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Abstract

In this paper, we provide some types of u-Kc-spaces, namely, u-K(ac)-
(respectively, u-aK (ac)- , pu-aK(c)- and u-6K(c)-) spaces for minimal structure
spaces which are denoted by (m-spaces). Some properties and examples are given.
The relationships between a number of types of u-Kc-spaces and the other existing
types of weaker and stronger forms of m-spaces are investigated. Finally, new types
of open (respectively, closed) functions of m-spaces are introduced and some of
their properties are studied.
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1. Introduction
The concept of Kc-space was introduced by Wilansky [1], that is "A topological space (X,T) is
said to be Kc-space if every compact subset of X is closed". Also, many important properties were
provided by that study, e.g., “Every Kc-space is T;-space” and “every T,-space is Kc-space”. In 1996,
Maki [2] introduced the minimal structure spaces , shortly m-spaces, that is “ A sub collection p of
P(X) is called the minimal structure of X, if @ ey and X eu, (X, p) is said to be m-structure
space”. The elements of p are called p-open sets and their complements are u-closed sets, which is a

generalization of topological spaces. Popa and Noiri [3] studied the m-spaces and defined the notion
of continuous functions between them. In 2015, Ali et al. [4] defined the concept of Kc-space with
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respect to the m-space to obtain a new space which they called the u-Kc-space. A weaker and stronger
form of open sets plays an important role in topological spaces. In 1965, Najasted [5] introduced the
concept of a-open sets as a generalization of open sets. That is, let (X, T") be a topological space and a
nonempty subset A of X is said to be a-open set, if A S Int(Cl( Int(A))). In 2010, Min [6]
generalized the concept of a-open sets tom-spaces. On the other hand, in 1968, Velicko [7]
introduced the concept of @-open sets. That is “Let (X, T) be a topological space, N' € X, a point
b € X is said to be an @ u-adherent point for a subset V" of X, if & n CI(G)=® for any open set G of
X and b € V. The set of #-adherent point is said to be an @-closure of Nwhich is denoted by
OCL(IV). A subset Mof X is called 6-closed set if every point to V' is an 8-adherent point. Also, in
2018, Makki [8] defined &-open sets in m-space. The aim of the present paper is to introduce and
study new type of u-Kc-spaces, namely, u-K(ac)- (resp. pu-aK(c)- , u-aK(ac)- and u-6K(c)-)
spaces by using the concept of a-open, respectively 6-open sets, with respect to the m-space. We
study the basic properties of each space and give the relationships between them. Also, we introduce
new kinds of continuous, open (respectively closed) functions on m-spaces and investigate their
properties.

2.Preliminaries

Let us recall the following definitions, properties and theorems which we need in this work

Definition 2.1 [3] Let X be a non-empty set and P(X) be the power set of X. A sub collection u of
P(X) is called the minimal structure of X, if @ e u and X eu, (X, p) is said to be m-structure space
(shortly, m-spaces). The elements of pare called p-open sets and their complements are u-closed sets.

For a subset B in an m-space on (X, i), the interior (respectively, closure) of B denoted by uint(B)
(respectively, uCl(B)) is defined as follows:

ulnt (B)=uU{U:U <€ B,U € u} and uCl(B)=n{F:B < F,F¢eu}.

Remark 2.2 Note that according to a previous study [9], ulnt (B) (respectively, uCIl(B)) is not
necessarily u-open (respectively, p-closed), but if B is p-open then B = plnt (B), respectively, and if
B is p-closed, then

B =uCIl(B).

Definition 2.3 [10] an m-space (X, ) has a property £ (respectively Y) if the union (respectively
intersection) of any family (respectively finite subsets) of u also belongs to p.

Definition 2.4 [6] A subset A of an m-space (X, u) is said to be an au-open, if
A € pInt(uCl(uint(A))).The complement of au-open set is called au-closed set or, equivalently,

uCl (pint(uCL(A))) < A.

Definition 2.5 [6] An m-space (X, u) has a property &Y, if the intersection of finite au-open sets is an
au-open setin X.

Remark 2.6 [6] From Definition 2.4, it is clear that every p-open (respectively u-closed) set is an au-
open (respectively au-closed) set.

Definition 2.7 [10] Let (X, ) be an m-space. A point x € X is called an au-adherent point of a set
Ac Xifandonlyif GnA =+ @ forall G € usuchthat x € G .The set of all au-adherent points of a
set A is denoted by aulCl(A), where auCl(A) =N {F:A € F,F is au-closed set}.

Proposition 2.8 [6] A subset F of m-space X is ap-closed set in X iff F = auCL(F).

Definition 2.9 [7] Let (X, u) be an m-space, A € X. Then a € X is said to be au-interior point to A
iff € U< A, for some au-open set U and x € U. The au -interior point of a set A is all au-
interior point to A and denoted by auint(A), where auint(A)=U{U:Uc A, U is au-open set}.
Proposition 2.10 [6] any subset of m-space X is ap-open set iff every point in it is ap -interior point.
Remark 2.11 [6] If (¢, u) is an m-space, then:

1. The union of any family of au-open sets is au-open set.

2. The intersection of any two ayu-open sets may be not au-open set.

Definition 2.12 [12] An m-space, (X, u) is called u-compact if any u-open cover of X has a finite
subcover. A subset H of an m-space is said to be p-compact in X, if for any cover by p-open of X,
there is a finite subcover of .

Proposition 2.13 [11] Every p-closed set in u-compact space is an u-compact set.
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Definition 2.14 [6] An m-space (X, u) is said to be au-compact space if any au-open cover of X has
a finite subcover. A subset B of m-space X is called au-compact, if any au-open set of X’ which
covers B has a finite subcover of B.

Remark 2.15 Any au-compact is u-compact set. However the converse is not necessarily true as
shown by the following example.

Example 2.16 LetR be the set of real numbers and X be a non-empty set such that X={x} U
{r:r € R}, where x € X. Also u={¢, X, {x}}, then C={{x, r}:r € R} is an au-open cover to X.

Since{x, r}c uint (,uCl(,uInt({x, r}))) = X, so {x, r} is an au-open set. Now, C is an au-open

cover to X, but it has no finite subcover to X, since, if we remove {x, 50} then the reminder is not
cover X (cover all X except 50), and it is infinite cover. Hence, X is not au-compact space and it is
clear that X is u-compact space, since the only p-open cover of X is X itself, which is one set, that is,
a finite open cover to X.

Definition 2.17 [10] An m-space is called an u-T;-space, if for any two points a, b in X', a # b there
is two u-open sets N,M such thata € N,butb € Nand b € M buta ¢ M.

Proposition 2.18 [4] An m-space is u-T; -space if and only if every singleton set is u-closed set,
whenever X has S property.

Definition 2.19 [10] An m-space is said to be au-T;-space, if for every two t points ¢, d in X, there
are two au-open sets X, withc € X, butc ¢ H andd € H butd & XK.

Remark 2.20 [10] Every u-T,-space is au-T;-space.

Definition 2.21 [10] An m-space (X, ) is called u-T,-space (respectively au-T,-space), if for any
two distinct points x,y in X, there are two u-open (respectively au-open) U,V,such that x € U,y €
V,andU NV = Q.

Definition 2.22 [4] An m-space (X, u) is said to be pu-Kc-space if any u-compact subset of X is p-
closed set.

Example 2.23 Let R be the real numbers, (R , uy) is the usual p-space which is u-Kc-space.
Proposition 2.24 [12] Every u-compact set in u-T,-space, that has the property 8 and Y, is u-closed
set.

Remark 2.25 [4]

1. Every u-Kc space is u-T;-space.

2. Every u-T,-space with the property 8 and Y is u-Kc-space.

Definition 2.26 Let f: (X, u) — (Y, u") be a function. Then f is called:

1. m-continuous [15] iff for any u’-open IV in , the inverse image f~1(JV") is an p-open set in X.

2. am-continuous [6] iff for any u'-open set M in Y, the inverse image f~1(M) is an au-open set
in X.

Proposition 2.27 [14] The m-continuous image of u-compact is u'-compact.

Definition 2.28 [4] A function f: (X, u) — (Y, u') is said to be m-homeomorphism, if f is injective,
surjective, continuous and £~ continuous. If there exists an m-homeomorphism between (X, u)
and (Y, u") then we say that (X, 1) m-homeomorphic to (Y, u').

Definition 2.29 [13] Let (X, u) be m-space, F be a subset of X and x € X. A point x is called an Ou-
interior point of F if there isC € u such that x € ¢ and x € uCIl(C) & F. And @ pu-interior set
which is denoted by Ouint(F) is the set of all Gu-interior points. A subset F of X is called an du-
open set if every point of F isan & u- interior point.

Definition 2.30 [13] Let (X, u) be m-space, H € X, a point b € X is said to be an &u-adherent point
for a subset H of X, if H n uClL(G)= @ for any u—open set G of X and b € H. The set of &u-adherent
point is said to be an & u-closure of H, which is denoted by 6uCl(H). A subset H of X is called Ou-
closed set if every point to H is an 8u-adherent point.

Example 2.31 Any subset of a discrete m-space (R, up) on a real number R is 6u-closed set and Ou-
open set.

Definition 2.32 [8] An m-space (X, ) is said to have the property 8Y (respectively 68) if the
intersection (respectively union) of any finite number (respectively family) of 8u-open sets is an Gu-
open set.

Remark 2.33 [8] If an m-space (JC, i) has @Y property, then every 8u-closed is an u-closed.
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Definition 2.34 [8] Let (X, u) be m-space, X is said to be 8u-compact if any 8u-open cover of X has
a finite subcover. A subset A of an m-space (X, ) is said to be 8u-compact if for any 6u-open cover
{V + a € I} of X and cover A then there is a finite subset {a,ay, @3, ..., @} such that A € Ui, Vg, .
Example 2.35 Let (R, uinq) be an m-space where u;,4 be indiscrete m-space on a real number R, so
is Bu-compact.

Remark 2.36 [8] Every u-compact with the property 68 is 8 u-compact.

Definition 2.37 [8] An m-space (X, ) is called 6u-T, -space, if for every two points a, b that belong
to X, a # b, there is Ou-open sets M and N containing a and b, respectively, suchthat M NN = @ .
Definition 2.38 [8] Let (X, u) and (Y, u") be two m-spaces and f: (X,u) — (Y, u") be a function.
Then f is called:

1. #m-continuous function iff for any u’-closed (u’-open) subset K of Y, the inverse image f~1(XK) is
Bu-closed (8u-open) set in X.

2. 8*m-continuous function iff for every Ou’-closed (6u'-open) M subset of Y, the inverse image
f1(M) is p-closed (u-open) set in X.

3. 8"*m-continuous function iff for anyV" 8u'-closed (6u'-open) IV subset of Y, the inverse image
fL(V) is Gu-closed (Gu-open) set in X.

4. Om-closed function if f(F) is 6u'-closed set in Y for each u-closed subset F of X.

5. 6*m-closed function if f(F) is u'-closed set in Y for each 6u-closed subset F of X.

Proposition 2.39 [8] The 6 **m-continuous image of Ou-compact is 8 u'-compact.

Proposition 2.40[8] If f: ()¢, u) — (Y, ") is an m-homeomorphism and B is an Ou'-compact set in
Y then f~1(B) is an u-compact set in X, with X has the property B.

3. Strong and weak forms of p-Kc-spaces

In this section, we provide some weak forms of pu-Kc-space, namely p-K (ac)-space, p -aK (c)-space
and p-aK (ac)-space. In addition, we introduce p-6K (c)-space as a strong form of p-Kc-space.
Definition 3.1 An m-space (X, u) is said to be p-K (ac)-space if every u-compact set in X is an au-
closed set.

Now, we give some examples to explain the concept of p-K (ac)-space.

Example 3.2 The discrete m-space (X, up ) is u-K (ac)-space.

Example 3.3 Let X = {1,2,3}and let u = {@, X,{1}}. Then (X, ) is not u-K (ac)-space, since there
exists an u-compact set {1, 2} in X but it is not au-closed.

To show that Definition 3.1 is well defined, we give the following example to illustrate that there is no
relation between the concepts of u-compact set and au-closed set.

Example 3.4

1. In the discrete m-space (R, up) where R is a real number, Q is the rational numbers subset of R,
Q is au-closed but not p-compact set.

2. In the indiscrete m-space (R, Uinq), Q is u-compact but not au-closed set.

Remark 3.5

1. Every u-Kc space is p-K (ac)-space.

2. In discrete m-space, the two definitions of u-Kc-space and u-K (ac)-paces are satisfied.

The following example indicates that the converse of Remark 3.5 part (1) is not necessarily hold.
Example 3.6 Let (X, u) be an m-space, X = {a,b,c}, u = {@, X, {a}}, so {c} is u-compact since {c}
is finite set. Also it is au-closed set since uCl(uint(uCl{c})) = @ < {c},s0 X is p-K (ac)-space, but
not u-Kc-space since {c} is not u-closed set.

Proposition 3.7 An ap-compact subset of ap-T,-space is ap-closed, whenever X has aY property.
Proof: Let B be ap-compact in ap-T,-space. To show that B is ap-closed, let p € B¢, since X is au-
T,-space. So for every q € B, p=q, there exist au-open sets G,H with p € H, q € G, such that
G N H=@,. Now the collection {G,,:q; € B, i € I} is ap-open cover of B.Since B is ap -compact set,
then there is a finite subcover of B, so Bc Ui, G4, Let H* = N2, Hy,(p) and G* = UL, Gg,, then
H* is an ap-open set p € H* (since X has property aY). Claimthat G* N H* = @, letx € G*, thenx €
Ggq,, for some g; and suppose that x € H*, BN H* # @. This is a contradiction, then p € H* & B¢,
S0 B¢ is ap-open set in X, hence B is ap-closed set.

Theorem 3.8 Every ap-closed set in ap-compact space is ap-compact set.
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Proof: Let (X, u) be ap-compact , A is ap-closed set in X, and {V,}<i IS an ap-open cover of A4, that
is A € Uger Vo, Where V, is ap-open in X. Va € I, since X = AU A° C Uge,V, U A€, also AC is ap
-open (since A is ap-closed set in X). So U eV, U A€ is ap -open cover for X which is ap-compact
space, then there exists ay,ap as,..,a, such that X € Uj;V,, UAS, soAc Ui;V,,.
Then Ui, Vg, i = 1,2,3,...,n is afinite subcover of A. Therefore ,A is ap-compact set.
Remark 3.9 In the above theorem, if we replace the ap-compact by p-compact, the theorem will not
be true.
Now, we introduce the weak form of u-K(ac)-space which was introduced in Definition 3.1.
Definition 3.10 A space X is said to be u-aK (ac)-space if any ap-compact subset of X is ap-closed
set.
Example 3.11 Let (R, up) be a discrete m-space where R is a real number. Let Q is ap-compact
subset of R, then Q is u-compact in R from Remark 2.15, and Q is u-closed so it is au-closed by
Remark 2.6. Hence (R, up) is u-aK (ac)-space.
Proposition 3.12 Every p-aK (c)-space is pu-aK (ac)-space.
Proof: Let (X, i) be m-space and K be ap-compact subset of X, which is u-aK (c)-space, so X is -
closed subset of X and, by Remark 2.6, X is ap-closed set. Hence X is u-aK (ac)-space.
Theorem 3.13 (X, p) is ap-T;-space iff {x} is ap-closed subset of X for all x € X.
Proof: Let {x} be ap-closed set Vx € X, leta,d € X with a=d, and {a} and {d} are ap-closed sets,
then {a}¢ is ap-open subset of X, with d € {a}€and a ¢ {a}. Also {d} is ap-open subset of X,
witha € {d}‘and d & {d}°, so X is ap-T;-space.
Conversely, we must prove that {x} is ap-closed subset of X, that is auCl({x}) = {x}, since {x} <
apCl({x}) ... (1). Let y € auCl({x}) and y & {x}, sox=y , but X is ap- T;-space, so there exist
two au-open sets U, and 1, containing x and y, respectively, with y & U, and x € V,, . Then V,
containing y, so y is not au-adherent point to {x},that is y € auCl({x}), and this is contradiction.
Therefore, y € {x} and auCl({x}) € {x}...(2), so by (1) and (2) we get auCl({x}) = {x}, and by
Proposition 2.8, {x} is ap-closed subset of X .
Proposition 3.14 Every u-aK (ac)-space is ap-T;-space.
Proof: Let x € X and let {x} be ap-compact set in X, since X is u-aK (ac)-space, hence {x} is ap-
closed set, so X is ap-T,-space by Theorem 2.18.

The next example shows that the converse of Proposition 3.14 is not true.
Example 3.15 Let (.‘R, #cof) be a co-finite m-space on a real number R which is au-T;-space, if we
take Q S R as ap-compact (since there exists one ap-open cover of Q which is R), but Q is not ap-
closed in R (since uCl(uInt(uCl(Q))) = R ¢ Q.
Proposition 3.16 Every ap-T,-space is u-aK (ac)-space, whenever X has aY property.
Proof: Let (X, u) be an m-space and P be an ap-compact subset in X'. Also X is au-T,-space, so P is
an ap-closed set from Proposition 3.7. Therefore, X is u-aK (ac)-space.

The converse of Proposition 3.16 may not be hold. The following example explains that.
Example 3.17
Let (R, ucoc) be a co-countable m-space on a real number R, which is u-aK (ac)-space, but not ap-
T,-space, since the p-compact set in it are just the finite set, if we p-compact set then it is finite, so it
is countable, then it is u-closed since in u.,. the closed take sets are @, R and countable sets. Now
suppose that it is au-T,-space, V x,y € R, x=y, there are Uy, 1, as two ap-open sets such that x € U,,
yeEV,andU, NV, =0, (U, NV,)°=0° ,(Uy) U (1)° =R, but this is a contradiction. Since U,
and V, are countable, the union also countable, but R is not countable so it is not ap-T,-space.
Therefore (R, ucoc) are u-Kc-, u-K(ac)-and u-ak(ac)-spaces.
Proposition 3.18 A subset F of an m-space X is ap-closed set in X if and only if there exists an u-
closed set M such that uCl(uint(M)) € F S M.

Proof: Suppose that F is ap-closed set in X, so uCl (ylnt(uCl(T )) C F, by Definition 2.3, and
F © (uCI(F), then uCl (puint(uCL(F )) € F € uCL(F), put uCl(F) = M, s0 uCl(uint(M)) S
FCM.
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Conversely, suppose that yCl(ylnt(M)) C F < M. To prove that F is au-closed set whenever M is
p-closed set, uCl (uCl(ulnt(M))) c uCl(F) € uCL(M) = M, then uCl(ulnt(M)) € uCl(F) <
M, and pInt(uCl(uint(M))) S pInt(uCl(F)) € pInt(M), by hypothesis uCl(uint(M)) S F <
M, we get ucCl (ulnt (uCl(T ))) C F .Therefore F is ap-closed set.

Definition 3.19 An m-space X is called u-aK (c)-space if any ap-compact subset in X is p-closed set.
Example 3.20 Let (, up ) be a discrete m-space on any space X, it is u-aK (c)-space.

Remark 3.21

1. Every u-Kc-space is u-aK (c)-space.

2. Every u-aK(c)-space is u-aK (ac)-space.

3. Every p-T,-space is u-aK (c)-space.

4. Every u-aK(c)-space is ap-T;-space.

Now, we define a strong form of u-Kc-space which is u-6K (c)-space.

Definition 3.22 An m-space (X, u) is called u-6K(c)-space, if every Bu-compact of X is p-closed
set.

Example 3.23 Let (R, uco5) be a co-finite m-space on a real line R. Then (R, ucor) is an u-0K(c)-
space.

Proposition 3.24 Every @u-compact subset of 8u-T,-space is € u-closed, whenever that space has
0Y property.

Proof: Let A be an &u-compact set in X. Let pz € A, so for each g € A then p=q. But X is 6pu-T,-
space, so there exist two 6 u-open sets U and V containing g and p, respectively, then A = Uge{Uq, }-
But A is &u-compact, so A = U}Ll{Uqai }=U" and V* = N{L, V,, (p) is Gu-open (since X has Y
property). Claim that U* n V* = @, and suppose that U* N V* = @, since p € V*, let p € U*, that is
p € A, but this is a contradiction. So U* n V* = @ and then there exists V*containing p and V* € A€,
that isp € uInt(A), then A€ is & u-open, by Proposition 2.10, so A is & u-closed.

Proposition 3.25 If an u-space has 8Y property, then every 6u-T,-space is u-0K (c)-space.

Proof: Let H be an 8 u-compact subset of X. To prove that H is u-closed set, since X is Ou-T,-space,
so by proposition 3.24, we get H is & u-closed set and by Remark 2.33, we get H is u-closed, hence X
is u-0K (c)-space.

Proposition 3.26 If an u-space has 843 property, then every u-0K (c)-space is u-kc-space.

Proof: Let (X, 1) be m-space, A be u-compact of X by Remark 2.36, A is Bu-compact and since X is
u-0K (c)-space, so A is u-closed subset of X, hence X is u-kc-space.

Remark 3.27 The following diagram shows the relationships between the stronger and weaker forms
of u-kc-space.

u-T,-space
0Y property
T,u-spa u-0K(c)-space
B,Y property 6 property u-Ty -space

\4
u-kc-space /

v u-aK(c)-space

\ v
¥,-space

u-K (ac)-space

ap
ap-T;-space
(XY-DFM‘

u-aK (ac)-space

1085



Nadhim et al. Iragi Journal of Science, 2020, Vol. 61, No. 5, pp: 1080-1088

4-Some types of continuous, open (closed) function on m-spaces.

Definition 4.1 Let f: (X, u) — (Y, ") be a function, then f is called:

1. m-open (respectively m-closed) function [2], if f () is an u'-open respectively u'-closed set in Y
for any u-open (respectively p-closed) 7 in X.

2. am-open (respectively am-closed) function [6], if f(A) is an au’-open (respectively au’-closed)
set in Y for every p-open (respectively p-closed) 4 in X.

3. a*m-open (respectively a*m-closed) function, if f(¥) is an u'-open (respectively u'-closed) set in
Y for any ap-open (respectively au-closed) subset I of X.

4. a**m-open (respectivelya**m-closed) function, if f(V) is an au’-open (respectively au’-closed)
subset of Y for any ap-open (respectively ap-closed) setv in X.

5. a*m-continuous iff for any au’-open set A in Y, the inverse image f~1(A) is u-open set in X.

6. o**m-continuous iff for every au’-open set B in Y, the inverse image f~1(B) is ap-open set
inX.

Example 4.2 Let X =Y ={a,b,c}, u=u ={0,X,{a}} and f:(X,n) — (Y,u") defined by
f(a) = f(b) =a and f(c) =c. Then f is u-open, ap -open and o**p-open but it is not a*p-open
function (where ap-open set in p and ' are {¢, X, {a}, {a, b}, {a, c}}.

Next, we introduce a proposition about a**p-closed function. But before that we need to introduce the
following proposition:

Proposition 4.3 Let f: (X, ) — (Y, u') be a function. Then for every subset A of X:

1. f is m-homeomorphism iff uCI(f(A4)) = f(uCL(A)).

2. f is m-homeomorphism iff uint(f(A4)) = f(uint(4)).

Proof: The proof follows directly from the Definition 2.26 part (1) and Definition 4.1 part (1).
Theorem 4.4 If f: (X, ) — (Y, 1) is m-homeomorphism, then f is a**p-closed function.

Proof: LetF be ap-closed subset of X, by Proposition 3.18, there exists p-closed set M such
that uCl(uInt(M)) € F € M. Now, by taking the image, we get £ (uCl(uint(M))) € f(F) S f(M).
But f is m-homeomorphism, so

feuct ((umen)) € £(F) € f(M) ... (D).
Also from Proposition 4.3 f(,ulnt(M)) = ulnt(f (M)), hence

ucl (f(ylnt(M))) = uCl (ulnt(f(M))) - (2).
Now, from (1) and (2) we have, yCl(,uInt(f(M))) C f(F) € f(M). Therefore, f(F) is ap-closed
subset of Y.
Corollary 45 If f: (X, ) — (Y, ") is m-homeomorphism, then f is o**p-open function.
Proof: Let K be an ap-open set in X. To prove that f(K) is ap-open set in Y. Now, K€ is ap-closed
set in X, and since f is m-homeomorphism. From Theorem 4.4, f(K€) is ap-closed set in Y. But f is
surjective, so f(K€) =(f(K))¢, which means that f(K) is ap-open set in Y. Hence f is o**p-open
function.
Theorem 4.6 Let f:(X,n) — (Y,u') be o**m-continuous. Then f(M) is aup-compact in Y,
whenever M is ap-compact in X.
Proof: Let M be an ap-compact in X. To prove that f(M) is au-compact in Y, let {V,:ael} be a
family of au-open cover of f(M). That is (M) € Uye; Vi » S0 f71(V, ) is ap-open cover of M ,\Vael.
Also, since M is ap-compact in X, then there exist a, a,, as ...,a, such that M c UL, 1 (Ve
then f(M) € f(Uy ! (Va)) = Ufq V. Therefore, f(M) is ap-compact in Y.
Theorem 4.7 Let f: (X,n) — (Y,u") be o*p-continuous function. Then f (V) is p-compact in Y,
whenever IV is ap-compact in X.
Proof: Let V' be an ap-compact in X. To prove that f(V') is p-compact in Y, let {V,:ael} be a
family of p-open cover of f(NV). That is (M) € Uge; Ve » S0 f71(V,) is an ap-open cover of
N Vael. Also, since IV is ap-compact in X, then vV € U, f1 (Vg,)- This implies that f(NV) <
FQURLfT (V) = U, Vy,. Therefore, f(V) is p-compact in .
Theorem 4.8 Let f: (X, ) — (Y,u') be a™p-continuous function. If a space X is ap-compact and
a space Y is ap-T,, then the function f is a** u-closed, whenever X has aY property.
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Proof: Let H be an ap-closed set in X. Since X is ap-compact, then H is ap-compact in X by
Theorem 3.8 and the function f is a**p-continuous. Then f(H) is au’-compact subset of Y from
Theorem 4.6, and since Y is ap-T,-space, so f(H)is au'-closed set of Y by proposition 3.7.
Therefore f is a**u -closed function.

Theorem 4.9 Let f: (X,n) — (Y, u") be a a*p-continuous function, from ap-compact space X into
u-Kc-space Y, then f is a*p-closed function.

Proof: Let B be au-closed set in X which is ap-compact, so B is ap-compact in X' from Theorem
3.8. Also, from the hypotheses, f is a*u-continuous, then f(B) is u-compact in Y by Theorem 4.7.
But Y is u-Kc-space, hence f(B) is u'-closed set of Y. Therefore, f is ap*-closed function.
Proposition 4.10 Let the function f:(X,w) — (Y,u') be m-continuous. If (X, ) is p-compact and
(Y,u") is u-K(ac)-space, then f is ap-closed function.

Proof: Let § be an p-closed set in X, also X is p-compact, then § is pu-compact subset of X from
Proposition 2.13, and f is m-continuous function, then f(S) is p-compact set in Y from Proposition
2.27. Also Y is u-K (ac)-space , so f(S) is ap-closed in Y, therefore f is ap-closed .

Proposition 4.11 If the function f: (¢, ) — (Y, ') is a**m-continuous, (X, w) is ap-compact and
(Y, u") is u-aK (ac)-space, then f is a**m-closed function.

Proof: Let F be an ap-closed set of X, since X is am-compact, so by Theorem 3.8, F is ap-compact
in X and f is a*™m-continuous. Then f(F) is ap-compact in Y. Also by Theorem 4.6, Y is u-
aK (ac)-space, hence f(F) is ap-closed in Y. Therefore, f is a**m-closed .

Theorem 4.12 If f: (X, ) — (Y,u') is m-closed, a**m-open bijective function and (X, p) isu-
aK (c)-space, then (Y,u") is u-aK(c)-space.

Proof: Let K be ap-compact in Y and {V,:a € I} be an ap-open cover of f~1(K)in X, that is
f‘l(j(‘) C UgerVa- Since f is bijective, so K = f(f_l(j()) S fUaerVa) = Uaeaf (Va)-
And fis a**m-open function, so Uge; f(V ) is au’-open in Y, for each ael . Also, K is au'-
compact in v, SO K S Uity f(V): This implies that
frE0 € FTH UL f (V) = Uld f 71 (V) = Uiy Ve SO fTH(K) s ap-compact i X,
which is p-K(ac)-space, so f~1(K) is p-closed. Also, since f is m-closed function, therefore
F(fF~ 1K) = K is u'-closed in Y. Hence Y is u-K (ac)-space.

Theorem 4.13 Let the injective function f: (X, 1) — (Y, u") be m-continuous and a**m-continuous.
Then (X, ) is u-K(ac)-space whenever (Y, u") is u-K (ac)-space.

Proof: Let K be u-compact in X. To prove that K is ap-closed, let {V,: @ € I} be an u-open cover to
f(K)inY,thatis f(K) € Uger V- But f is m-continuous function, so by Proposition 2.27, f(K) is u-
compact in Y, hence f(K) < UjL,V,,. Also f is injective function, so K= f~'(f(K) <
fH(UR1 V) = ULy f 1 (V). Also, f is m-continuous, hence f~'(V,,) is u-open in X, Vi =
1,2,3,...,n. This implies that f(K) < Uj=, Vg, , hence f(K) is u-compact set of Y which is u-K (ac)-
space, that is f(K) is ap-closed subset of Y. But f is a**m-continuous and f‘l(f(K)) =K,s0K is
ap-closed set in X'. Therefore X is u-K (ac)-space.

Theorem 4.14 Let a bijective function f: (X, ) = (Y, u") be a**m-continuous. If Y is u-aK (ac)-
space, then X is u-aK (ac)-space.

Proof: Let A be ap-compact in X, so f(A) is ap-compact in Y by Theorem 4.6. And since Y is u-
aK (ac)-space, so that f(A) is au’-closed set of Y and f~1(f(4)) = A (f is injective), so A is ap-
closed subset in X since f is a**m -continuous function. Therefore, X is u-aK (ac)-space.
Proposition 4.15 If f: (X,n) — (Y, ') is m-continuous function, X is u-compact space and Y is u-
0k(c)-space, then f is Ou*-closed function, whenever X has Y property.

Proof: Let V" be 6pu-closed subset of X, so that V' is u-closed in X by Remark 2.33. And since X
is u-compact, then V' is p-compact by Proposition 2.13. Also f is m-continuous function, so by
Proposition 2.27, f (V) is u-compact, hence from Remark 2.36, (V") is &u-compact in Y which is
u-0k(c)-space. Therefore f (V) is u'-closed. That is f is 8*m-closed function.

Proposition 4.16 Let f: (X, ) = (Y, u") be m-homeomorphsim function. Then (Y, u") is u-0k(c)-
space, whenever (X, ) is u-60k(c)-space which has 85 property.
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Proof: Let ' be an @u-compact set in Y, by Proposition 2.40, f~1(#) is Bu-compact in X which
is u-0k(c)-space. So f~L(H) isu-closed set in X and f(f~1(H)) =H isu'-closed set in Y.
Therefore, (Y, u") is u-0k(c)-space.
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