-ring.
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3. Generalized strong Cocommutativity preserving centralizers on semiprime I'-ring.
We introduce the following definition.
Definition 3.1. Let N be a subset of a 7-ring M. Two right centralizers T, and T, on M are said to be
generalized strong Cocommutativity preserving (GSCCP) on N if (Ty(a)oT(b)), = (aob),, forall a, b €
N and @ € I. And are called generalized Cocommutativity preserving (GCCP) on N if (Ty(a)oT2(b)).
=0, foralla,beNand #€ .
We shall make use of the following commutator identities by condition(A):
(ao(bst)). = (aob),Lt — bAla, cl. = bg (aoc), + [a, b].AL.
((algb)oc)a = a,ﬁ(bOC)a - [a’ C]a/& = (aoc)a bﬁ+ aﬁ [bv C]a-
Theorem 3.2. Let M be a semiprime I-ring of characteristic different from 2, | a non-zero ideal of M
and T4, T, be two non-zero right centralizers on M such that T, and T, are GCCP on I. Then M contains
a non-zero central ideal.
Proof. By the given hypothesis, we have
(Ty(2)oT(b)),=0,foralla,beland €. Q)
Replacing b by asb, where g€ I"in (1), we get
0 = (Ty(a)oT,(ash)), = (T1(a)o(asTL(b))),, foralla,b e land o, FET.

We have ag (Ti(a)oTa(b)), + [T1(a), a], AT.(b) =0, foralla,beland @, FET.
by using (1), we get

[T1(d), a], AT2(b) =0, foralla,beland @, FET. 2
Replacing b by cyb, where c € I, € I'in (2), we have

0=[Ty(a), al. £ Ta(crb)
=[T.(a), al, FcpTy(b), foralla,b,celand @, 5, y€I.
Then [Ti(@), @l ' I T(b) =0, foralla,beland €I (3)
And hence,
[T«(a), a], I'TTM I'Ty(b) = {0}, foralla,beland € I. 4
Since M is a semiprime, then it must contain a family P = { p;, i € A} of prime ideals of M such that N
pi = {0}. If p; is a typical member of P, then by (4), it follows that
[Ti(a), a], I'TT'M I'Ty(b) = {0} = N p; and hence [Ty(a), a], I'1TI'M I'T»(b) < p;, forall i € A.

By primeness of p;, we have

Either T,(b) e pior [Ty(a),al, /7S p;, foralla,beland @€ I, i € A. (5)
Using the fact that N p; = {0}, we conclude that,
Either T,(b) =0or [T.(a),a]./7=0,foralla,beland z€I. (6)
Since T, is non-zero on M, then by Lemma 2.3, we have T, is non-zero on I.
Thus
[Ti(a),a].IT=0, foralla €l and « € I, and hence
[Ti(@), a8l IMTT={0}=Np;,forallaeland €.
Then,
[Ti(@),a]lIMIT< p;,forall aeland @€, i€ A.
So,
Either | € p;or [Ty(a), a], € pi, forall aeland @€, i€ A. (7
Using the fact that N p; = {0}, we have,
Either I=0o0r[Ty(a),a],=0,forall a€land €. (8)
Since | is a non-zero ideal, then [Ty(a), a], =0, forall a€land #€I.
Therefore,
Ti(a)ea=aaT.(a) =Tiy(ara), forall aeland € I. ©)]
Hence
Ti(aqa) = Ty(a)aa, forall aeland 2 €. (10)

Therefore, M contains a non-zero central ideal by Theorem 2.4.

Corollary 3.3. Let M be a prime 7-ring of characteristic different from 2, | a non-zero ideal of M and
Ti, T, be two non-zero right centralizers on M such that T; and T, are GCCP on I. Then M is a
commutative 7-ring.

Theorem 3.4. Let M be a semiprime 7-ring of characteristic different from 2, | a non-zero ideal of M
and Ty, T, be two non-zero right centralizers on M such that T; and T, are GSCCP on I. Then M
contains a non-zero central ideal.
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Proof. By the given hypothesis, we have

(T1(a)oT,(b)), = (aob),, foralla,b e land @€ I. Q)
Replacing b by asb, where £ € I"in (1), we get

(Ti(a)oT,(aph)), =(ao(ash)),, foralla,beland @, FET.
Imply,

(Ty(@)o(a4Ty(b))), =(ao(ash)),, foralla,beland @, FET.

ag (T1(a)oT(b)). + [T1(a), al. AT2(b) = aflaob). + [a, a].Lb

Using (1), we get

[T:i(a), a], AT2(b) =0, foralla,beland @, FET. (2
By the same method of proof in Theorem 3.2, we complete the proof.
Corollary 3.5. Let M be a prime 7-ring of characteristic different from 2, | a non-zero ideal of M and
T1, T, be two non-zero right centralizers on M such that T; and T, are GSCCP on I. Then M is a
commutative 7-ring.
Now, by using similar techniques as in the Theorems 2.7 and 3.4, we get the following result.
Theorem 3.6. Let M be a semiprime I-ring of characteristic different from 2, | a non-zero ideal of M
and T4, T, be two non-zero right centralizers on M. Then M contains a non-zero central ideal, if one of
the following conditions holds:
0] [T1(@), T2(D)]. + [a, b],=0,foralla,beland & €T.
(i) (T1(a)oT,(h)), + (ach), =0, foralla,beland & €I
(iii) [Ti(a), To(b)], = (a0b),, foralla,b e land & €I
(iv) [Ti(a), To(b)], + (a0b), =0, foralla,beland & €.

Then,
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