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Abstract

The approximate solution of a coupled nonlinear parabolic system with variable
coefficients (CNPSVC) is found by using the mixing Galerkin finite element method
(GFEM) in the variable of space with implicit finite difference method (IFDM) in
the variable of time, for this reason, the method will be denoted by MGIM. In this
method and at any step of time ¢; the CNPSVC is transformed into couple Galerkin
nonlinear algebraic system (CGNAS), which is solved by applying the predictor and
the corrector techniques (PCT), these techniques transform the CGNAS into a
coupled Galerkin linear algebraic system (CGLAS). Then the Cholesky
decomposition (ChDe) is used to solve it. The existence and uniqueness of the
solution are proven. The stability and the convergence of the method are studied.
Some Illustrative examples are given to solve the proposed system, the results are
given by tables and figures and we show the accuracy and effectiveness of the
proposed method.

Keywords: Convergence, Coupled Nonlinear Parabolic System with Variable
Coefficients, Cholesky Decomposition Method, Galerkin Finite Element Method,
Implicit Difference Method, Predictor - Corrector Techniques, Stability.
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1. Introduction

A wide range of applications in natural science, engineering, and technology, are described
generally by mathematical models which lead to nonlinear ODEs [1,2] or PDEs [3-8].
Usually, such of these problems are solved in general by using numerical methods [9,10]. In
particular, different numerical methods can be used for solving the parabolic type of these
problems with variable coefficients, such as, the Crank-Nicolson scheme with the GFEM [11]
in 2019, the method of simple algorithm [12] in 2020, the GFEM [13] in2021. Later, in 2022
the Galerkin method with the Bivariate Bernstein [14], the piecewise constant arguments [15],
recently and in 2023 the spline collocation method [16], the orthogonal cubic splines [17]
were used to solve the considered problem. Therefore, great attention is given in this paper to
investigate the solution of the CNPSVC by using the MGIM.

This paper starts with describing the considered problem and its weak form (WF). The
approximation problem (App) obtained from the discretization of the CNPSVC by using the
GFEM for the space-variable and the IFDM for the time-variable, then at any step of time (¢;)
the problem is reduced to solving CGNLAS which is transformed to CGLAS after using the
PCT. Then the ChDe is applied to solve it. The existence and uniqueness of the solution are
proven. The stability and the convergence of the method are studied. Finally, illustrative
examples are given to solve different problems using the MGIM, the results show the
efficiency and the accuracy of this method.

2. Description of the CNPSVC
Let Q = {¥ = (x;,x,) € R?: a < x1,x, < b} © R?, be the region with boundary 99, and
let] =[0,T],Q =QX1,0<T < oo, then the CNPSVC are given by:

Ure = X2 ge1 5 |ars (B O 52| + b (R OUs — 92, DU, = wi(%,0),in Q ¢y
Use = 22 sm1 5 [bro (B O T2| + ha (8, 0U; + g (&, 0U; = w,(%,6),in Q @
with the initial conditions (1Cs)

U;(%,0) = UP(%),inQ, (i = 1,2) (3)
and the boundary conditions (BCs)

U;(X,t) =0,0n0Q X I,(i = 1,2) (4)

The classical vector solution of system (Eq.(1)-Eq.(4)) is U(%,t) = (U; (% t), U, (%, 1)) €
(H2(Q))?, a,s(%,t),b.s(X,t) (Vr,s = 1,2),h,(X,t) and g(X,t) are positive nonzero
arbitrary functions in L*(Q), w,(¥,t) are given functions in L2(Q) for all ¥ € Q (Vr = 1,2).
Let (.,.) &ll.lo (C.,.)1& |I.]l1) be symbolized to the inner product and the norm in L2(Q)(in
V = H} ().

3. The WF of the Problem

Let H}(Q) = {v:v = v(X) € H1(Q),VX € Q,withv = 0 on 00}, then the WF of the
CNPSVC (Eq.(1)-Eq.(4)) is given (v U € (HL(Q))?, and V € (HE(Q))?) by
(Ure, 1) + a1 (8, Uy, v1) — (g(0)Uz,v1) = (W (Uy),v1) ,in Q (%)
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(U1(0),v,) = (U7, vy), in Q (6)
(Uze, v2) + ay(t, Uy, v3) + (g(0) U, v3) = (Wa(Uz),v2) , in Q (7)
(U,(0),v3) = (U3, v,), in Q (8)

where the following are bilinear form
Uy 0vp

ap(t, Up, vp) =Y 2o1ars5(X, 1) (6xs '6xr) + hy,(%, t)(Up,vp) ,forp =1,2.
The following hypotheses are useful in the study of the problem.

3.1 Assumptions

i-Let B,B € R* s.t the following are held:

a) |a(t,U, )| < B||U|| II3ll1, b) (¢,U,%) = E||z7||j ,with a(t,U,0) = ¥2_; a,(t, Uy, U,).
ii- w,. (X, t,U,) (Vr = 1,2) is of the type of Caratheodory on Q x R ,satisfies the following

a) lw,(%,t,U) | <n.(&t) +d,.|U.| whered, >0, (X,t) €Q,U, €R andn, € L>(Q,R) .
b) |w,.(% ¢t U,) —w.(%t,U)| <L |U.-—U,.|, where (¥t)€Q,U,U-€R, L, is a
Lipischitz constant, vr = 1,2.

In the following section the discretization for the WF(Eq.(5)-Eq.(8)) is obtained.

4. Discretization of the WF

The WF of (Eq.(5)-Eq.(8)) is discretized through applying the GFEM[18], let Vy < H(Q)
be a finite dimensional space, and assume M; € Z*, Q= UY_,0, with 0 =0}k =
1,2,..,N, N = M? where M = M; — 1 be an “admissible” triangulation of Q, let h = 1/M1’
x;; = ihand x;;, = ih, (i = 0,1,2, ..., M;) be pointsin Q s.t
0=xpp <Xyp < <Xjp < < xpp)p = 1, Withp = 1,2,
The interval of the variable of time is divided into the subintervals I; = I}* == [t]", ], |with
t; = jAt, j=0,1,..,NT —1 and At = — , NT € Z*. The discrete WF (DWF) of ((5)-(8))
are written (V v, € Vy,r = 1,2) as follows:
(v, = UR0) + Atlay (UF ), vn) = (9(620) U vn )1 = At (wy (U2,,),v),
(9)

(UT(0),v4) = (U7, v1)inQ (10)
(U;‘j+1 — U;lj,vz) + At[a, (U§j+1,v2> + (g(tjﬂ)U{le, vz)] = At (Wz (UZ”J.H),UZ),(ll)
(U3(0),v,) = (U3, v;) inQ 12)

Now, to find the APPS of the CNPSVC, the following algorithm is utilized:

5. Algorithm

To find the APPS U™ = (UL, UM of (Eq.(9)-Eq.(12)), using the GFEM, let Vy < H(Q)
(be a piecewise affine functions) of dimension N, s.t Vy = {v,,, m = 1,2, ..., N, with v,,,(X) =
0 on 00}, let I7N = Iy X Vy then the following proceedings can be applied:
Stepl: The WF (Eq.(9)-(Eq.12)) can be written (for U™ € Vy, vy, € Vy, Y m = 1,2, ...,N ) as:
(Ulnj+1 - Ulnj, vi) + Ata, (U}Qjﬂ, vl-) — At (g(th)U?jH,vm) =

At (w1 (tj+1, Ufjﬂ) , vm), (13)

(UT(0), vn) = (U7, V) (14)
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(U;lj+1 - UZ"J., vm) + Ata, (U?J.H,vm) + At (g(th)U{‘jH,vm) =
At (wy (440, U2 41 ) ) (15)
(UZ(0), vn) = (U3, V) (16)

Step2: Utilizing the GFEM, the APPS UM (Vr = 1,2) is approximated using the basis
(v1, V5, ..., vy) Of Vy, €.

UR(%,¢) = Zh=1 ar(6)ve(®), UR(R6;) = Th=1 apern (§)ve (%), Vj = 0,1, ..., NT — 1,
where a(¢;) and a.y(t;) are unknown coefficients to be found

\Step3: Substitute U™ in (Eq.(13)-Eq. (16)) the following CGNAS with their ICs are obtained,

(C + AtD)ALT — AtEAIYY = CAL + Atbl( tivn, ALY (17)
(€ + AtF)A{;}V + AtEALT = CAL,y + Athy(tj,1, ALY (18)
CA(0) = b9 (19)
CAyn(0) = b3 (20)
WhereC = (Cmk)NxN) Cmk = (vkrvm) D = (dmk)nxn) Amk = al(vk: vm) F = (fmr)nxn:

finke = @2 (Vhr V)01 (D V) = B 51 s (B) (5, 522) o+ (hy (B)vie V), E = (i

emie = (9B)Vk V)@ (Vi V) = B2 oo bys () (52, 522) + (ho Bk vm) Ak (8) =
(ak(tj))leyAHN(tj) = (ak+1v(t')) b1 = (bim)nx1 bim = (Wl(x' j+1 T 1TA{<+1)’Um),

b, = (bzi)levai = (Wz(ir tj+1» {cj—}\l) vm) bo (brm NX11 b19m = (Uﬁ,vm), vmk =
1,2,..,N,andr = 1,2.

Step 4: The uniqueness of (Eq.(17)-Eq.(20)) is obtained, since C,D,E and F are positive
definite and symmetric. The CGLAS (Eq.(19)-Eq.(20)) are solved (by the ChDe) at first to get

AY and A%,  respectivaly, then to solve the CGNAS (Eq (17)-Eq.(18)), the PCT is utilized
here [18]. In the PT, set A}t 1y = Ab,q—pywo ! = 1L.2(Yj = 0,1,2,...,NT — 1) iin the
R.H.S of (Eq.(17)-Eq.(18)), which turn to CGLAS, then solving them (by the ChDe) to get

the predictor solution (PS) At Next in the corrector technique (CT) substitute

k+(*=N)"
Ay = Ali_py In the RH.S of (Eq.(17)-Eq.(18)) (i.e in by and b,), and then
solving them (by the ChDe) to get the corrector solution (CS) A{:él _1)N (this PCT can be

repeated for more than one time by solving (Eq.(17)-Eq.(18)) after setting the CS

Aoy = Ais_py In the RH.S of them, to get a new CS).
In the next subsection, the ChDe method which was indicated in the above algorithm is

illustrated.

5.1 The ChDe Method

To solve the GLAS, the ChDe is utilized if the matrix A is symmetric and positive definite,
and hence it can be decomposed into a product of a unique lower triangular matrix K and its
transpose [19]. The ChDe can be represented in the following steps:

Stepl: K, = (ap, — 2b- 1K2 2) 7z for p=1.2,..,N
Step2: K,,, = 29 ZzKlK"Z P2 forq=p+1,..,N.
qq
The CT WhICh was mentioned in the above algorithm can be expressed as follows:
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(O30 =0, 9,) + ata(T530,5:) - ae (0,550, v,) + ot (0,40, v,) =

j+1 j+1 Vi j+1 j+1
l l .
At [(w1 (Ul( )j+1),vi) + (w2 (U2< )jﬂ),vi)] i=12..,N (1)
where U}, = U7}, represents the (1) iteration of the PS, U1 = U7}, represents the (I +

1) iteration of the CS and (_f] = (_J}”represents the CS for the previous step j, hence Eq.(21)
can be written as:
UG = gi®) (22)

6. Existence and Uniqueness of Solution

Before we give the illustrative examples of the proposed method, it is necessary to prove the
uniqueness for solutions of the DWF(Eq.(9) — Eq.(12)). Moreover, we show that the sequence
of CS is convergent.

Theorem 1 (Existence and Uniqueness of Solution )

The DWF (Eq.(9) — Eq.(12)) with fixed point j (0 <j < NT — 1) and for At “sufficiently”
small, the problem has a unique solution U™ = (UM U} =
(UL, UL, ..., U, US, Uy, ..., USY) and the sequence of CS is convergent in R2.

and G0+ = (T0D, 7) = @40, 08, ., T4, T4, 05, ., T4)
Are two CS of Eq. (21),

ie

(ﬁj(ﬁl) - T, ﬁi) + Ata(ﬁj(ﬁl), ﬁi) — At (Uzg.l:ll), vi) + At (Ulg.‘jf), vi) =

(o (05 )+ o (0. )] .
g4Y — T, 3,) + ata (TC,3,) - ac (0,50 ) + ot (0,49 v,) =

( j+1 J l) ( j+1 l) ( Z2j+1 l) ( 1j+1 l)

At [(W1 (l_ll(l)jﬂ),vi) + (Wz (Uz(l)jﬂ),vi)] ,i=12,..,N (24)
By subtracting Eq.(24) from Eq.(23), and setting ©; = L_fj(ﬁl) —fg(i“;l) in the obtained

equation and using assumption (ii-b), it yields

— 2 = o
=(1+1) —=(1+1) 7(1+1) F+1) 73(1+1) F(1+1)
||Uj+1 - Uj+1 ”0 + Ata (Uj+1 - Uj+1 ’ Uj+1 - Uj+1 ) =

iy (000 = T0 | |t = 580 ) + et ([0 h — TD,,

O] 2+1) _ 70+1)
< AtL ||Uj+1 - Uj+1||0 ||Uj+1 - Uj+1

The 2™¢ term in the LHS is nonnegative (assumption (i-b) ) and then utilizing inequality of
the Caushy Schwarz on the RHS of above inequality, it yields that

||H(L7-(l+1)) _ H(l:]>.(l+1))|| _ ||L—,>_(l+1) _ ﬁ(lﬂ) ”0 <a ”L—f_(l) _ l:]’gl)

(1+1) =(1+1)
|'|U2j+1 _U2j+1 )

”0 ,  Where L =max(L4, L)

j+1 j+1 j+1 j+1 j+1 ~ Vi ”0’ where a = AtL .

The contractive of H (i.e. a« < 1) is obtained from the sufficiently small value of At. Hence
the DWF (Eq.(9) — Eq.(12)) has a unique solution. On the other hand, U® e R?2, v and
g(U®) = UV, v [, then by theorem 3 in [20], the {U"} is convergent to a point U in R?.
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7. Stability and the Convergence of the Method

In this section, to study the convergence of the APPS for the DWF (Eq.(9) — Eq.(12)), to
solution of the WF (Eq.(5)-Eq.(8)), firstly the stability of the discrete solution must be
studied.

7.1 Stability
Lemma 2: For sufficiently small At, the following are satisfied

|T7II; < cl(as) Vj=012,..,NT —1,NT
AT, < €(ds), BTy 1||U]11 U7, < €(ds) and ae YT 7| < 5,

Proof: By substituting v, = ZAtU{lj+1 , Uy = ZAtUglj+1 in (Eq. (9)- Eq. (11)), rewriting the

terms in the L.H.S of the obtained equation by the norms, then adding the resulting equation
together, it follows that

o ally = ol # o = o+ ol = o I+ = v [+
28t [al (U?Hl’ U{lj+1) +a (U§j+1’ U§j+1)]
=28t [wy (U, UT ), )+ we (U240 U8, (25)
Since
|T7I; = ||U1"j+1||2 + ||U§j+1||2 Vj=01,..NT -1 (26)
[ | = vz, || +||uz, || ,Vj=0,1,..NT —1,NT 27)
a(Uhy, URy) = a3 (U2, UF ) + a2 (U2, UF ) (28)

Substituting (Eq.(26)- Eq. (28)) in Eq. (25), we get
- 2 — 2 - — 2 —> —
U7 ally = U7, + 1073 = Ul + 2t (U}, Ufss)
= 20t [wy (UF, UR,,, )+ wa (U2, U2, )] (29)

Now, from the assumptions on w; and w, , one can write the term in R.H.S of Eq. (29) as
2
|28t [wy (U7, 02,) +wa (UF ), 02, )] < [fﬂnfjdx +[o|Ut,] dx] +
2 2 [ 2
At [dlfQ |U1”j+1| dx +d,f |U1"j+1| dx] +At| [ on5dx + [ |U§j+1| dx] +

2 2 - 2 2
At [dzfQ U2,| dx + daf o U3, dx] <Ac|d; +ds||up,,, || +do+d ||U;lj+1||0]

(30)
where d; =1 + 2d,,d, =1+ 2d,.

2
” <2| - U},
Tl

,for r=1,2

o N

Smce|

Tj+1
107401, = 20T = 71, + 207,
Substituting these inequalities in Eq. (30), we obtain
24t [Wl (U1nf+1‘ U1n1'+1) W (U'?jﬂ’ U'?J'H)]
<ae[a, +2ds g, vz |+ 2a o ]

Tj+1
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~ 2 2
+At [dz +2dy |, - U3+ 2ds||ug, ||O] (31)
Then using Eq.(31) in Eq.(29), it follows that
(1Tl = 1T, + 157 = T7Il| + 28¢a(T7 0, U1 <
~ — — 2 — 2 ~ ~ ~
8¢ [ds + ds O, ~ 7] + 8¢ TF I ds = (ds + @), ds = 2max(dsod)  (32)

Taking the summation of Eq.(32) for j = 0 toj = | — 1, drooping the common terms, and
using the assumptions on a(.,.), it becomes

7, = N8l + 25857 = O, + 28¢ ZfzbalTta, 1) <

~ — —_ 112 =12
ae[Sizhda + ds SR - O, + e 2z asl| 7] )
since [(2)-0 (0} 07)) = (08, 0)] = Z{=a(Ufa U]

By substituting this equality in Eq.(33), with d, = d;l At < d;NTAt = d;T > 0, and
adding the common terms, one can conclude that

1G]l + (1 - dst) 525103, - 7, + 286 £izb (U7, Uf) - 2¢a (T3, Uf) <

2
ditdsbe BT O7| + 108 (34)
since [|Ug]|, < d - ||Ug|, < d then from the assumptions a(.,.), it follows that

20ta (U, UF) < 2At|a(UF, UY)| < 2Ata||UF ||1 < 2Atad = dg and | U} ||0 =d,

Choosing At small such that dsAt < 1 , gives that 1 — d<At > 0, now substituting these
results in Eq.(34), to obtain

|T7II; + (1 - dsae) S| TR, — TPIIC + 24 £z a(TF, TF)
< d + +dsAt ﬁ;})“ﬁfllz , where, ds = d, + dg +dg =0 (35)

Now, since the 2"¢ and 3™¢ terms in L.H.S of Eq. (35) are positive, hence it can be written
it in the following form:

U, = ds + +dsae X[ U7l
Now, by applying the discrete Bellman - Gronwalls inequality [19], the above equality gives
|gr || < C%(ds), foreveryl =0,1,..,NT soitis true for each j,j = 0,1,...NT — 1, NT, i.e

||an||0 < ¢(ds)vj=0,1,..,NT —1,NT (36)
Then,
AeY NS 1||Un|| < C(ds), where C(ds) = ANTC,(ds) 37)

Using this result in R.H.S of Eq.(35) with the properties that the 1™¢ and 3™¢ terms in
L.H.S of Eq.(35) are posmve it becomes (for [ = NT)

YNSY TR, - U”|| < €(ds), where C(ds) = (ds + dsC(d))/(1 — dsAt) (38)
Flnally the 1“ and Z”d terms in Eq.(35), it becomes (for [ = NT)
AtZ |U”|| < d7 where d, = 2 (39)
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7.2 Convergence
In this section, we prove that the APPS un = (UL, U for the DWF (Eq.(9) — Eq.(12)), is

convergent to the solution U= (U1, Uy,) of the WF (Eq.(5)-Eq.(8)).
The following definitions for the functions " almost everywhere on | " are useful in the proof
of next theorem, so let

Ur() =0t el Vj=01,., NT

Ur(t) =U%,te€I"Vj=01,.,NT—1

Let 1711(1:) be an affine function on each Ij”, such that

Un(t) =U0"vj=01,.. NT.

Theorem 3 : The discrete APPS U™(t), U™(¢) and U™(¢) converge strongly in (L2(Q))?, as
n — oo

Proof: From lemma 2 ||l7“||2 < Cl(&s) and ||l_f”||2 <d,vj=01,..,NT—1.

Then (177122 g0 1200 - 17 20 1021,

inequality Eq.(41) gives

AN T7, - O, < Atc(ds) - 0, as At - 0., hence

Un — U™ is strongly (ST) in (L2(Q))? (40)
By using Alaoglus theorem in [19], there are subsequences of ({ﬁ’f},{ﬁf},{ﬁ}‘}). Using

the same notations again, s.t un - U, 1713 — U, U™ - U which are weakly convergent in

(L2(Q))? and in (L2(1,V))>.

Then by using the first compactness theorem [21], to get U™ — U ST in (L2(Q))2. Also U™ —

Uand U™ - U ST in (L2(Q))2

Now, let {VN}N=1 be a sequence of subsequence of V, such that vV & = (v, v,) € V, then by

L2ayy’ ||U+||L2(1v) ”Un”Lz(IV) are bounded

L2’ L2(Q)’

using the Galerkin approach, for each @ €V, there is a {By} With By = (Vin, Von) €
Vv, VN, s.t By — # ST in V then By — % in (L2(Q))2.
Consider that 7(¢) € (C2[0, T])? for which 7(T) = 7#(T) = 0 and 7(0) = 0,7(0) = 0
Let 7j™(t) be a piecewise continuous interpolation (PCI) of n(t) w.r.t I/*, and let
£ = Bii(D& §" = Byi™(®), with
En = Byt (¢),t € I,j = 0,1,...,NT — 1,8y € Vy
£ = Dyiit(t),t € I,j = 0,1, ..., NT — 1, By € Vy
En = Pyiin(t),t € I, By € Vy .
By substituting v = 5};1 in (Eq.(9)-Eq.(11)), then summing both sides of the obtained
equations for j = 0 to j = NT — 1, and using the discrete integration by parts (DIBP) for the
15¢ term in the L.H.S of (Eq.(9)-Eq.(11))

— [ U, €1 )de + [ [y (UR, €8 — (g(eD U, E1)]dt =

ST W (62, UR), €7, dt — (U, EX(TY) + (U, €1(0)) (41)
— [ (UR, Rt + [ [as(UF, &84 + (gt UR, )] de =

[T (wa (67, U, €8) dt — (U, €3(T)) + (U3, €3(0)) (42)
Also since

””(t) - 7i(t) in (C(I))2 c (L2())?, Vy » B STin (L2(1,V))? and in (L2(Q))?, then
& = Byijh - Bij = f ST in (L2(1,V))? (and in (L2(Q))?), vn7"(0) - #7j(0) ST in
(L2(Q))?%, and then (€M) = By7i* » B 7 = b7 STin (L2(I,V))? .
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and since t" - ¢t ST in (L°(), U}, U, U"—>U ST in (L2(Q))% , Ur - U° ST in
v, 17{3 — UT ST in V .Then from these convergence, one can get that

T ‘. T
= J, Wy v)m(®)dt + [ [a1(Uy,v1) — (g(®) Uz, v)ni(B)dt =

fOT(Wl (t, Uy, v) ni(O)dt — (U], vy (t) + (U7, v1)n1(0) (43)
- fOT(Uz» ) M (E)dt + fOT[az Uz, v5) + (g(D) Uy, v2) I, ()dt =
fOT(Wz (£, Uz), v2) 2 ()dt — (U3, v2)1n2(t) + (U3, v2)12(0) (44)

Then the following cases appear:

Case 1: Choose n,(t) € D[0,T],i.en,(0) =n,(T) =0,vr = 1,2 , substituting (Eq.(46)-
Eq.(47)), using integration by part (IBP) for the 15¢ terms in the L.H.S

fOT(Uw vy (D)dt + fOT[a1(U1» v;) — (g(O)Uz, v1)]ny (O)dt =

foT(W1(t; Uy),v1) n1(D)dt (45)
fOT(UZt' vy) Mo (t)dt + fOT[az (U2, v2) + (gD Uy, v2)]n2 (D)dt =
fOT(Wz (t,Uz), v2) np(t)dt (46)

which gives that

(U1e,v1) + a1 (Uy, v1) — (g0 Uz, v1) = (W1 (£, Up), v4)

(Uze, v2) + a3 (Us, v2) — (g(0) Uy, v2) = (W (8, Uy), v2)

which gives that U = (U,, U,) is a solution of (Eq.(5)-Eq.(7)), a.e. on I.

Case 2: Choose n,.(t) € €[0,T], such that n,-(T) = 0 and n,.(0) = 0,vr = 1,2 , using IBP
for the 15¢ terms in the L.H.S of (Eq.(45)-Eq.(46)), we obtain

- fOT(Up vy) m (B)dt + foT[al(Up v1) — (9O Uz, v1) 1 (B)dt =

fOT(W1 (¢, U1), v1) n1(©)dt + (Uzo, v1)11(0) (47)
- fOT(Uz'Vz) np(t)dt + foT[az (U, v2) + (g Uy, v2) 2 (B)dt =
fOT(Wz (t, Uz), v2) n2(0)dt + (Uzg, v2)12(0) (48)

Now, by subtracting (46) from (50) and (47) from (51) we get

(Uro, v )1, (0) = (U2, v )0, (0) , V7 = 1,2

Thus

(UrO'vr) = (Ugivr)rv r=12

which give the ICs (Eq.(6)-Eq.(8)) are held, then the limit point U is a solution to the WF
(Eq.(5)-Eq.(8)).

8. Numerical Examples

In this section, two numerical examples are carried out to show the accuracy of the
proposed method.
Example 8.1:

LetQ =Qx1,Q2=(0,1)x(0,1),I =1[0,1], the CNPSVC are given as

_ 1/,Y0U1] _ x2 0.7x1x
Upe axl[(1+x1+e 2)6x1] axz[(1+x +e*2) ]+(1+e %2,
—(x1 + 2x1x, + 31x2% + 11)U2 = wl(x t,U,)
au U
Uzt = [(1 + xl) ax:] a 0x, [( 1+x2 2] + (el+x1+x2)U
+(x1 + 2x,%, +31x2 + 1)U, = Wz(x t,U,),
with the ICs

U (%,0) = U2(%) = 0.1x;x,(1 — x;)(1 — x,)Vcose™t ,inQ
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Up(%,0) = U3 (%) = x7x5 (1 — x)*(1 — x5)%e”

And the BCs,

Uy(%,t) =0,0n0QxI and U,(x,t) =0,0nd0 X I

Such that the right hand term w, (¥, t, U;) and w, (X, t, U,) are given as

wy(®,t,Uy) = x1x,(x; — 1) (x, — 1) [0.1\/@ (e°'7x1x2 — sin (0.1x1x2 (x; — D(xy —
1)y/cos(e™) ) + 1) —x12 (%1 — D(xp = D(F + 2000 x, + 315 + 11)e ™03 +
0.05¢ ( sine”) )] 0.1{(2x,e + 1) [xl(xl — 1)/cos(et) (2x, — 1)] (0 S5e /2 +

cos(e—f
1) [xz (xy — 1)y/cos(e ) (2x; — 1)]} — 0.2,/cos(e~) [xy (xz — 1) (x1 ve 2t 1)
xq (2 — 1)(x2 +e*: + 1)]
and
wy (%, t,U,) = x2x2 (%, — 1)%(x, — 1)2e7 03t (eXat22+1 — 0.1) — X1 +1[2x2 (x, —
127034 (62, (o, — 1) + 1)] — 2x,e1+ x,x2 (x, — 1)%e703¢(2(2x2 — 3%, + 1))] -
22,3 o0, x2 (3, — 1)%e703¢(2(2x2 — 3x, + 1))] — ¥+ 1 [2x2 (x; — 1)2e 03¢ (6x,(x; —
1) + D] = x5 (g — Dz — Doxgx, (1 — Do — De~ % cos(xfxg (x — 1) (x, —
1)2e7938)] —xy x5 (¢, — 1) (xy — D[0.1((x2 + 223, + 31xZ + 11))y/cos (e7) |
The exact solutions of the above system are
U (%, t) = 0.1x;x,(1 — x)(1 — x3)4/cos (e7t), Up(X,t) = x2x5(1 — x1)?(1 — x,)%e™ 03¢
This problem is solved by the MGIM with M=9, NT=20 and T=1, then the APPS U™ and the

EXS U at x; and x, at the time £ = 0.5 are shown in Table 1 and Figure (1), the absolute
maximum error is 0.0023.

Table 1: The Exact, the Approximation solutions and the absolute errors

x| x EXS ppes || AEEEE ] B2 APps | Absolute
error error
01 | 01 | 00007 | 00005 | 00002 | 01 | 01 | 00001 | 0.0001 0.0000
03 | 01 | 00017 | 00012 | 00005 | 03 | 01 | 00003 | 0.0005 0.0002
05 | 01 | 00020 | 00014 | 00006 | 05 | 01 | 00004 | 0.0007 0.0003
07 | 01 | 00017 | 00012 | 00005 | 07 | 01 | 00003 | 0.0005 0.0002
09 | 01 | 00007 | 00006 | 00001 | 09 | 01 | 00001 | 0.0001 0.0000
01 | 03 | 00017 | 00011 | 00006 | 01 | 03 | 00003 | 0.0005 0.0002
03 | 03 | 00040 | 00025 | 00015 | 03 | 03 | 00017 | 0.0022 0.0005
05 | 03 | 00048 | 00030 | 00018 | 05 | 03 | 00024 | 0.0030 0.0006
07 | 03 | 00040 | 00027 | 00013 | 07 | 03 | 00017 | 0.0021 0.0004
00 | 03 | 00017 | 00013 | 00004 | 09 | 03 | 00003 | 0.0004 0.0001
01 | 05 | 00020 | 00013 | 00007 | 01 | 05 | 00004 | 0.0007 0.0003
03 | 05 | 00048 | 00028 | 00020 | 03 | 05 | 00024 | 0.0030 0.0006
05 | 05 | 00057 | 00033 | 00024 | 05 | 05 | 00034 | 0.0041 0.0007
07 | 05 | 00048 | 00030 | 00018 | 07 | 05 | 00024 | 0.0029 0.0005
00 | 05 | 00020 | 00014 | 00006 | 09 | 05 | 00004 | 0.0006 0.0002
01 | 07 | 00017 | 00011 | 00006 | 01 | 07 | 00003 | 0.0005 0.0002
03 | 07 | 00040 | 00024 | 00016 | 03 | 07 | 00017 | 0.0022 0.0005
05 | 07 | 00048 | 00028 | 00020 | 05 | 07 | 00024 | 0.0029 0.0005
07 | 07 | 00040 | 00026 | 00014 | 07 | 07 | 00017 | 0.0020 0.0003
09 | 07 | 00017 | 00012 | 00005 | 09 | 07 | 00003 | 0.0004 0.0001
01 | 00 | 00007 | 00005 | 00002 | 01 | 0.9 | 00001 | 0.0001 0.0000
03 | 00 | 00017 | 00012 | 00005 | 03 | 09 | 00003 | 0.005 0.0002
05 | 00 | 00020 | 00014 | 00006 | 05 | 09 | 00004 | 0.0006 0.0002
07 | 00 | 00017 | 00012 | 00005 | 07 | 09 | 00003 | 0.0004 0.0001
09 | 09 | 00007 | 00006 | 00001 | 09 | 09 | 00001 | 0.0001 0.0000
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Figure 1: Shows the Exact and the Approximation Solutions

Example 8.2:
LetQ =Qx1,Q=1(0,1) x (0,1),I =[0,1], the CNPSVC are given as

0 au. a au >
Uy, — E [x1 a_xj " 9%, [xz a_x:] +(x12)Uy — (1 + Xx2)%U, = wy (%, 8, Uy),

Uz, — aixl[ f% - 6672 x5 Z_Zj] + (23U, + (31 + x2)2U; = wy (X, £, Uy),
where the ICs are

Uy (%,0) = U (%) = sin(xyx,)(1 — cos(1 — x;,)(1 — x3))

Uy (%,0) = Up(X) = x3v/x1(1 — ) (1 = x3)

and the BCs are,

Uy(%,t) =0,0n0Q x I, Uy(%,t) =0,0ndQxI

such that the right hand term w, (X, t, U;) and w, (%, t, U,) are given as

w (X, t,Up) = e”tcos(xlxz)[O.S(xl + xz)(cos((xl — 1D (x, — 1)) — 1)

— (3123 + x,%F — 2x325)sin( (g — 1) (x, — 1))] = 0.5[(x; + x5 —

2)em sin(ryx)sin((x; — D, — D) + e VEmxi 0 + )2 ~ D — 1]
—0.5e™ sin(x25) [ (1 (x2 + x5 — 2205 + 1) + x5)cos((x; — D (x, — 1))
+(Oq (2 + x20, + D) + 1)) (cos (e = D, — D)= 1) sin(e™sin(xyx,)(cos((xy —

D, — 1) -1)/2)]
&

w,(Z,t,Up) = 0.5e %] (x3 — 1) (W — 1) x5 — x2(x3 — De Vg [2.375 x5 +

107 - 1| —xxf (/% - Det [3\/;15 405 ("—V;)l — 5y (xf — De~ v [0.145 +

x5 (\x; — 1)] — 0.5e™ sin(x,x5) (%, + x2)?[(cos((x — D(x, — 1)) —1)] —
0.5x2x5 (V& — e [9y/x3 — %} — 05225 (Vi — Vet [9y/aF —

0.25(Vx; — 1)/Jx—13] — x5 (¢ - D(x, — De tvx; [t + 0.5cos ((xg(xf — DX —
1)e‘t2\/x_1)/2)]

The exact solution of the above system is
> : mt
U,(%,t) = sin(x;x;) (1 —cos((1—x)(1 — xz))) e /2

U3 = x5 - )1 -y ¢ /.
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This problem is solved by the MGIM with M=9, NT=20 and T=1, then the APPS U™ and the

EXS U at x, and x, at the time £ = 0.5 are shown in Table 2 and Figure (2), the absolute
maximum error is 0.0022.

Table 2: The Exact, the Approximation solutions and the absolute errors

z | EXS Apps | Absolue o | Exs Apps | Absolute
error error
01 | 01 | 00075 | 00061 00014 | 01 | o, | 00000 | 00008 0.0008
03 | 01 | 00139 | 00129 00010 | 03 | 04 | 00000 | 0.0011 0.0011
05 | 01 | 00120 | 00115 0.0005 | 05 | 04 | 00000 | 0.0008 0.0008
07 | 01 | 00061 | 00058 0.0003 | 07 | 04 | 00000 | 0.0004 0.0004
0.9 | 01 | 00009 | 00007 0.0002 | 09 | 04 | 00000 | 0.0001 0.0001
01 | 03 | 00139 | 00128 00011 | 01 | 03 | 00001 | 0.0003 0.0002
03 | 03 | 00254 | 00253 00001 | 03 | 03 | 00002 | 0.0006 0.0004
05 | 03 | 00218 | 00219 00001 | 05 | 03 | 00003 | 0.0006 0.0003
07 | 03 | 00110 | 00108 00002 | 07 | 03 | 00002 | 0.0004 0.0002
0.9 | 03 | 00016 | 00012 0.0004 | 09 | 03 | 00001 | 0.0001 0.0000
01 | 05 | 00120 | 00113 0.0007 | 01 | 05 | 00011 | 0.0003 0.0008
03 | 05 | 00218 | 00216 00002 | 03 | 05 | 00019 | 0.0008 0.0011
05 | 05 | 00185 | 00183 00002 | 05 | 05 | 00022 | 0.0011 0.0011
07 | 05 | 00093 | 00088 0.0005 | 07 | 05 | 00020 | 0.0011 0.0009
0.9 | 05 | 00013 | 00009 0.0004 | 09 | 05 | 00009 | 0.0006 0.0003
01 | 0.7 | 00061 | 00056 0.0005 | 01 | 0.7 | 00034 | 0.0019 0.0015
03 | 07 | 00110 | 00104 0.0006 | 03 | 07 | 00057 | 0.0036 0.0021
05 | 0.7 | 00093 | 00084 0.0009 | 05 | 0.7 | 00066 | 0.0045 0.0021
07 | 0.7 | 00046 | 00036 00010 | 07 | 07 | 00059 | 0.0043 0.0016
0.9 | 0.7 | 00006 | 00001 0.0005 | 09 | 07 | 00027 | 0.0022 0.0005
01 | 0.9 | 00009 | 00006 0.0003 | 01 | 09 | 00037 | 0.0028 0.0009
0.2 | 0.0 | 00014 | 00009 00005 | 02 | 00 | 00052 | 0.0041 0.0011
03 | 0.9 | 00016 | 00010 0.0006 | 03 | 00 | 00063 | 0.0051 0.0012
05 | 0.9 | 00013 | 00006 0.0007 | 05 | 09 | 00073 | 0.0060 0.0013
07 | 0.9 | 00006 | -0.0000 | 00006 | 07 | 0.0 | 00065 | 0.0055 0.0010
09 | 0.0 | 00001 | -00002 | 00003 | 09 | 09 | 00030 | 0.0027 0.0003

Figure 2 Shows the Exact and the Approximation Solutions

9. Conclusions

The approximate method “MGIM “has been proposed for solving CNPBVPVC. Two
numerical examples have been given to examine the efficiency and the accuracy of the
MGIM. The results in figures 1 and 2 show the maximum errors that arise from the
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differences between the approximate and the exact vector solutions for the considered
problems. It is observed that the proposed method is efficient and accurate. The transformed
system of equations (the CGLAS) was solved by the ChDe. This method is faster than the
other methods like gauss elimination and the Haar wavelets methods, because it saves a lot of
number of calculations. The GFEM was applied easily and the elements in the CGNAS are in
analytic form (exact) comparing with other methods that the elements are in approximate or in
a full discrete form. The uniqueness of the APPS of the DWF was proved. Furthermore the
stability and the convergence of the method was demonstrated. It is important to mention here
that the approximate vector solution are shown in the given figures at the value of £ = 0.5, in
fact the same results with same accuracy were obtained at any value of ¢ provided this value
belongs to I.
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