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Abstract  

     Cabrera and Mohammed proved that the right and left bounded algebras of 

quotients   
 ( ) and   

 ( ) of norm ideal   on a Hilbert space   are equal to 

  ( ) Banach algebra of all bounded linear operators on  . In this paper, we prove 

that (  
 ( ) ‖ ‖ )  (  

 ( ) ‖ ‖ )  (  ( ) ‖ ‖ ) where   is a norm ideal on a 

complex Banach space   .  
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  برهان المساواة للفضاءات 
  و ( ) 

 فضاء باناخ المعقد  حيث  ( )   و ( ) 
 

 2، عامر عبد الأله محمد *1ذنون النعيمي محمد

قدم الهظدسة الطدنية ، كمية الهظدسة ، جامعة الطوصل ، العراق1  
قدم الرياضيات ، كمية التربية لمعموم الصرفة ، جامعة الطوصل ، العراق2  

 الخلاصة
  برهظا بأن جبر القدومات اليطظي واليداري الطقيدة كابريرا ومحمد      

  و ( ) 
عمى الطثالية الطعيارية  ( ) 

. في هذا  جبر باناخ لكل الطؤثرات الخطية الطقيدة عمى  ( )   مداوية الى  عمى فضاء همبرت   
  )برهظا البحث ، 

 ( ) ‖ ‖ )  (  
 ( ) ‖ ‖ ) عمى   عمى الطثالية الطعيارية ( ‖ ‖ ( )  ) 

 .  فضاء باناخ الطعقد
1. Introduction 

     The evolution of the ring theory of quotients of a prime ring was presented in 1969 by Martindale 

[1]. In 1986, Mathieu used ultraprime algebra to give an analytic form of algebras of quotients of 

ultraprime algebra [2]. Later in 2003, Cabrera and Mohammed provided a similar analytic form of 

totally prime algebra. One interesting result is that the left and right bounded algebras of quotients of 

norm ideal on a Hilbert space   are equal to complex Banach algebra of all bounded linear operators 

on   see [3].  

     In this paper, we improve this result using Banach spaces instead of Hilbert spaces. Throughout 

this paper all algebras are associative. 

Recall in [2] a normed algebra (  ‖ ‖) is ultraprime if there exists     such that  ‖ ‖‖ ‖  

‖    ‖ for all      . Where      is a linear operator from   into   defined by     ( )      for 

all    .   ( ) is denoted to be the right Martindale algebras of quotients [1],   
   is a linear operator 

from   into  , defined by   
 ( )      for all    . 

For a prime normed algebra  , the right bounded algebra of quotient of   is given by 
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 ( )  *    ( )    is ideal of  ,     ,   

  bounded}, with algebra semi norm defined by 

‖ ‖     *‖  
 ‖,   is ideal of  ,     ,   

  is bounded}. 

When   is ultraprime algebra, then   
 ( ) is an ultraprime algebra, and the inclusion of   into   

 ( ) 
is topological [2, Theorem 4.1]. Similarly, left bounded algebra of quotient are defined and denoted 

by   
 ( ). 

Mohammed and Cabrera [3, Theorem 2] proved for a norm ideal (  ‖ ‖) in   ( )  the bounded 

linear operators in  , then (  
 ( ) ‖ ‖ )   (  

 ( ) ‖ ‖ )  (  ( ) ‖ ‖ ). 
Our aim in this paper is to improve the above result (see Theorem 2.2 and 2.5).   

2. Bounded algebras of quotients of norm ideal. 

 Recall in [4] that, the norm ideal is an ideal   of   ( ) where   is a Banach space, with norm ‖ ‖ 

satisfying the following properties: 

i. ‖   ‖  ‖ ‖‖ ‖  for all     and     . 

ii. ‖   ‖  ‖ ‖ ‖ ‖‖ ‖  for all     and       ( ). 

For two vector spaces     and dual specs      , in [5, p. 240] the adjoint of an operator        is 

an operator          defined by (   )( )   ( ( )) for any      and    . 

     In the following proposition we used  ( ) to denote the algebra of  all linear operators form vector 

space   to  ,    (  ) is denoted to the algebra of all endomorphism on right   module  . To 

compute the right bounded algebras of quotients we begin with the following result. 

Proposition 2.1 

Let   be a complex Banach space and   is a norm ideal of   ( ). Then   ( )   ( ). 
Proof 

     Let    be the dual space of  . Then 〈    〉 is a pair of dual space. Using [6, Structure Theorem, p. 

75]   is a primitive algebra with non-zero socle. Since   is a left   module, by [7, Theorem 4.3.7 

(vii) and (viii), p. 144],   ( )     (  ), where   is the centralizer of the irreducible left 

  module  . So   is a complex normed division algebra, by Maizer Theorem [7, Theorem 2, p. 71], 

     , so   ( )     (  )   (    )   ( ). Therefore   ( )   ( ). ■ 

The next theorem is the main result in this paper. 

Theorem 2.2 

     Let   be a complex Banach space and   be a norm ideal of   ( ). Then (  
 ( ) ‖ ‖ )  

(  ( ) ‖ ‖ ) 
Proof 

Since   is a norm ideal of   ( ), it follows that   contains a non-zero socle    ( ). By proposition 

2.1,    ( )   ( ). Using [8, Lemma 2, 12, p. 26],  (  
 ( ) ‖ ‖ ) is right bounded algebra of 

quotient with semi norm ‖ ‖ . For proving   ( )    
 ( ), let     ( ), so  (   ( ))   . We 

denoted     the identity operator in   ( ), and let      ( ). 

‖  
   ( )( )‖  ‖  ‖  ‖     ‖ 

                            ‖ ‖ ‖ ‖‖   ‖  ‖ ‖ ‖ ‖ 

Therefore   
   ( )

 is bounded, so     
 ( ). Thus   ( )    

 ( ). Now 

‖ ‖  ‖  
   ( )

‖     
     ( )

*‖  
   ( )( )‖  ‖ ‖   + 

                        
     ( )

*‖ ‖ ‖ ‖ ‖ ‖   +   ‖ ‖  

Then we get ‖ ‖  ‖ ‖ -----(1) 

Conversely  

Let      
 ( ), for proving     ( ), let       and      with ‖ ‖   , so    ( ) by 

proposition 2.1. 

‖ ( )‖  ‖ ( )‖‖ ‖   ‖ ( )  ‖  ‖ (   )‖ 

Since     is finite rank operator, so        ( ) 

               ‖  
   ( )(   )‖ 

 Since     
 ( ), so   

   ( )
 is bounded 

               ‖  
   ( )

‖‖(   )‖    ‖  
   ( )

‖‖ ‖‖ ‖ 

                ‖ ‖ ‖ ‖ 
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Therefore ‖ ( )‖  ‖ ‖ ‖ ‖ for all    , so     ( ). We get that   ( )    
 ( ). 

To prove the converse of (1) consider 

‖ ‖     
   

*‖ ( )‖ ‖ ‖   + 

                 
   

*‖ ‖ ‖ ‖ ‖ ‖   +   ‖ ‖  

This implies that 

‖ ‖  ‖ ‖ -------(2) 

From (1) and (2),‖ ‖  ‖ ‖ . Also, we have (  
 ( ) ‖ ‖ ) is a normed algebra and 

(  
 ( ) ‖ ‖ )  (  ( ) ‖ ‖ ).■ 

The following result is used to compute the left algebras of quotients.  

Proposition 2.3 

     Let   be a complex Banach space and   is a norm ideal of   ( ) containing a non-zero socle. 

Then   ( )   ( ). 
Proof 

      From the proof of proposition 1.1,   is right primitive algebra with non-zero socle. By using [9, 

Theorem 11.11, p. 174]   ( )   ( ).■ 

Corollary 2.4 

Let   be a complex Banach space and   is a norm ideal of   ( ) containing a non-zero socle. Then 

  ( )    ( )   ( ). 
Our second main result in the following Theorem. 

Theorem 2.5 

     Let   be a complex Banach space and   be a norm ideal of   ( ). Then (  
 ( ) ‖ ‖ )  

(  ( ) ‖ ‖ ) 
Proof 

     Since   is a norm ideal of   ( ), it follows thatit contains a non-zero socle    ( ). By 

proposition 2.3,    ( )   ( ). Using [8, Lemma 2.12, p. 26],  (  
 ( ) ‖ ‖ ) is left bounded algebra 

of quotient with semi norm ‖ ‖ . For proving that   ( )    
 ( ), let     ( ), so (   ( ))  

 .  

     We denoted     the identity operator in   ( ), and let      ( ). 

‖  
   ( )

( )‖  ‖  ‖  ‖     ‖ 

                            ‖   ‖ ‖ ‖‖ ‖  ‖ ‖‖ ‖  

Therefore   
   ( )

 is bounded, so     
 ( ). Thus  ( )    

 ( ). Now 

‖ ‖  ‖  
   ( )

‖ 

               
     ( )

*‖  
   ( )( )‖  ‖ ‖   + 

               
     ( )

*‖ ‖‖ ‖  ‖ ‖   +  ‖ ‖  

Then we get ‖ ‖  ‖ ‖ ------(1) 

Conversely  

Let      
 ( ), for proving     ( ), let       and      with ‖ ‖   , so    ( ) by 

proposition 2.1. 

| ( ( ))|  |(   )( )|  ‖ ‖
|(   )( )|

‖ ‖
 

                   ‖ ‖    
   

{
|(   )( )|

‖ ‖
 ‖ ‖   }  ‖ ‖‖   ‖ 

For an arbitrary element     with ‖ ‖    

| ( ( ))|  ‖ ‖‖   ‖‖ ‖  ‖ ‖‖     ‖  

From the properties of operator finite rank by [10, proposition 6.1.5, p. 90]. For    , we have 

(     )( )  (   )( )  definition of finite rank operator 

                           ( ( ))   adjoint operator 

                          (   )( ( )) 
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Now 

‖     ‖     
   

*‖(     )( )‖ ‖ ‖   + 

                           
   

*‖(   )( ( ))‖ ‖ ‖   + 

                          
   

*‖(   )‖ ‖ ( )‖ ‖ ‖   + 

                       ‖(   )‖    
   

*‖ ( )‖ ‖ ‖   + 

                       ‖ ‖‖ ‖‖ ‖  

                       ‖ ‖‖ ‖ , then 

| ( ( ))|  ‖ ‖‖     ‖   ‖ ‖‖ ‖‖ ‖  
We have 

‖ ( )‖         *| ( ( ))| ‖ ‖   + by [5, proposition 11.9,p. 235] 

                   
    

*‖ ‖‖ ‖‖ ‖   ‖ ‖   + 

                ‖ ‖‖ ‖    
    

*‖ ‖  ‖ ‖   +  ‖ ‖‖ ‖  

Therefore ‖ ( )‖  ‖ ‖ ‖ ‖ for all    , so     ( ), then   
 ( )    ( ). 

From the above, we get that  

| ( ( ))|  ‖ ‖‖     ‖  ‖ ‖‖(   ) ‖  

since     ( ) we get       (   )  

                   ‖ ‖‖(   ) ‖ 

                  ‖ ‖‖  
   ( )(   )‖ 

                  ‖ ‖‖  
   ( )

‖‖   ‖ 

   ‖ ‖‖  
   ( )

‖‖ ‖‖ ‖ 

                  ‖ ‖‖  
   ( )

‖‖ ‖ 

| ( ( ))|   ‖ ‖‖  
   ( )

‖‖ ‖ 

‖ ( )‖         *| ( ( ))| ‖ ‖   + by [5, proposition 11.9,p. 235] 

                    
    

*‖ ‖‖  
   ( )

‖‖ ‖ ‖ ‖   + 

                ‖ ‖‖  
   ( )

‖    
    

*‖ ‖ ‖ ‖   + 

               ‖ ‖‖ ‖  
‖ ‖     

   
*‖ ( )‖ ‖ ‖   + 

                
   

*‖ ‖‖ ‖  ‖ ‖   +  ‖ ‖  

This implies that ‖ ‖  ‖ ‖ -------(2) 

From (1) and (2),‖ ‖  ‖ ‖ . Also, we get that (  
 ( ) ‖ ‖ ) is a normed algebra, 

also (  
 ( ) ‖ ‖ )  (  ( ) ‖ ‖ ).■ 

Corollary 2.6 

     For a complex Banach space   and norm ideal   of   ( ). Then 

(  
 ( ) ‖ ‖ )  (  

 ( ) ‖ ‖ )  (  ( ) ‖ ‖ ) 
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