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Abstract

In this paper, we investigate a particular subclass of the set of analytic functions
in a unit disk A. This subclass is identified by quasi-subordination, and for
functions in this class, we give precise bounds for the Fekete-Szegd functional (that
is, |c3 — 6c¢2]).Well-defined borders are produced by the study, and we also discuss
various outcomes for new classes while establishing connections with the ones that
already exist.
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1. Introduction
Let A represent a collection of normalized functions of the form

fw) =w +325c, (1.1)
which is analytic in & = {w € C: |w| < 1}. Let 7 be the set of all elements in A that are
univalent in 2. Let £ () be an analytic function in 2 with [A(w)| < 1.w € 2, S0

A(w) = Ny + Myw + Nyw? + -, (1.2)

where 9t,, 94, 915, ...are umbers. Let k(w) be an analytic function in2, with «(0) =1,
k'(0)> 0, and a positive real component, such
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k(w) = 1+ Fiw + Fow? + -, (1.3)
where F;, F,, F5, ... are real numbers and F; > 0. Unless otherwise specified, we will
assume that the functions 4 satisfy the preceding constraints throughout this study.

As has been determined that for f € Hgiven by (1.1), there exists sharp upper limits for
|c_3-8¢c 2”2 | when § is real [1]. Consequently, the Fekete- Szego issue for F has been well-
known for estimating the sharp upper limits for |c_3-6¢ 2”2 | with & being an arbitrary real or
complex integer for any compact collection F of elements in A.Several scholars have
computed sharp Fekete-Szeg6 limits for various H subclasses, including [2-11] . More
information on the Fekete-Szegd issue and the g-derived operator may be found in the
publications of Alsoboh and Darus [12] and Elhaddad and Darus [13]. The study by
Srivastava et al. [14] has a very good resource on the Fekete-Szegd inequality and the
Horadam polynomials.

We review the majorization and subordination principles between the two analytic

functions in A, f(w) and r(wr). If an analytic function t(w) exists in A, with t(0) = 0
and |t(w)|< 1, w € AU, such that f(w) = r(t(w)), then f(w) is subordinate to
r(w), written f(w) < r(w), w € A. Furthermore, if r is univalent in 2, then f(w) <
r(w) is equivalent to f(0) = r(0) and f(A) < r(A), if r is univalent in A. We
know that f(w) is majorized by r(w), written f(w) <r(w),w € U, if there
exists an analytic function A(w), we A, with |A(w)| <1, such that f(w)
=A(w)r(w), we A.
Robertson [15] introduced a novel concept that unifies majorization and subordination: quasi-
subordination. For any two f () and r(w) analytic functions is namely quasi subordinate
to r(wr), written as f(w) <, r(w), w € U, if there is analytic functions£ and t with
t(0) = 0, |[A(w)| < 1 and |t(w)| <1 such that f(w) = A(w)r(t(w)),w € A
Note that if Z(w) =1, then f(w) = r(t(w)), w € U, so f(w) <r(w) in A. Also,
note that if t(w) = wr, then f(w) = A(w)r(w),w € A and hence f(w) <<
r(ww) in 2A. More research on quasi-subordination may be found in [16-19].

Let Y be the collection of analytic functions in 2 of the form
t(w) = tiw + t,w? + tzw?3 +.., (1.4)

fulfilling the criterion |t(w)| < 11, 2w € A. To establish our primary result, we need the
following lemma [20].

Lemma 1.1. If ¢ € Y, then for any complex number §, we have |t;| < 1.|t, — §t?]| <
1+ (6] — 1)|t§1|2 < max{1,|§|}.t(w) = wor t(w) = |w|? exhibit the
sharpness of the result.

In light of current trends in quasi-subordination, we define the next new collection sub
classes A.

Definition 1.2. A function f (w) in A is said to be in the collection G(«, B,y, k). If

wf W)\ (f(w)? ,
( f (w) > ( w ) +y(f'(w) —1) <4 (c(w) — 1), w €U

wherea >0 and0 <y < 1.
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Remark1.3. A function f(w) in A4 is said to be in the collection G(a, y, k). If

"(w)\” ,
<a;];—w¢;f> +y(f'(w) —1) <4 (k(w) - 1), w €A

wherea >0,0<f<land0 <y < 1.

Remark 1.4. A function f(w) in <4 is said to be in the collection G(«, 8, k). If
<Wf ’(W)>“ (f (w)
f(w) w

wherea >0,0<f<land0 <y <1

B
) <q (k(w) — D, w €.

Remark 1.5. A function f () in <4 is said to be in the collection G(«, 8,1, k). If

wf )\ (fwonN®
( f(w) ) ( w ) + (f'(w) — 1) <4 (c(w) — 1D, w €U

wherea >0,0<f<land0 <y <1.

Numerous interesting implications of this outcome are highlighted.
2 Main results

Theorem2.1. Leta>0,0<f<land 0 <y < 1.If f(w) € G(a,B,y, k), then
1

<— 2.1
and for any complex numberé € C,
lcs — 8¢2| < i max(l |TT —E) (2.2)
372 T (B +2a+3y) B A VA '
where
6(B+2a+3 1
_— (B +2a + 3y) 2.3)

(a(ﬁ +%(a2 — 3)))2 a(p +%(a2 —3))

The result is sharp

Proof.
Let f € G(a,B,y, k). Then, an analytic function /4 () and a Schwarz function t(«) exists
such that

wf' (w)\* (f (w)\P , _
( f(w) > ( w ) +y(f'(w) = 1) = k(w) (ke((t(w)) = D, wr €A (24)

Sequential derivatives of f and their geries expansions from (1.1) yield
<“;f(5;r)> (f(;,‘r)> +y(f'(w) - 1)
=B +a+2y)cw + (B +2a+3y)c;w?+a(f + % (a? = 3))cZw?+--. (2.5)
We get the same result from (1.2), (1.3), and (1.4).
k() (k((t(w)) — 1) = NeFrtyw + [T Fity + No(Frty + (FotPHw? + . (2.6)
Using (2.5) and (2.6) in (2.4), we obtain
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2T B+a+2y)’ '
and
o e  f (et 2l e
7 (B +2a+3y) 1" 0|2 B+a+2y) FJ) Y] '
Thus, for € C, we get
C3 - 6C2 - :}:'1 [mltl + (tz + Etz) + mO_Tmlmztz]. (29)
27 (B+2a+3y) F,t 0™

where T is defined in (2.3).
Since A (w) is analytic and bounded by one in 2, we now have by [13]

Mol < 1and Iy, = (1 —NH)Hx  x < 1. (2.10)
The statement (2.1) comes from (2.7) using (2.10) and Lemma 1.1, and we gain (2.9) and
(2.10) from (2.9) and (2.10).

Fa

B+ 2a+3y) [
If Ro =0, then (2.11) yields

2
2

Fa 2 2 2
c3 — 6cC xt; + <t2 +i7-"_t1) + Ny — (TFty + xtliﬁo]. (2.11)
1

F1

— 52| = — 21
lc; —6cs| = Grzatsn (2.12)
In contrast, if 9, =0, we establish a function.
LR, = xt, + (tz + %tf) + Ny — (TF 2 + xt, N2, (2.13)
1

Notice, (2.13) is a quadratic in 9, and so analytic in |9t,| < 1. And |L(9,)| clearly
reaches its greatest value at t, =€, 0 < || < 2m. Thus

max|L(Ny)| = max |L(e®)| = |L(D)| = [t; — (g: _E) £2
0 0=0s<2x 2 toF )t
Therefore, it follows from (2.11) that

lc; — 8c2| = i t, — <T7—" — E) t? (2.14)
3 22T (B4 2a+3y) 17 o)t '
We get this from Lemma 1.1.
lc; — 8c2| = i max (1 |T5F —§> (2.15)
3 227 (B +2a +3y) B R VA '

Now, based on (2.12) and (2.15), the statement (2.2) is implied. To demonstrate the
sharpness, we define f (w) as

<Wf’(W)>a (f(W)

B
) Hr(F@) = 1) | = x(w),

f(w) w
or
’l/U’f’(’LU’) a f(W) B , )
< f(w) ) ( W ) +v(f'(w) — 1) | = k(w?),
or

/ a B
(wf (w)) (f<w>) +y(f (w) = 1) | = w(x(w) - 1).

f(w) w

This complete the proof.

Corollary 2.2. Leta >0,0<pB<land 0 <y < 1.If f(w) € G(a,y, k), then
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F1
lco| < ——=
(a+ 2y)
and for any complex number § € C,

lcs

F
max (1 ’TTl — :7:—
1

)

2 Fa
— 83| < ——
2a + 3y)
where

6(2a + 3y) B 1
(a(% (a? — 3)))2 a(% (a? —3))

Corollary 23. Leta>0,0< B <land0 <y < 1. If f(w) € G(a,B, k), then

F1
lco| <
B+ a)
and for any complex numberé € C,

— 5c2 F1 _%
lcs SCZIS(B+2a)maX(1.|T}"1 7

). where

6(B + 2a) 1

1 2 1.,
(aB+5@2-3)) a@B+z(*=3)
Corollary 2.4. Leta>0,0<f <land 0 <y < 1. If f(w) € G(a,B,1, k), then
Fi
< - - @
e )
and for any complex numberd e C,

T =

F
max (1 |TT1 — T_
1

)

— 5c? "1
les CZl_(,B+2a+3)

where
6(B+2a+3) 1

T = - .
(a(s +%(a2 -3)) aB+ %(oc2 -3))

We base our next insightful finding on majorization.
Theorem 2.5. Let>0,0<f<1and0 <y <1.If f(w) € A satisfies

(wf'(w))“ (fi:tf))ﬁ +y(f'(w) — 1) << (k(w) —1),w €A (2.16)

fw)
Then
__H"
2l = Graiss (2.17)
and for any complex numberé,
lcg — 8¢z < i max(l |TT —§> (2.18)
3 21T (B4 2a+3y) B R D '

where Tis as defined by (2.3).

Proof. Suppose that (2.16) holds. There is an analytic function 4 (w), from the principle
of majorization, such that

<Wf’(¢lf))a (f(W)

8
f(w) w ) +y(f'(w) - D =Alw)k(w) -Dw €A (219)
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Putting w(w) =w (so that t; =1,ty = 0,n = 2), after completing the proof of
Theorem 2.1, we arrive at the intended outcomes (2.17) and (2.18). To demonstrate the
sharpness, we define f () as
1+ (wf’(«@)“ (fe
f(w) w
Which complete of the proof.
Our subsequent noteworthy outcome is connected to G(a, B,v, k).

B
) + ¥ () = 1) = (k) wr €L

Theorem2.6.Leta >0,0<f<land0<y < 1. If f(w)€ G(a, B,y, k), then

ool S 1
=G ra+t2y)
and forany & €C,

Fq

-0 2| <
les C2|_(3+2a+3y)
where T'is as stated in (2.3).

max (1. |TT1 ~2

)
T J

1

Proof. Let (f € G(a,B,7,k),). Taking A(w) = 1, w € U, we get
Ny = 1,9, = 0,n € N and we get the intended outcomes by adhering to Theorem
2.1. To demonstrate the sharpness, we define f(w) as

' a B
(2 (2 4y 1=t

f(w) w
or
wi'(w)\" (f )\ , o
(f(w) ) (F52) +v(rra) = D = x(w?,

which complete the proof.
For real &, we now establish sharp constraints for |c; — §cZ| for f(w) € G(a,p,y, k).

Theorem2.7.Leta>0,0<f<land 0 <y <1.If f(w) € G(a,B,v,x), then for real
&, we have

lcz — 8¢5
( F, 1 6(B+ 2a+ 3y) F,
B+ 2a+3y) [Tl<(ﬁ+a+2y)_ (ﬁ+a+2y)2>+7-”_ll (6=<71)
Fq
<X B+ 2a+3)) (t1<d<11+2u)
Fi _ 1 6(B+2a+3y) F,
" (B +2a +3y) [?1_<(B+a+2y)_(ﬁ+a+2y)2>+f_1l (027 +2u)
where
_ Bra+2y) Bra+2y)? (1 F 291
Tl_(,8+2a+3y)_(,8+2a+3y)<?-71_?12>' (2.21)
and

(B + a+ 2y)?

w= B+ 2a+3y)F,
Proof. Let our real values be §. Then, in the following scenarios, (2.20) may be obtained
from (2.2) and (2.3), respectively:

(2.22)

TF T2 1,—-1 < 8F jrz<1 dTF jrz>1
1 Tl_ ) ] 1 Tl_ an 1 Tl_ .
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Where T is defined in (2.3). We also like to mention the following:

(1) Equality holds for 6 < 7, 0or 6 > 71 + 2u <if (w) = 1 and t(w’) =w or one of
its rotations.

(ii) Equality holds for 7; < 6 < 17, + 2u < A(w) = 1 and w(w) = w? or one of
Its rotations.

(iiif) Equality holds for 6§ = 7; <Iif A(w) =1 and t(w) = 1+9w9),0 <61, or
one of its rotation, while for § = 7; + 2u, the equality holds if and only if

Alw) =1 and t(w = —%0;9), 0 <86 <1, or one of its rotations.

w(w+

The following actions can improve the second part of the assertion in (2.20) for the real value
of & even more:

Theorem 28. Let a>0,0<f<1land0<y<1. If f(w) € G(a,B,y, k), then for
real §, we have

j:'
lcg — 8c2| + (6 —1)|c2|? < G+ 2al+ 3 (11 <6 <1 +), (2.23)
and
j:'
lc; — 8c2| + (11 + 21 — 8)|c2| < Gt 2al+ 37 (t1+u <6 <11+ 2u), (2.24)

where t, and « are given by (2.21) and (2.22), respectively.
Proof. Let f(w) € G(,B,v,x). For a real § satisfying 7; <8 < 7; +u« and using
(2.7) and (2.14), we get

lcs — 8¢z + (6 — 7))z |?

Fi Fi1(B+ 2a + 3y)
< ty] — 8§ — 1y —u)|ty|?
= (B +2a+3y) [l 2| (B + a+ 2y)? (6 =7 =ty
Fi(B + 2a+ 3y) 5
Therefore, by using Lemma 1.1, we obtain
F1
— 82 _ 2|12 < _ 2 2
lcs —8cy| + (6 — )i |* < (B + 2a + 37) [1—[tq]* + |t1]%]

which yields the assertion (2.23).
Ift; + u < § < 1, + 2u, thenagain from (2.7), (2.14) and Lemma 1.1, we have
lcs — 8c3| + (71 + 2w — )|c5)?

Fi Fi(B + 2a+ 3y)
<FT2a ) [|t2|— Graszyr (mt2e-olnl
Fi(B + 2a + 3y) 7,
Grat OIS g - )

which estimates (2.24).

3 Conclusions

In conclusions, our study of the Fekete-Szegd coefficient functional of the quasi-
subordination class has illuminated the characteristics and actions of analytic functions inside
the open unit disk. Through the use of quasi-subordination to construct a particular subclass,
we have found sharp constraints on the Fekete-Szego functional, concentrating on |c3 — 8c3|
for functions in this subclass.
The results of the research not only advance knowledge of the particular quasi-subordination
class but also have ramifications for more general classes and link to well-known
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mathematical frameworks. The derived sharp limits improve our understanding of the
characteristics and analysis of holomorphic functions, offering a more complex view of their
behavior under quasi-subordination.
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