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Abstract
Cabrera and Mohammed proved that the right and left bounded algebras of

quotients Q}(A) and Q}(A) of norm ideal A on a Hilbert space H are equal to
BL(H) Banach algebra of all bounded linear operators on H. In this paper, we prove
that (Q (A), IIIl) = (Q{,(A), ||-||l) = (BL(X), lIlle) Where A is a norm ideal on a
complex Banach space X.
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1. Introduction
The evolution of the ring theory of quotients of a prime ring was presented in 1969 by Martindale
[1]. In 1986, Mathieu used ultraprime algebra to give an analytic form of algebras of quotients of
ultraprime algebra [2]. Later in 2003, Cabrera and Mohammed provided a similar analytic form of
totally prime algebra. One interesting result is that the left and right bounded algebras of quotients of
norm ideal on a Hilbert space H are equal to complex Banach algebra of all bounded linear operators
on H see [3].
In this paper, we improve this result using Banach spaces instead of Hilbert spaces. Throughout
this paper all algebras are associative.
Recall in [2] a normed algebra (4, ||*]|) is ultraprime if there exists ¢ > 0 such that c||x]||||y|l <
| M, || for all x,y € A. Where M, is a linear operator from A into A defined by M, ,,(z) = xzy for
all z € A. Q" (A) is denoted to be the right Martindale algebras of quotients [1], L{I is a linear operator
from I into A, defined by L{, (x) = qx, forall x € I.
For a prime normed algebra A, the right bounded algebra of quotient of A is given by

*Email: mohammedmth@gmail.com
127



Al-Neima and Mohammed Iraqi Journal of Science, 2020, Vol.61, No.1, pp: 127-131

Q,(A) ={qeQ"(A)/Iisideal of A, qI < A4, L’q bounded}, with algebra semi norm defined by

llgll,, = inf {||L%]|, I is ideal of A, qI < A, LY, is bounded}-

When A is ultraprime algebra, then Q; (A4) is an ultraprime algebra, and the inclusion of A into Q} (A)
is topological [2, Theorem 4.1]. Similarly, left bounded algebra of quotient are defined and denoted
by Q}(4).

Mohammed and Cabrera [3, Theorem 2] proved for a norm ideal (4, ||-]|) in BL(H) the bounded
linear operators in H, then (Q5(A), lIll;) = (Q4(A), II'll.) = (BL(H), lI'll0)-

Our aim in this paper is to improve the above result (see Theorem 2.2 and 2.5).

2. Bounded algebras of quotients of norm ideal.

Recall in [4] that, the norm ideal is an ideal A of BL(X) where X is a Banach space, with norm ||-||
satisfying the following properties:

i. |x®fI = llx|lllf]l, forallx € X and f € X'.
ii. ||[FTG|| < |IFllolITIIG||s forall T € Aand F, G € BL(X).

For two vector spaces X, Y and dual specs X', Y’, in [5, p. 240] the adjoint of an operator T: X — Y is
an operator T": Y’ — X' defined by (T'¢)(x) = ¢ (T(x)) forany ¢ € Y and x € X.

In the following proposition we used L(X) to denote the algebra of all linear operators form vector
space X to X, End(Xp) is denoted to the algebra of all endomorphism on right D —module X. To
compute the right bounded algebras of quotients we begin with the following result.

Proposition 2.1
Let X be a complex Banach space and A is a norm ideal of BL(X). Then Q" (A) = L(X).
Proof

Let X’ be the dual space of X. Then (X, X") is a pair of dual space. Using [6, Structure Theorem, p.
75] A is a primitive algebra with non-zero socle. Since X is a left A —module, by [7, Theorem 4.3.7
(vii) and (viii), p. 144],Q"(A) = End(Xp), where D is the centralizer of the irreducible left
A —module X. So D is a complex normed division algebra, by Maizer Theorem [7, Theorem 2, p. 71],
D=1-C,s0Q"(A) = End(Xp) = L(X;.c) = L(X). Therefore Q"(A) = L(X). m
The next theorem is the main result in this paper.

Theorem 2.2

Let X be a complex Banach space and A be a norm ideal of BL(X). Then (Q;(A),Il‘ll;) =

(BL(X), II"ll )

Proof

Since A is a norm ideal of BL(X), it follows that A contains a non-zero socle FBL(X). By proposition
2.1, Q"(A) =L(X). Using [8, Lemma 2, 12, p. 26], (Q}(A),|I-Il,) is right bounded algebra of
quotient with semi norm ||-||,-. For proving BL(X) € Q}(A), let G € BL(X), so G(FBL(X)) € A. We
denoted Idy the identity operator in BL(X), and let T € FBL(X).

L6220 || = N6l = NGy

< (|Gl ITH 1 dxlleo = IGlleolI T
Therefore LEP“® is bounded, so G € Q}(A). Thus BL(X) € Q}(4). Now
IGI, = |16 = sup_ (||Le P @], 1Tl =13

TEFBL(X)
< sup {llGllITILNTII =1} =Gl
TEFBL(X)

Then we get |G| < [|G|leo-----(1)

Conversely

Let G € Q}(A), for proving G € BL(X), let 0 #x € X and f € X" with ||f|| =1, so G € L(X) by
proposition 2.1.

IGCOI =[G = I6COBF Il = 16 (x@)

Since x @ f is finite rank operator, so x ® f € FBL(X)

- i e
Since G € Q}(A4), so L2 is bounded
< L2 nexent = L | ixnngn
= 116 I, llxl
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Therefore ||G (x)|| < ||G]l, ||| for all x € X, so G € BL(X). We get that BL(X) = Q}(A).
To prove the converse of (1) consider

1Glleo = sup{llGOII, [lx]| = 1}
XEX
=< Sug{llGllrllxll. lxll =1} = 1IGll»
€

X

This implies that
Gl < G- )
From (1) and (2),]|Glle = lIG|l,. Also, we have (Q;(A),|l"ll,) is a normed algebra and
(Qp(A), IIFll;) = (BLEX), [Illoo)-m
The following result is used to compute the left algebras of quotients.
Proposition 2.3

Let X be a complex Banach space and A is a norm ideal of BL(X) containing a non-zero socle.
Then Q'(A) = L(X).
Proof

From the proof of proposition 1.1, A is right primitive algebra with non-zero socle. By using [9,
Theorem 11.11, p. 174] Q*(4) = L(X).m
Corollary 2.4
Let X be a complex Banach space and A is a norm ideal of BL(X) containing a non-zero socle. Then
Q"(4) = Q'(4) = L(X).
Our second main result in the following Theorem.
Theorem 2.5

Let X be a complex Banach space and A be a norm ideal of BL(X). Then (Q}(A), I ll;) =
(BL(X), IIll )
Proof

Since A is a norm ideal of BL(X), it follows thatit contains a non-zero socle FBL(X). By
proposition 2.3, Q'(A) = L(X). Using [8, Lemma 2.12, p. 26], (Q},(A), ||'||z) is left bounded algebra
of quotient with semi norm ||-||,. For proving that BL(X) S Q}(A), let G € BL(X), so (FBL(X))G S
A.

We denoted Idy the identity operator in BL(X), and let T € FBL(X).

[REXO () || = 1761 = ldx TGl

< HdxlloITNG o = TN G lco
Therefore RE24) is bounded, 50 G € Q% (A). ThusBL(X) < Q}(A). Now
IGll, = ||RgBL(X)||

Te;srgf(x){”RgBL(X) (T)” TN =13

sup {lITIG e, ITIl = 1} = |Gl o
TEFBL(X)

Then we get [|G|; < [|G]loo------(1)

Conversely

Let G € Q}(A), for proving G € BL(X), let 0 = x € X and f € X" with ||f]l = 1, so G € L(X) by
proposition 2.1.

IA

GI
FG@I = 1@ NI = 1
Gl
= lixlisup {m llxll # 0} = |lxIlIG"£1
wex |l

For an arbitrary element u € X with ||u|| = 1

[F(GC)| < NG Fllllull = N u®G’ flo
From the properties of operator finite rank by [10, proposition 6.1.5, p. 90]. For z € X, we have
w®G'f)(z) = (G'f)(z)u definition of finite rank operator

= f(G(2))u adjoint operator

= (u®f)(G(2))
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Now

lu®G'flo = s;g{ll(uébG’f)(Z)ll, llz]l = 1}
= sup{ll(u®f)(G(Z))II llzll = 1}
< sup{ll(u®f)lloo||G(Z)II llz|l = 1}
= II(u®f)|Ioosup{I|G(z)|| llzll = 1}
= IIuIIIIfIIIIGIIm
= ||f1IIGl e, then

IF (GO = [xNu®G flleo < xIHIFNNG oo

We have

IG(x)| = suprXr{|f(G(x))|, II£1l = 1} by [5, proposition 11.9,p. 235]
< ;él)g{llxllllfllllGlloo Afll =13

= [lxllllGlleo sup{llIf1I, IIfIl = 1} = llx/llIGlloo
fex’

Therefore ||G(x)|| < |Gl ||x|| for all x € X, so G € BL(X), then Q}(A) € BL(X).
From the above, we get that

If (GED] < lIx[[u®G flloo = x| (u®f)GCloo
since G € BL(X) we get u®G'f = (u®f)G

< |lxlll|u®f)Gl|
= llxll | RE™ X wp)|
< Ilxll | Re* || Iuf
< Nl || RGO it f 1
= Il | RGO i
FGC)] < Ilxll||REZ| 1f
1GGON = supexr{IF(GGIL If | = 1} by [5, proposition 11.9,p. 235]
< sup{llxl ||[REZ|| IFIL 1A = 13
fex’

= Ilxll | RE®|| sup FIL N£1 = 13
fex’
= |lx[lllG1l
Gl = Sup{llG(x)ll llx|l = 1}
< Sup{llxllllGllz. lxll = 1} = |Gl
This |mpI|es that [|Gll < lIG]l;------- (2)
From (1) and (2)lIGlle = IGIl;. Also, we get that (QL(A),II-ll;) is a normed algebra,

also (Q(A), IIll) = (BLEX), [I'lloo).m
Corollary 2.6
For a complex Banach space X and norm ideal A of BL(X). Then

(@5, II11) = (@A), II-ll) = (BLEX), IIll0)
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