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Abstract

This paper develops the work of Mary Florence et.al. on centralizer of semiprime
semirings and presents reverse centralizer of semirings with several propositions and
lemmas. Also introduces the notion of dependent element and free actions on
semirings with some results of free action of centralizer and reverse centralizer on
semiprime semirings and some another mappings.
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1. Introduction

The notion of semirings was defined by Vandiver in 1934 [1]. Then Jonathan S. Golan discussed
semirings and their applications with illustrative various examples [2]. Thereafter many researches
interested in the study of semirings, it’s properties and defined different types of maps on it.
Chandramouleeswaran and Thiruveni [3, 4] worked on diverse kinds of derivations. Then Mary
Florence reduced the work of Zalar and Vukman [5 - 7] on rings and present centralizer on semiprime
semirings and some relation related to it in [8, 9].

Murray and Von Neumann [10, 11] introduce free action concept by using dependent element on
abelian algebra, after this kallman [12] generalized the notion of free action on algebra not necessary

*Email: Maryamkhdhayer@yahoo.com
2053



Rasheed and Majeed Iragi Journal of Science, 2019, Vol.60, No.9, pp: 2053-2057

abelian. Then many researches extend the work of dependent element and free action on many types
of mappings [13 - 15].

A nonempty set S with two binary operation + and - is said to be a semiring if and only if (S, +) is
semigroup, (S, -) is semigroup and multiplication distributive with respect to addition. We called S
commutative ifand only if x.y = y.x forall x,y € S. Also S is called additively cancellative if
x+y =x+ zimpliessy = z forall x,y,z € S, and it is called multiplicatively cancellative if
x.y = x.z impliesy=zforall x,y, z €S, thus S is called cancellative semiring if and only if it is
both additively cancellative and multiplicatively cancellative [2]. The center of S defined as Z (S) =
{x € S:x.y =y.xforally € 5}[8].

A semiring S is called prime if whenever x S y = 0 implies eitherx =0ory =0 forall x,y € Sand
it is called semiprime if whenever x S x = 0 implies x=0 for all x € S [3].

An additive map d: S — S is called derivationon Sifd (xy) = d(x)y + xd (y) forall X,y € S.
An additive map T: S — S is called left (right) centralizer if T(xy) = T(x)y (T(xy) = xT(y))
forall x, y € S. If T is both left and right centralizer then it is called centralizer of S [8].

This research extend some results of centralizer on prime and semiprime semirings and study
reverse centralizer of semirings with some results on prime and semiprime semirings. Also present
dependent element on semiring and free action concept with some important results of free action on
centralizer, reverse centralizer and another mappings on semiprime semirings.

2. Centralizer and Reverse Centralizer on Prime and Semiprime Semirings
Definition2.1: - Let S be a semiring, an additive map T: S — S is called left (right) reverse centralizer
if Txy)=TW)x (T(xy) = yT(x)) forall x, y € S. A reverse centralizer of S is both left and
right reverse centralizer.
Lemma2.2: - Let S be a prime semiring and | be a nonzero ideal of S. Let T: S — S be a left (right)
centralizer. If T = Oonl,thenT = 0onS.
Proof: - SupposethatT = Oonl, let0O£fueland0#reS. ThenT (ru) = T(r)u = 0.
Replace u by su, wheres € S, thenT(r)su = Oforalluelandr,s€S.
T(r)Su = Oforalluelandr e S. By primness of S and since u#0 we get T(r) = OforallresS.
ThenT=0o0nS.
Lemmaz2.3: - Let S be a prime semiring and | be a nonzero ideal of S. Let T: S — S be a left (right)
reverse centralizer, if T = Oonl,thenT =0 onS.
Proof: - Similar as above.
Theorem2.4: - Let S be a cancellative prime semiring and | be a nonzero ideal of S. Let T: S — S is
left (right) centralizeron I, if T (wv) = T (vu) forall u, v € I, then S is commutative.
Proof: - Take T is left centralizer of I, then
Tmv) =T @)V forallu,vel .. (1)
T(uv) =T (u) forallu,vel ... (2
From (1) and (2) we have, T (vu) = T (u) vforallu,v el
Replace u by u w, where w € I,
Tuw)v =T wuw)
TWwrv=Twu)w
=Tuv)w
=TWvw
Since S is cancellative we have, wv = vw forallv,w € I.
Then | is commutative, by Lemma 2.22 [16] we get S is commutative.
Similarly proved when T is right centralizer.
Theorem2.5: - Let S be a prime semiring and | be a nonzero ideal of S. Let T: S — S be a left (right)
reverse centralizeron I, if T (uv) = T (v u) for all u, v € I, then S is commutative.
Proof: - Similar as above.
Theorem2.6: - Let S be a semiprime semiring and | be a nonzero ideal of S. Let T: S—S be a left
(right) centralizeron I, if T (u) T (v) = Oforallu,vel,thenT = 0OonS.
Proof: -let T (u) T(v)=0forallu,vel
Replace u by vs,wherese S, thenT (vs)T (v) = T (v)sT (v) = OforallseS.
Hence T (v) ST (v) = 0.By semiprimness of Swe get, T (v) = Oforallvel
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ThenT=0o0nland by Lemma2.3wegetT = 0onS.
Similarly proved when T is right centralizer.
Theorem2.7: - Let S be a semiprime semiring and | be a nonzero ideal of S. Let T: S — S is left
(right) reverse centralizeron I, if T (u) T (v) = Oforallu,vel, thenT = 0onS.
Proof: - Similar as above.
3. Dependent Element and Free Actions on Prime and Semiprime Semirings
Definition3.1: - Let S be a semiring, f: S — S be any mappinganda € S. If f (x) a = a x holds for
all x € S then a is called dependent element of f. The set of all dependent element of f denoted
by Dy, ().
Theorem3.2: - Let S be a cancellative semiring and T be a left (right) centralizer of S. Let a € S, then
a€Dy(T)ifandonlyifaezZ(S)and T (a) = a.
Proof: - Leta € D,(T) thenT(x) a = ax forall x € S, replace x by x y, where y € S then,
T(xy)a=Tx)ya=axy
=T(x)ay
Since S is cancellative we get, ya = ayforally € S,then a € Z(S).
Thus T(ay) =T(@y =T®)a =T (ya).
Then T (a) y = ay,since Sis cancellative then T (a) = a.
Conversely, we have a € Z(S) with T (a) = a, now replace a by x a, where x € S, then
T(xa) =T((x)a = xaforallx€S. Then a € D,(T).
Similarly proved when T is right centralizer.
Theorem3.3: - Let S be a semiprime semiring and T be a left (right) reverse centralizer of S. Leta € S
thena € D,(T) ifandonlyifa € Z(S)and T (a) = a.
Proof: - Leta € D, (T) then T(x) a=ax forall x € S.
Multiply both sides from the left by a y, where y € S then,
axay =TX)aay

=T(ax)ay
=T(ayax)
=T(ax)a
=Txaya.
WehaveT (x) a[a,y] = Oforall x,y €S, then
ax|a,y] = Oforallx,y € S .. (D)
Replace x in (1) by y x, we get
ayx[a,y] = Oforallx,y € S ... (2)
Multiply (1) from the left by y, we have
yax|[a,y] = Oforallx,y € S ...0%3

From (2) and (3) we get, [a,y] x [a,y] = Oforall x,y € S.

Then [a,y] S [a,y] = 0forally € S. By semiprimness we get a € Z(S).

Thus, T(ay) = T(ya) =T(@)y = ay.

Then (T (a) — a) y = 0. By semiprimness we get T (a) = a.

Conversely, we have a € Z(S) with T (a) = a.

Replace aby a x, where x € S, thenT (ax) = T (x)a = xaforallx € S, thena € D,(T).
Similarly proved when T is right reverse centralizer.

Lemma3.4: - Let S be a semiring and T be a left (right) reverse centralizer of S. Then D, (T) is
subsemiring of Z(S).

Proof: - Leta, b €D, (T),toprovea + banda.b € D,(T).

By Theorem 3.3 we have a,b € Z(S),T (a) = aand T (b) = b.

It'sclearthata + banda.b € Z (S).

Now since T is left centralizer then,

T@+b)=T(@ +TMh) =a+band T(ab) =T(@b = ab.

By Theorem 3.3 we have a + b and a b € D, (T), then D,,(T) is subsemiring of Z (S).

Lemma3.5: - Let S be a semiring and T be a left (right) reverse centralizer of S. D,,(T) is subsemiring
of Z(S).

Proof: - Similar as above.
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Lemma3.6: - Let S be a commutative semiring and T be a left (right) centralizer of S, then D,,(T) is
an ideal of S.
Proof: - Since D, (T) is subsemiring of Z (S), we need only to show that as € D,(T) for some
s € S.
T(x)as = axs = asx, forall x €S. Then D,,(T) is an ideal of S.
Lemma3.7: - Let S be a semiring and T be a left (right) reverse centralizer of S, then D,,(T) is an ideal
of S.
Proof: - Since D, (T) is subsemiring of Z (S), we need only to show thata's € D,,(T) for some s € S.
T(x)as =T(asx) =T(sxa) = T(a)sx = asxforallx €S. Then D,(T) is an ideal of S.
Definition3.8: - Let S be a semiring, a mapping f:S — S is called free action if zero is the only
dependent element of f.
Theorem3.9: - Let S be a prime semiring, | be a nonzero ideal of S. Suppose that T: S — S is left
(right) centralizer of S such that T not identity map on I, then T is free action.
Proof: - Leta € D,(T) thenT (x)a = ax forall x € S.
Replace x by u x, whereu € I, thenT (ux)a = T(u)xa = auxforalluelandx € S.
By Theorem 3.3 we havea € Z (S),then T (u) xa=uxa.
(T(w)-u)xa = 0foralluel,xes.
By primness and since T is not identity map on | we get a = 0, then T is free action.
Theorem3.10: - Let S be a prime semiring, | be a nonzero ideal of S. Suppose that T: S — S is left
(right) reverse centralizer of S such that T not identity map on I, then T is free action.
Proof: - Similar as above.
Lemma3.11: - Let S be a semiprime semiring, then S has no nonzero nilpotent element.
Proof: - Trivial.
Theorem3.12: - Let S be a 2_torsion free prime semiring and T: S — S is left (right) centralizer of S.
Then a mapping @ on S which is defined by @ (x) = [T (x),x] for all x € S, is free action.
Proof: - Let a € D,(®),then® (x)a = [T (x),x]Ja = axforalla€es.
By linearization above equation we get,
(T ), x] + [T (x),y] + [T (), x] + [T (¥),yD) = ax + ay.
[T (x),y]a + [T (y),x]a = Oforallx,y €S
Replace y in above equation by a y we have,
[T (x),ya]la + [T (ya),x]a = [T (x),ayla + [T (y)a,x]a
alT (x),yla + [T (x),al]ya + T () [a,x]a + [T(y),x]aa
a[T(x),yla+ [TO),x]aa= a* ([T (x),y] + [T ),x]) = 0
Puty = x in above equation we get, 2 a® (® (x)) = a? (@ (x)) = 0 forallx €S.
By primness and since ® is nonzero we have a? = 0.
Then by Lemma 3.11 a = 0, hence @ is free action.
Theorem3.13: - Let S be a 2-torsion free prime semiring and T:S — S is left (right) reverse
centralizer of S. Then a mapping @ on S which is defined by @ (x) = [T (x),x] for all x € S, is free
action.
Proof: - Similar as above.
Theorem3.14: - Let S be a semiprime semiring and d: S — S is derivation. Then d is free action.
Proof. - Leta € D,(d),thend (x) a = ax forall x € S, replace x by a x we have,
d(ax)a =d(a)xa + ad(x)a = aax
d(a)xa = Oforallx € §
By primness and since d is nonzero derivation, we get a = 0 then d is free action.
Theorem3.15: - Let S be a semiprime semiring and 7: S — S be a centralizer. Suppose that d is
derivation of S.then ¥ = d o T is free action.
Proof: - Leta € D,(¥),then¥ (x)a = axforallx €S.
doT((x)a = axforallx € § .. (D)
d (T (x))a = ax
Replace x by x y, where y € S, implies
d(T(xy)a=d{Txy)a =axy
d(T(x)ya+Tx)d(y)a =axy

0
0
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doTMxX)ya+Tx)d(y)a =axy
Tx)d(y)a =d T (x)][ay]forallx,y € S - (2)

Replace y by ay in (2) we have,

T(x)d(ay)a =deoT(x)[aay] =de°T(x)alay]
Tx)d@)ya+Tx)ad(y)a = ax|ay] ... (3)

Multiply (3) by z on the left, where z € S, we get,

zT(x)d(@)ya + zT(x)ad(y)a = zax[ay] ... (4)
Replace x by z x in (3) we get,
T(zx)d(@ya+T(Ezx)ad(y)a = azx|ay] ... (5

From (4) and (5) we have,

[a,z] x [a,y] = Oforallx,y,z€S

Putz = y in above equation implies,

[a,y]x[a,y] = OforallxeS

By semiprimness we get, [a,y] = Oforally € S.
Thus a € Z (S). From (2) we have,

T(x)d(y)a = 0forallx,y € S ... (6)

Now replace y by T (y) in (6) and then using (1) we get,

T(x)a = 0forallxe$S .. (7

Taked (T (x)a) = d (0) = Oweobtain,d e T(x)a + T(x)d(a) =0
Multiply above equation by a on the right,

doT(x)a’?+T(x)d(a)a = 0 .. (8)

Now using (6) we get d o T (x) a® =0and from (1) we get, axa = O forallx € S.
By semiprimness of S we get a = 0 then ¥ is free action.
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