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Abstract

In this paper, the conditions of persistence of a mathematical model, consists from
a predator interacting with stage structured prey are established. The occurrence of
local bifurcation and Hopf bifurcation are investigated. Finally, in order to confirm
our obtained analytical results, numerical simulations have been done for a
hypothetical set of parameter values .
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1. Introduction: They obtained a set of sufficient and necessary
Over the last few decades there has been a conditions which guarantee the permanence of
considerable interest in the study of population the system. However, Chen [6] studied the
dynamics with stage structure. Such studies are permanence of periodic predator—prey system
important, since the life cycle of the most of the with stage structure for prey. He obtained
animals and insects in nature have two stages: sufficient and necessary conditions which
immature and mature. The species in the first guarantee the predator and the prey species to be
stage can’t interact or reproduce with the other permanent. Recently, Chen and You [7] studied
species rather than that; it depends completely the permanence, extinction and periodic solution
on its relative from mature species, see for of the periodic predator—prey system with
example [1-4] and the references therein. Most Beddington—DeAngelis
of these studies were focused on prey-predator functional response and stage structure for prey.
interactions involving a stage structured They obtained a set of sufficient and necessary
predators with or without time delay. conditions which guarantee the permanent of the
Later on Cui and Song [5] proposed and system in this paper however, we will propose
analyzed a prey-predator model with stage and analyze Holling type-II prey-predator
structure for prey. It is assumed that the predator having stage structure for prey. The intraspecific
consumed the immature prey according to competition for immature prey and predator is
Lotka-Volterra type of functional response. also included in the system.
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2. Mathematical model:[§]

An ecological model consists of prey-predator
system with stage structure for prey is proposed.
In order to formulate the dynamic equations for
such a model the following assumptions are
made.

Al) The prey population is divided into two
classes, immature prey population, whose
population density at time 7T is denoted by
x;(T), and mature prey population, whose

population density at time 7 is denoted by
x,(T).

A2) It is assumed that in the absence of
predation only the mature prey population has
the ability for reproduction logistically with
carrying capacity k& (k> 0) and intrinsic growth
rate a(a >0). However, the immature prey
population  depends completely in  his
reproduction on the food supplied by mature
prey. In addition to the above , the immature
prey individuals still compete between each
other for food and space with intraspecific rate
constant 77 (77>0).

A3) The immature prey population transfer to
mature prey population at a rate S x,, where f
(f>0) represents the
coefficient. Finally, both the immature and
mature prey populations decreases due to the
natural death rates r; (r; >0)and 7, (1, >0)
respectively. Thus, depending on the above
assumptions the evolution equations for prey
can be written as:

conversion rate

dx X

d_leaxz(l_sz_”ﬂﬁ - px, —nx;  (la)
de

—= = fBx;, —ryx 1b

T Px| —rpx; (1b)

A4) In case of existence of predator, whose
population density denoted by x;(7), it is
assumed that the predator consumes the
immature prey only (the immature prey is more
vulnerable to predation than the mature prey )
according to Holling type-II functional response

PO where i, (f,>0) and y; (7,>0)

n+x
represent respectively, the maximum attack rate
and half saturation constants. However, the
predators contribution from the prey species is
n+x
conversion rate constant.

AS5) Finally, it is assumed that , the predator
individuals still compete with each other for

assumed to be where ¢ (¢ >0)denotes to

14y
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food and spaces with intraspecific rate constant
1, (17, >0), and decrease due to natural death
rate » (r>0).

Consequently, in the existence of predator

species, the evolution equation (1) of a stage
structure prey species becomes:

dxl XZ
—=ax,| 1 ——=|—-rx, — Ox
AT 2( kJ 17X — B
..(2a)
_nxlz_ﬂﬂﬁxs
71 tx
de
—= = fBx Iy X 2b
T Px| —ryx, (2b)
d
ﬁ——rx3 + Nt X3 (2¢)
dT ¥+ X

Now, for further simplifying the system (2), the
following dimensionless variables are used

_cp _ch B
V1= X1 Yo =—Xy, Y3 =——X3,
ay ay, ay

t=aT.

Thus, system (2) can be turned into the
following dimensionless form:

dy,
j:yz(l—w]yz)—wzyl M
t (32)
B4P%
—W4y12— 3 :fi(y1’y2’y3)
I+w.y,
dy,
7tz=w3y1_wéy2 =L,0002,05) (36)
dy, B4
= = W, +——=W
dt )@[ ! L+ wsy, 8y3 (3¢)
=f3(pr’2ay3)
where Wl=%; szg; W3:§; W4:Z_2’
WS:CLIBI, W6:%’ W7_§ and WS:% are

the dimensionless parameters.

System (3) needs to analyzed with a specific
initial condition, which may be taken as any
point in the region

R ={(1.72,03) €R 1, 20 =123},

Theorem 1:[8]- All solutions of system (3),
which are initiate in Ri are uniformly bounded.
3. Existence and stability analysis of system

(3):[8]

The stage structured prey-predator model
given by system (3) has at most three
nonnegative  equilibrium  points, namely
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E, =(0,0,0), and
E2 z(),}l’j}Z’.j}:%)'

The equilibrium point E, always exists,

El =()71af2a0),

however the equilibrium point E; exists in

the Int. R? of y,y, —plane where

O rwu g
1— M,Z (43)
(g -+ wiws)
h=—23 (4b)
W
provided that:
w3 > (wy +W3)we (5)
Finally the positive equilibrium point
E; = (91,92, 73) where
A W3
Fa= (6a)
We
LW v
Py =—r — (6b)
wg  wg(l+wsyp)
while p, is a positive root of the following

third order equation:
3 2
A yi +Ayyi + A3y + 44 =0.

Here
2 2
Wy W3 We W
1W3 WgWs 2
4, = T Wy >0,
We
- we 2 W,
PR wmzz 2
W6 W6
+ Wugng + 2wpgns,
2
—2W, Ws W, Wy W3 W
A3: 37578 + 17378 +2W2W8W5
2
W6 W6

+ 2wy wgWws + wywg — wsw; +1,

— W3Wg

A4 + Wy we +W3W8_W7,

We

Obviously E, exists uniquely in the Int.Rf if
and only if the following conditions hold

w.
Ws
w .
—wew2 | —-—w, |[+R>0; with (7b)
We
2w wiwsw
R =#+W3W8W52 + 2w, wgws, and
We

(7¢)

1> wy(L+ws )

TaA
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In the following, the local dynamical
behavior of system (3) around each of the above
equilibrium points is discussed. First the
Jacobian matrix of system (3) at each point is
determined and then the eigenvalues for the
resulting matrix are computed. The jacobian
matrix of system (3) at the equilibrium point
Ey =(0,0,0) can be written by

—(wy+w3) 1 0
J(Ey) = w; — W 0
0 0 -wy
Therefore, it is easy to verify that, the

eigenvalues of J(E;), say Ay;,Ap and Ay
that describe the dynamics in the y;,y, and
vz -direction respectively satisfy the following

relations :
101 +/102 :_(W2 +W3)_W6 <0 (8a)
Ao1-Agp =Wy +w3)wg — w3 (8b)

Note that, according to Eq. (9b), the eigenvalues
Ao and Ay, have opposite sign provided that

W3 > (W2 + W3 )W6 . (93)
Hence E, is a saddle point in the R? of y,y, -
plane and since the eigenvalue Ay; that

describes the dynamics in y;-direction is

negative , hence E,, is a saddle point in Ri with

locally stable manifold of dimension two and
with locally unstable manifold of dimension one
However, A, and A, are negative provided
that

w3 <(wy +w3)wg (9b)
and then E is a locally asymptotically stable in

the Ri.

The Jacobian matrix of system (3) at the
equilibrium point E, =(y,,»,,0) is given by:
J(Ey)=(b;j)3x3, where

by =—wy —w3 = 2wy, by, =1-2wy,,
__n _ _

b3 = Trwsy; ° by = w3, by =—w,
_p _ _ Vi

byy =b3 =b3; =0, b33 =—wy + ey *

Now, straightforward computation shows that ,
the eigenvalues of the Jacobian matrix J(E,),

, A1, and A;; which describe the
dynamics in the directions y;, y, and y;

say Ay

respectively , satisfy the following relations:
A+ A ==y +w3) =2wyy; —w <0, (10a)
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AipApy ==My+Myyy, (10b)
V1
Az =Wy +——— 10c
13 T o, (10c)
where M| =w; —(w, +w3)wg, which is
positive under the existence condition of £,
2
and M2 = 2(W4W6 + WiVW3 )
6

Note that, according to the Egs. (10a)-(10c) we
have the following two cases :
Case I:- If the following condition holds

1

A3 <0 —
1+W5y1

<wy. (11a)

Then E, is locally asymptotically stable in y;-
direction, and hence we have the following two
subcases:
1- E, is locally asymptotically stable in Ri
provided that the following condition holds

M, <M,y (11b)
2- E, is a saddle point in Ri with locally stable

manifold of dimension two and locally unstable
manifold of dimension one provided that the
following condition holds :

My >M,y, (1lc)
Case 2:- If the following condition holds
Ay >0 —2 sy (11d)
1+ W51

Then E, is a saddle point in Ri .

Finally, the Jacobian matrix of the system (3) at
the positive equilibrium point E, = (P, V5, 3)
can be written as:

J(Ey)=(a;)33 (12)
0
=1-2 N _N . _ .
app = Ww1Yas; a3 =7, * ar =Wz,
— _ ) =0: _i. =0:
Qypy ="Wg, dp3 =Y, d3z = N2 asz =Y,

0
az3 =—wy +1}\;_L_2W8)A}3; No =1+wsy;.
Accordingly the characteristic equation of
J(E,)is given by

D+ A+ Ay A+ A3 =0 (13a)
where
4 =# N, + NN, +weN2 | (13b)

0

144
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W,
4y :N_%[Nl + NoN, |

| (13c¢)
R Vi _N1N2]_W3N3
0
we [, wy N, N
4y =2 52w, |- 222 g3g)
5 N,
with

Ny =(wy +w3 +2w3 NG + 55 >0,

Ny =(wy +2wgy3)Ng = J1, N3y =1-2w ;.
Note that, due to Routh-Hurwitz criterion, the
necessary and sufficient conditions for E, to be
locally asymptotically stable in the Int. Ri, are
A >0, A3 >0 and A= 4,4, —4; >0.
Straightforward computation shows that, if the
following condition holds

N, >0 y; <(wy +2wgp3)N, (14a)
Then we obtain 4; > 0. In addition to condition
(15a), if the following conditions hold

N3 <0<:j>2 >L,and (14b)

w1
I<NIN,
Then we get that 45 >0.
Finally, substituting the values of 4; for

(14c)

i=123 in A= A4;4, — Ay and then simplifying
the resulting term we get that

(N, + NyN,) | wg
AZIZVOZO2|:A[;2(N1+N0N2)
l v '
-— (/= NN,) W3N3+w6} .......... (14d")
NO
N
+W3N3[N(2)—w6]
=Ng+w3N3Ns
where
N+ Noo)|
Ny =022 5 (N + NyhVy)
4 ]vg ]vg 1 0]\[2
LGNV -y [0
N
N,
N5 ___W63
Ny

obviously A>0 if and only if in addition to
conditions (14a)-(14c) one of the following two
conditions holds:



Majeed

N

Ny <0 —2<w, (144d)
NO

or

Ny >0with N, + wyN3Ng >0 (14e)

Consequently the following theorem for locally
stability of £, can be proved easily.

Theorem 2[8]:- Assume that the positive
equilibrium point £, of system (3) exists. Then
£,

Int.Rf if the conditions (14a)-(14c) with (14d)

or (14e) are satisfied.
4.Persistence

In general persistence is a global property of a
dynamical system, it is not dependence upon
interior solution space structure but is dependent
upon solution behavior near extinction
boundaries  (boundary planes).From the
biological point of view, persistence of a system
means the survival of all population of the
system in future time. However, mathematically
it means that strictly positive solutions do not
have omega limit set on the boundary of the
non-negative cone [9].Accordingly, if the
dynamical system does not persists then the
solution have omega limit set on the boundary
of the nonnegative cone, and hence the
dynamical system faces extinction. Now, before
examine the persistence of stage structure model
given by system (3) by using the method of
average Lyapunov function as given in [10], we
need to study the global dynamics in the

is locally asymptotically stable in the

boundary plane y,y, as shown in the following

theorem.
Theorem 3:Suppose that the equilibrium point
E, =(¥1,7,,0) is locally asymptotically stable

the  Int.R’
asymptotically stable in the Int.Rf of the

in then it is a globally

V1Y, -plane provided that

wy, <l ..
Proof:-We will proof the theorem in the

(15)

Int.Rf.Clearly for any initial value in the

Int. Rf of »,y, -plane, system (3) reduces to the
following subsystem

d
Doy (A= wp,) = wyy, — Wy,
dt
W = (s Yy) s (16)
dy
7;: Wi =WV, = hy (31, 5,)
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Obviously  E|, represents the positive
equilibrium point of subsystem (16) in the
Int.R> of y,y,-plane. Assume that
H(y,,y,) = . Clearly H(y,,y,)is a o
N1Va
function and is a positive for all
(»,,»¥,) € Int.R? Further
0 0
Ay, y,) =——(Hh)+—_—(Hh,)
o Yy,
1 w, w
= (=) =t
N Yo Y

Note that A(y,,y,)does not change sign
under condition (15) and is not identically zero
the [Int.R’of the y,y,-plane. Then

according to Bendixson —Dualic criterion
subsystem (16) has no periodic dynamic in the

interior of positive quadrant of y,y,-plane.
Further, E, the
equilibrium point of subsystem (16) in the

in

since is only positive
interior of positive quadrant of  y,y, -plane.
according
theorem E|is a globally asymptotically stable in

the interior of positive quadrant.
Theorem 4:Assume that there are no periodic

Hence to  Poincare-Bendixson

dynamics in the boundary plane y,y, . Further,

if in addition to conditions (5),(5a) and (15) the
following conditions are holds:

w,y, <1

and
(W, +wy +w, ¥y, <y,1=w,y,) ...(16D)

Proof: Consider the following average
Lyapunov function
0(V1»Y2>3) :yf'+ly§2+ly§”3+l,where each

p;»i=1,2,31s assumed to be positive, obviously

(V1> ¥2,¥5)is
positive function defined in

continuously  differentiable
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R’ Now, since
(V1225 05)
Y, 03) =——bope 3
0V, ¥50Ys)
=(p+ 1)[)/2(1 —WY,) =Wy Wy — W4y12
N
1+ wsy,

+(p, + 1)[W3Y1 - Ws)’z]

N

+(p; + D] y3(-w, +1 = Wgys) |

WSyl

Now, since it is assumed that there are no
periodic attractors in the boundary plane, and
the vanishing equilibrium point Ejis unstable

saddle point under condition (9a) with locally
unstable manifold in the

y,-direction or in the y, -direction, and hence
E,does not belong to the possible omega limit
set of system (3), then the only possible omega
limit set of system (3) is the equilibrium point
E, .So the proof is follows and the system is
uniformly persists if we can proof that
W(-) > 0at each of these equilibrium points.
Note that, E,=,y,,0)we
WE) = (D1 wi7) — st~y — it |
(o + D~
= (p + D[ =) —(wy +5 + )3 ]
+(p, +1)[W33_’1 _Wsj’zl
Wy _
Y, =—),, hence the last term of
We
Y (E,)equal Zero, hence
W(E) = (py +D[Fa(l-172) ~(n + 5 +w3)F; |Thus
W(E,)>0 for any p, >Oprovided conditions
(16a) and (16b) holds. Hence system (3) is
uniformly persists if F| exist that is condition

(5) and condition (16a) with (16b) hold.
5.The local Bifurcation.

In this section an investigation for dynamical
behavior of system (3) under the effect of
varying one parameter at each time is carried
out. The occurrence of local bifurcation in the
neighborhood of the equilibrium point of system
(3) are studied in the following theorem.

Theorem 5: If the parameter w,passes through

for have

But

W)Ws

the value W, = ,where w, <1, then the

We
vanishing equilibrium point E|, transforms into
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nonhyperpolic  equilibrium point and if
W, # (17)
1 _2 ......
by,
then system (3) possesses transcritical

bifurcation, but no saddle-node bifurcation nor
pitch-fork bifurcation can occur.

Proof: According to the jacobian matrix of
J(E,)it is

wy; =w,, the

system (3) at E|, that is given by
easy to verify that as

J(E,, W) has the following eigenvalues:

—wa — (1=
101 — Ws ( W())Wﬁ <0’ 102 =0
1 —wyg
Aogz =—w5 <0.
Let v=(6,,6,,0;)" be the eigenvector of

J(E,,w;) corresponding to the eigenvalue of

Ay =0.Then it is easy to check that
v =(——-0,,0,,0) ,where

by,
b, =—(w,+w;)and 6, represents any
nonzero real value. Also,

lety = (h,,h,,h,) represents the eigenvector
of

eigenvalue A, =0. Straight forward calculation

J'(E,,w,)that corresponding to the

shows that

b ~

y= (—bﬁhz,hz,O)T , where b, =W, and A,

1

represents any nonzero real number.

Now,
OF

ows

X =ya3)' and F=(fi.fo.05)"
With f; ;i =1,2,3 represent the right hand side

since

= FW3(X:W3)=[_y17y170]T7Where

of system (3). Then we get
F, (Eo, %) =(0,00)"and the following is
obtained:

~ b
VI (B, 5)1= (=2 Iy, 1, 00(00,0) =0. Thus

11

system (3) at E, does not experience any
saddle-node bifurcation in view of sotomayor
theorem [11]. Also, since

Doty 1,0/4.6,07
1

b
=L+ )0 %0
b 6

V' [DE,, (Ey, W)Vl =(~
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~ 0
here, DF;N (EO ’ W3) - a_X Fw’z (X’ W3) |X:E0,W3:1723 )

Moreover, we have

W,
YIDE, (B i)0v)]= A hﬁ%( > =) #0 by
1
condition (17).
Here,
Dsz3 (Eg,w3)=DJ(X,w3) |X=Eo -
Then by sotomayor theorem, system (3)

possesses a transcritical bifurcation but not
pitch-fork bifurcation near E, where

w, =W,.
However, violate condition (17) gives that
V' [D’F, (Ey,i3)(»,v)]=0,

computation shows

and hence further

Y'[ID'F, (E, - % 1,0)(0.0.-2w6)"

=0.
Therefore according to Sotomayor theorem,
there is no pitch-fork bifurcation.

W)W,V =

Theorem 6: Assume that condition (5) holds
and the parameter w, passes through the value

w. o ,where Y, given in (4a), then
1+ Wiy,
the equilibrium  point E, =(1,75,0)
transforms into nonhyperpolic equilibrium point
-
and if wy # — o TA%) (18)
21+ wsy,)" 05
Where,
0, =-=220, and
21
0 _ b11b22 _b12b21 P2
- T I 2
b13b21
then system (3) possesses transcritical

bifurcation, but no saddle-node bifurcation nor
pitch-fork bifurcation can occur under condition
(18), violate condition (18) gives pitch-fork
bifurcation.

Proof: According to the jacobian matrix of
system (3) at E, =(y,,,,0) that is given by
J(E))it is easy to verify that as w, =w,,
then the eigenvalues of J(E,,w,) satisfy the

following relations:
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A+ Ay =—=(wy +w3) = 2wy,
111 '112 :_Ml +M2_)_/1 N Whe}’e

—we <0

M, =w; — (W, +wy)wg, and
2
WiWws
My =2(wawe + ),
We

113 = 0.
Let v=(0,,0,,0,) be the eigenvector of

J(E,,w,) corresponding to the eigenvalue of

A;=0.Then it is easy to check that
by = 5 byby —b,b.

v=(-=20,,0,,(- 1221 )9) ,where
b21 b13b21

0, represents any nonzero real value. Also,
lety = (}71 , l_zz , }73 ) represents the eigenvector
of JT(E,,W,) that

corresponding to the eigenvalue A,;=0

Straight forward calculation shows that

y= (0,0,Z3 )", where h, represents any

nonzero real number.

Now, since
oF

= F, (X,w3) =[0,0,—y;]", where

ow,
and F = (fl:f27f3)T

With f; ;i =1,2,3 represent the right hand side
of system (3). Then we get
F, (E;,w;) =(0,0,0)" and the following is
obtained:

3'IF,, (B, w;)]=(0,0,43)(0,0,0)" =0.

X = (J’1:J’2:J’3)T

Thus system (3) at £, does not experience any

saddle-node bifurcation in view of sotomayor
theorem . Also, since

¥ [DF,, (E;,w;)v]=(0,0,3)( 0,0,-63)"
= —713531 =0

here, DE, (El,w7)— ° F (Xowy) |

W7 X=E ,w=w; "

Moreover, we have

V' [DF, (B.w)0.v)]=( (6'2

condition (18).
Here,

2 pa—
D°F,, (E\,w;)=DJ(X,w;) |X=E1,

— 206y 0 by

‘V%M

Wy =w;
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Then by sotomayor theorem, system (3)
possesses a transcritical bifurcation but not

pitch-fork bifurcation near £, where

w, =w,.

However, violate condition (18) gives that

7T J— —_ _

y [DZEﬁ (BE,w)0,v)]=0, and hence further

computation shows
(E,w)(,v,v)]=

=0.
Therefore system (3) possesses a pitch-fork

—2wy(8 +60)h,

VT, (+wy)’

wy

bifurcation near E, where
w, =Ww,.
6.Hopf bifurcation.

Finally, in order to investigate the Hopf
bifurcation of the model in system (3), we will
follow the Liu approach [12] as shown in the
following theorem:

Theorem 7 :Assume that the coexistence
equilibrium point of system (3) exist and let in
addition to conditions (15a)-(15¢), the following
conditions hold:
(M +NN,)

2

1-L, >w{ Y Ns}
0

N, +NyN
2—L —w, N+ NN) = 2)—N5 > !
A( (N, +N,N,
2wy -+

0

3.2 Ng
Where
N, +N,N, | w; I .
L :Tg Vg(Nl +N0N2)_FS(Y1 _NlNz)"'Wz -

system (3) occurs at
-
i

Then a simple Hopf bifurcation of the model in
1 N+NN
{li —wg(
(J\{H‘GI\Q)J N
Proof: According to the Liu approach a simple
Hopf bifurcation occurs if and only if

A () >0, As(p,), AM(p,) =0 and

OA

— | #0,where u, is a critical value of
ou #=r

the key parameter and

A, for i=13,and A are given in
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Equations (13b),(13d) and (14d") . Note that it
is clear that Ny =1+ w,p, >0
N,>0,N,>0 and j] <N,N,
(14a)-(14c) (14e)
N, < 0under condition (15d) and hence w; is
with

under

conditions and and

positive under the above conditions
condition given in (19).

Now, by substituting of the value of w;
in these equations we obtain

x 1
Ay (wy) :_2[N1 +NoN, +W6N§1
NO
which is positive due to conditions (14a)-(14c).

* % ~n WN N
A3(W1):N_36[J’12 _NlNz]_M

0

N, =1-2w,y, <0 under condition (14b),

, where
0

clearly, A,(w,)> Ounder condition (14b) and
(14c) with condition (19).Moreover, rewrite
equation (14d") gives that

_ (N +NN)

A
Ny

B@ (N, +NoNy)

0

1 . N +NoM,)
——— (P —NN)+nZ |—wy| L0727
Ng i —NN,) 6:| “él: Ng

+N5}

Hence, it is easy to verify that A(w, ) = 0.
Finally, since
EX

[-oemm (3
— 2wy —EN) Y
ol Wz{ I +(No 6]}

Thus, a simple Hopf bifurcation occurs in

~ | =M+ NN
_MW{ (8 + o)
0

system (3) at w, = w; .
7. Numerical Simulation:-

In this section, the global dynamics of system
(3) is further investigated by solving it
numerically. The objective is to verify our
previous analytical results and understand the
effect of varying the parameters values.

For the following set of parameters value:

1 =002w, =0.Lwy=0.1,w; =021 =01,

Wy =025 =0.Lug=0.1

The trajectories of system (3) approach
asymptotically to global stable point in the
Int.Ri , as shown in Fig. (1) and (4) Clearly, for

this set of data, the numerical result confirms
our analytical result. Moreover it is observed
that, increasing the conversion rate from

(20)



Majeed

immature prey to mature prey further, i.e
w; >0.01 , system (3) still have a globally

stable point in Int. Ri .

050204)

02006021

mature prey

immature prey

)

T T
—— immalure prey
[} — ~ matue pry
—— prdalor

Figure 1-(a)Global stable point in Int.Ri (b)Time

series starting from (0.5,0.2,0.4) for the parameter set
(20) at which the conditions for persistence hold, the
trajectory of system (3) approaches to the positive
point E,,that is the system is persist.

@

initial point
(0502,04)

predator

stable point
(0.03,0.004,0.0004)

05

mature prey

0 1 o e W W I
0 1000 2000 3000 4000 5000 6000 7000
Time

Figure 2- (a) £, =(y,,,0) is global stable point
(b)Time series of starting point (0.5,0.2,0.4) for the
parameter set (20) with ws=0.03,condition(11b) holds

I

8000 9000

10000
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and the trajectory of system(3) approaches
asymptotically to E;,so system(3) not persist.
@

AN

initial point
050204)

_predator _

stable point
(0.14,0.02,3.35e-34]

05
0
; o M

05 O
02
0o 0
mature prey immature prey
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o
_—

Population
o o
=2 ©

T T
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I

o
N
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Figure 3- (a) Global stable point in Int.Ri (b)Time

series of starting point (0.5,0.2,0.4) for the parameter
set (20) with w;=1, the trajectory of system (3)
approaches asymptotically to E,,so system(3) persist.

(@)

stable point
(0.55,0.27,0.19)

initial point
(050204)

I

predator

07
065
055 08

05
04 045

immature prey

300 a0
Te

Figure 4- (a) Global stable point in Int.Ri (b)Time
series of starting point (0.5,0.2,0.4) for the parameter
set (20) with w;=0.5, the trajectory of system(3)
approaches asymptotically to E,,so system(3) persist.

According to the above, the effect of the other
parameters on the dynamics of system(3) is also
studied in case of varying the parameters and
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obtained results are summarized in the following

tables.

Table 1: Numerical behaviors and persistence of
system (3) as varying in some parameters keeping the
rest of parameters fixed as in eq. (20).
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Parameters
varied in
system(3)

Numerical
behavior
system (3)

of

Persistence
of  system

3)

01<w <036

037<u; <047

s 2046

Approaches to
stable point in
Int. g3
Approaches to
stable

pointEl =(3,7,,0)
Approaches to
stable

point% =(0,0,0)

Persists

Not persist

Not persist

s <003

s =003

wy >0.04

Approaches to
stable

pOiIltE) =(0,0,0)
Approaches to
stable point

E =000
Approaches to
stable point in
Int. Ri

Not persist
Not persist

Persists

00w <54

w255

Approaches to
stable point in
Int. Ri
Approaches to
stable

pointg —, 3,0)

Persists

Not persist

ws 20.01

Approaches to
stable point in
Int. Ri

Persists

01<w, <03

;=04

wy>05

Approaches to
stable point in
Int. g3
Approaches to
stable

pointﬁ =(3,7,0)
Approaches to
stable

point £ —00)

Persists

Not persist

Not persist

001<u; <08

w209

Approaches to
stable point in
Int. R3.
Approaches to
stable

pointg —5.3.0

Persists

Not persist

References

1.

10.

11.

12.

Aiello, W.G. and Freedman, H.I.. 1990. A
time delay model of single-species growth
with  stage structure.  Mathematical
Biosciences, 101, pp:139-149.

Zhang, X., Chen, L. and Neumann, A.U.
2000. The stage-structure predator-prey
model and optimal harvesting policy.
Mathematical Biosciences, 168, pp:201-
210.

Murdoch, W.W.; Briggs, C.J. and Nisbet,
R.M. 2003. Consumer-Resource Dynamics,
Princeton University Press, Princeton, U.K.
pp:225-240.

Kar, T.K. and Matsuda, H. 2007.
Permanence and optimization of harves-
ting return: A  Stage-structured prey-
predator fishery, Research Journal of
Environment Sciences 1(2), pp35-46.

Cui, J. and Song, X. 2004. Permanence of
predator-prey system with stage structure,
Discrete and  Continuous  Dynamical
System. Series B, 4(3), pp:547-554.

Chen, F. 2006. Permanence of periodic
Holling type predator-prey system with
stage  structure for prey, Applied
Mathematics and Computation, 182(2),
pp:1849-1860.

Chen, F. and You, M. 2008. Permanence,
extinction and periodic solution of the
predator—prey system with Beddington—
DeAngelis functional respon-se and stage
structure for prey. Nonlinear Analysis: Real
World Applications, 9, pp:207-221.

Raid K.N. and Azhar A. M. 2012. Stability
analysis of an ecological system consisting
of a predator and stage structured prey.
Iraqi Journal of science, 53(1), pp:148-155.

Freedman H.I. and Ruan S., 1995. Uniform
persistence in  functional differential
equations,  Journal  of  Differential
Equations 115, pp:173-192.

Gard T.C.and Hallam T.G. , 1979.
Persistence in food webs-I.Lotka Volterra
food chains, Bull. Math.Biol., 41, pp:877-
891

Perko L., 2000, Differential equations and
dynamical system, third edition, Springer
Verlag , Berlin.

Liu WM., 1994, Criterion of Hopf
bifurcation without using eigenvalues,
Journal of Mathematics Analysis and
Application, 182, pp:250-256.



