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Abstract

In this study, we delve into the intricacies of the reaction-diffusion system
associated with neuronal activities, focusing on open bounded three dimensions
convex domain. Employing the renowned Faedo-Galerkin method, alongside
compactness techniques, we establish the uniqueness, existence, and initial data
sensitivity of both weak and strong solutions within this framework. Furthermore, a
comprehensive case analysis is presented, demonstrating the practical application of
this methodology to the reaction-diffusion system under consideration.
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1. Introduction

Mathematics is a fundamental tool across scientific disciplines, aiding analysis and
application [1-4]. Reaction-diffusion systems, comprising nonlinear parabolic partial
differential equations, have garnered significant attention over the years. These systems find
diverse applications in fields such as chemistry, ecology, physics, and biology. For an in-
depth exploration, references such as [5-7] provide extensive insights. Our study is mostly
about a certain reaction-diffusion system that mimics how action potentials spread in heart
muscle cells, similar to the Hodgkin-Huxley model and studying Ca+2 waves in Xenopus
oocytes [8]. The Hodgkin-Huxley framework, originally comprising four ordinary differential
equations to describe potential changes across a nerve cell’s membrane, particularly in the
squid’s giant axon, has been simplified by Fitzhugh, Nagumo et al. [9-14] into a two-equation
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system, known as the FHN equations and Medaka eggs [11]. These equations have seen
widespread application, such as in modelling CO oxidation on Pt(110) [12] , and analysing
cardiac tissue re-entry [15] . For further application examples, refer to [16-18].

In our study, we examine a reaction-diffusion system represented by four coupled reaction-
diffusion equations, subject to Neumann boundary conditions, formulated as follows:

(M) Find {u4, v;, u,, v} such that

Ju
Ga—tl = dlAul + af(ul) - Ul + a(UZ - ul); I'n QT! (11)
v
a—tl = dzAvl + ul - 6171 + ﬁ(vz - vl); I'n QT! (12)

u

Ga—tz = dlAuz + af(uz) — Uy — a(uz - ul)’ in QT' (13)
v

a_tz = dzsz + U, — 6772 - ﬁ(vz - Ul); in QT' (14)
aul_oavl_oauz_oavz_o g L5
v _ ov  ov  av T . o
Uy (+,0) = ug0,v1(-,0) = v10,uz(+,0) = Uy, V2(+,0) = vy, in Q. (1.6)

Where Qr = Q% (0,T), Q is an open bounded convex domain in R7(n = 1,2,3), with
smooth boundary 0Q, St = 9Q x (0,T), v denotes the exterior unit normal to 9Q, d, and d,
are known as the diffusion coefficients for u,,v;,u, and v,, respectively, A is the Laplace
operator, f(u) = 3u — u3. The € and § are small parameters; and «, f measure the coupling
strength, which represents the interactions between neurons. All parameters are considered to
be real and finite, as outlined in [19]. The concept of elliptic problems with Neumann
boundary conditions, initially introduced in [20], was not widely recognized as a variational
problem within a Hilbert space context until later developments. Showalter’s work in [21]
demonstrated that these elliptic boundary value problems could indeed be interpreted as weak
forms in Hilbert spaces.

The study of reaction-diffusion systems with Neumann boundary conditions is important
because there aren't many studies that only look at Neumann conditions, even though there is
a lot of research on systems with Dirichlet and mixed conditions. Sherratt’s work [22] delves
into "oscillatory™ reaction-diffusion equations, particularly relevant in ecological contexts
where Dirichlet conditions often approximate more practical Neumann conditions. Al-Ofl’s
study [23] provides a mathematical analysis of reaction-diffusion equations under Neumann
conditions, establishing the existence, uniqueness, and initial data dependency of both weak
and strong solutions. This importance is further emphasized by recent studies incorporating
Neumann boundary conditions in their analysis (see [24-32]).

The primary objective of this investigation is to establish the existence and uniqueness of a
weak solution for the system described by equations (1.1) -(1.6). This goal is achieved
through the application of the Alaoglu Compactness Theorem [33] and the Faedo-Galerkin
method [13]. The approach involves approximating the infinite dimensional dynamical
system with a finite-dimensional model through a truncated Eigen function expansion.
Utilizing Picard’s existence theorem, we establish the local existence of a finite weak form of
the reaction-diffusion equation. Furthermore, for weak solutions in L2(£), global existence,
uniqueness, and dependence on initial data are demonstrated using the Alaoglu Compactness
Theorem and various bound estimates. The methods outlined in [34] are employed to obtain
refined results for Neumann boundary value problems. Additionally, the existence,
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uniqueness, and initial data dependency of strong solutions in H() are proven, leveraging
the low regularity of the initial data [14].

The structure of this study is as follows: Section 2 outlines the essential notation, while
Section 3 delves into the existence and uniqueness of weak solutions, Section 4 delves into
the existence and continuous dependence.

2. Notation and auxiliary results

In this research, the symbol Q represents a bounded domain within R”, where n = 1,2,3,
characterized by a Lipschitz continuous boundary, denoted as 9. We employ standard
Sobolev spaces, expressed as W (Q), where h belongs to the set of natural numbers N and
B lies within the interval [1, co]. The norms and semi-norms associated with these spaces are
represented by |||,z and ||, g, respectively. Specifically, when g = 2, the space wh2(Q) is
alternatively denoted as H"(Q), accompanied by the norm I-l, and semi-norm |n. In cases
where h=0, the space W%2(Q) is equivalent to L2(). The inner product within the L?(()
space, spanning over the domain (, is indicated by (:,-) and possesses the norm [||lo = |-
Additionally, the notation <-,->is used to denote the duality pairing between the dual space

(Hl(ﬂ))' and the space H(€), where (H1(Q))' represents the dual of H(€). The norm on
the dual space (H(Q))' is defined as follows [13,14]:

= supM = sup |[< @,y >,y € HY(Q). (2.1)
#@) =z vl il =1

|I@1II(

We define specific function spaces that are contingent on both temporal and spatial
parameters, denoted as L# (0, T; X) for 1 < 8 < oo, where X represents a Banach space. These
spaces encompass all functions, denoted here as @, satisfying the condition that for almost
every t in the interval (0,7 ), @, is an element of X and adheres to the criterion that the

ensuing norm is bounded and finite:
1

T B
”(Dl(t)”LB(O,T;X) = (f |¢1(t)|§ dt) ,
0

11 ()l 0,r;x) = ess sup [[@1(D)]lx-
te(0,T)

Also, we introduce the function space L? (Q;) defined as L# (0, T; LP (Q)), where 8 ranges

from 1 to infinity, denoted as B € [1, c]. Additionally, we present the space C([0,T]; X),
which is the set of all continuous functions mapping the interval [0, T] into the Banach space
X. This space includes functions @, (t) that map from [0, T'] to X and satisfy the condition that
@, (t) converges to @, (t,) in X as t approaches t,. It is important to note that C([0, T]; X) is
itself a Banach space, equipped with a specific norm as detailed in [35].

The Sobolev theory is also required in addition to these established results:

HY(Q) { LB(Q) & (H'(©) hold for B

[1,00] ifn=1,
€{[1,0) ifn=2 (2.2)
[1,6] ifn=3,
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where < signifies continuous embedding. Additionally, according to the Rellich-
Kondrachov Theorem (refer to [36] p.114 and [37] p.8), the embedding described in (2.2) is
compact. This is particularly applicable when g € [1,6] is substituted by g € [1,6) in the

context of n = 3. We denote this compact embedding using the symbol :

The following Halders inequality is also required frequently: for 1 < q;,q, < o such that
ql+ ql =1if @, € L9(Q) and @, € L92(Q) then 0,0, € L}(Q) and
1 2
1 1

q1 qz
||®1¢2||0,1=f |®1®2|dxs<f |¢1|q1dx> <f |¢2|qzdx>
Q Q Q

= 191llo,q,11921l0,q, - (2.3)

The aforementioned inequality can be extended by applying it iteratively, resulting in the
following generalization:

1018,05ll0,1 = fﬂ |0,0,03] dx <

1 1 1
q1 qz qs
(f 10415 dx) <f 10,17 dx) (f 10,19 dx)
Q Q Q
= [[D11l0,q,11921l0,4,1123l0,45 (2.4)
for 1 < q4,92,q3 < o0, such that— + — + — = 1.
q1 qz qas

The subsequent inequality, commonly known as Young’s inequality, is frequently utilized:

B1 pP hb: 1 1
hh, <Py p 12 4 _=
. B B- B B

valid for any h;,h, >0, >0 and B,,F, > 1. The following is another useful
consequence of Young’s inequality:

1, (2.5)

h? h2
hihy, > —371 — 3-172, Vhy, hy, € RT,VB > 0. (2.6)

The differential version of the Gronwall Lemma is also essential:

Lemma 2.1(Gronwall Lemma): Consider W,(t) € W1(0,T) and ¥,(t), ¥5(t), W, (t) €
L'(0,T), all being non-negative functions. This is deduced from

aw,(t)
dt

+ W, (t) < V()W (t) + WY,(t) a.e. t€][0,T],
that

T T T T
Wy (T) + f W,(0)d{ < exp ( f w3<c)dc)w1(o>+exp ( f sv3<<)dz> f W, (Od¢. (2.7)
0 0 0 0
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3. Weak solutions
We present a weak formulation for system (1.1) — (1.6).

(M)Flnd ul(. , t), 171(. , t), uZ(. B t), 172(., t) € Hl(ﬂ) SUCh that ul(. ,O) = ul’o(. ), vl(.,O) =
V100 ), u2(.,0) = uy(.), v2(.,0) = v,4(.), and for almost every t € (0,T),

oy,
€ (a—ut;n> +dy (Vuy, V) = a(f (uy),m) — (v, 1) + auy —uy,m), vn € H'(Q), (3.1)

(%'77) + dy(Voy, V) = (ug,n) — 6wy, m) + B(vy — vy, 1), vn € HY(Q), (3.2)

9]
&€ (%; n) + dl(VUZ; V?’]) = a(f(uz),n) — (172,17) —_ a(uz — ul’n)’vn € Hl(.Q), (33)

(521) + da(To2, Y1) = (uzs1) = 6Cz,m) = Blv —vim), Y € HIQ@.  (34)
Theorem 3.1. Suppose Q < R"7, where n = 1,2,3, is an open bounded convex domain.
Assume uy o(.), v10(), Uz0(.), v20(.) € L*(Q). Then, the system (1.1) — (1.6) possesses
at least one weak solution u,, v4, u,, v, that satisfies:

uy (%, 6), up(x, t) € L*(Q7) N L2(0,T; HY(Q)) n L*(0,T; L2(Q)) n €([0, T]; L2(Q)) (3.5)
v, (x, ), v, (x, t) € L*(Qr) N L2(0, T; HA(Q)) n L2(0, T; L2() n ¢([0, TT; L*(Q)) (3.6)

and the equations (1.1)— (1.6) hold as equalities in Lg(O,T;(Hl(Q))'),
12 (0, T; (Hl(n))'), L3 (0, T; (Hl(ﬂ))') and 12 (0, T; (Hl(ﬂ))'), respectively.

Proof: The proof is structured into four sections, outlined as follows: Sub section 3.1 outlines
the Local existence, while Sub section 3.2 delves into the Global existence, Sub section 3.3
delves into the limit, and Sub section 3.4 uniqueness of solutions.

3.1 Local existence

We employ the Faedo-Galerkin method [13], to establish existence. Let {z;};2, denote an
orthogonal basis for H1(2) and an orthonormal basis for L?(£), comprising eigenfunctions
for

dz;
—Az; + z; = y;z;, inQ, (')_vl =0 on 90Q, (3.7)
where
1—00
is an infinite set of associated eigenvalues. Note, (Zi'Zj)Hl(Q) = u;6;; and (Zi’Zf)LZ(Q) = J;;.

Now, set V¥ :=span{z}¥, c H'(Q), and seek a finite-dimensional weak form
corresponding to (M):

(M*) find u¥(., t) vE(., 1), u§( t), v¥(.,t) € V¥ such that uf(.,0) =u¥,, vf(.,0) =
vEo, uk(,0) = uf,, v5(.,0) = vk, and for almost every t € (0,T),

0 k
€ (%'nk> +dy (Vuf, V%) = a(f(uf), n*) — (v¥, %) + a(uf — uf,n*), (3.9)

ovk
(a—tl"?>+dz(Vv1,V77") (uk, %) — 8(vk, n*) + B(vk — vE, k), (3.10)
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K
) + dy (Vuk, vn*)

—=n
at
= a(f(uf),n*) — (v, n*) — a(uf —uf,n"), (3.11)
@Ltz,n") + d, (Vv§, vnk)
= (uf,n*) — 8(vk, n*) - B(vk — vl n¥). (3.12)

Now, uk, vk, uk, v¥ expressed as Galerkin approximations in the subsequent format

k

w0 =) an®z(), G0 = Zblk@zl() (3.13)
ki=1

W50 = ) er®z(), vEC,D = 2 due (D7), (3.14)
i=1 =1

for i =1,...,k, let n* =z, The coefficients a;,(t), b (t), cix(t), and d;(t) are not yet
known. The orthogonal projection from L?(Q) onto V* is introduced as P*: L2(Q) - V*. This

projection ensures that (P*v,n*) = (v,n*) for all n* € VX. For elements in H1(Q) c L?(Q),
this definition is valid.

Lemma 3.1. For any y € H*(Q) we have
(V(P*X), V') = (Vx, V),
vnk € Vk, (3.15)
Upon direct computation, it becomes evident that this projection operator fulfils the
subsequent properties:

IVP xllo < IVxllo, VX € H'(Q). (3.16)
The initial values are selected in the following manner:

uf(.,0) = Pkuk,, vi(.,0) = Pkvk,, (3.17)
u%(.,0) = Pkuf,, vk (.,0) = Pkvk, (3.18)

where the following property holds:
{ufo, vEo, uk o, v5 o} > {uro, V10, Uz V20} in L2(Q) as k +— oo (3.19)

The system of equations (3.9) — (3.12) can be represented as a set of ordinary differential

equations involving the variables a;; (t), b (t), cix(t), and d;, (t). We express this system
in a composite form that is equivalent to the original.

edd—utf = dyAuf + aPFf(uf) —vf + a(uf —uf),  uf(,0) = Prufy, (3.20)
dd—lf = d,Avf + uf — 6vf + B(vE — vf), VE(,0) = Pruk,, (3.21)
eddﬂ = dyAuf + aPFf(uf) —vE —a(uf —uf),  uk(,0) = Pkuf,, (3.22)
dd—lf( = d,Av¥ + uf — 6vf — B(vE —vf), VE(,0) = Pruk,. (3.23)
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Our next task is to demonstrate that the nonlinearity in the system of ordinary differential
equations is locally Lipschitz.

Lemma 3.2. Let u € C*(Q) and Q is an open bounded convex domain in R7(n = 1,2,3).
Then the nonlinear F(u) = 3u —u3 in system (M) satisfies the inequality |F(u;) —
F(uy)| < L|u; — u,|, where L is Lipschitz constant.

Proof: Based on the assumption, we obtain:

min{u:u € C*(Q)} < u < max{u:u € C*(Q)}, implying the existence of a positive integer
C such that:

max |u| <C. (3.24)
UEC®(Q)

Now, we have
If (u) — fluz)| = [((uz)® = (ug)?) = 3(uy —uy)|
= |(up — up) ((W2)? + uzuy + (ug)?) = 3(uy — uy)|
= lu, — u1||(u2)2 +uuq + (u1)2 - 3]
< luy —u1|(|u2|2 + lugllug | + lug|* + 3] < BC? + 3)|uy — uy|
< Llu, — uq]. (3.25)

Which completes the proof. m

As a result, f is locally Lipschitz. According to local existence theorems, such as Picard’s
Theorem (see, for example, Hartman [38], p. 9), it can be concluded that the system of
ordinary differential equations has a unique solution u¥, v¥, u¥, v¥ on a finite time interval

(0, tg).

3.2 Global existence

In order to illustrate the worldwide presence of the Galerkin approximations, we establish
preliminary estimates on u¥,v¥, u¥ and v¥ limits that are not dependent on k and
appropriate for specific function spaces. Using these boundaries as leverage, we can conclude
that the global existence of the Galerkin approximations holds true for any given time value
of t, = T, regardless of its dependence on k.
Estimate I: On choosing n* = u¥, n* = v¥, n* =u¥ and n* = v¥ in (3.9) — (3.12), in
a similar vein, summing the resulting equations yields:

1d p p 1d 2
EEE |u1| X+E |u2| X+§E |171| X+2dt
+d1j |Vu’f|2dx+dlj |Vuk| dx+d2J |Vwk| dx+d2J |Vwk|* dx
Q Q
+aj |u|dx+aj |u2—u1|dx+5.f |v|dx+ﬁj |v2—v1|dx
Q Q
+aj |u2|dx+6f |v§| dx
Q

= 3aj |u1| dx + 3af |u2| dx. (3.26)
Q Q
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Add (fﬂ |v{‘|2dx + |v§|2dx), on the right-hand side, multiplying by 2,
d 2 d 2 d 2 d 2 2
S%L |u’1‘| dx+£EfQ |u’2‘| dx+%fﬂ |v{‘| dx+%fQ |v§| dx+2d1fQ |Vu’f| dx
+2d1f |Vu§|2dx+2d2f |Vv{‘|2dx+2d2f |Vv§|2dx+2af |uf|4dx
Q
+2af |u2 —u1| dx+26f |v{‘| dx+23f |v2 —v1| dx+2af |u’2‘| dx
Q
+26f |v§|2dx
Q
S6a<€f |u1| dx+€f |u2| dx+f |v1| dx+f |v2| dx) (3.27)
Q
Application of Gronwall Lemma 2.1 gives

elluk (D ++els DI +ok DI, + 5@, +2a k]

L2(0TH1)
+ 2d1||u§||L2(0TH1) + Zdzllvi‘llLZ(OTHl) + 2dz||V£‘||Lz(0TH1)
+ Za”uﬂlﬁ(m) + 2a[uf — uf ”LZ(QT)
26|k ||L2m + 28]k = ¥ o, + 28188 ] o, + 28152
< (elut [l + ellus O]l + v O[],
+ ||v§(0)||0) 6ar (3.28)

Recalling  u¥, vfo,uf, and vk, e L?(Q) we have uf, uf is uniformly bounded in

L*(0,T; L2()) n L2(0, T; HX(Q) n L*(Q7) and  vf, v¥ is uniformly bounded in
L*(0,T; L2()) n L2(0, T; HY(Q) N L2(Q7), (uf —uk¥)and (vk —v¥) € L2(Qy).

3.3 The limit

Using standard compactness methods (see [38], Theorems 4 and 5), we utilize the
functions that are uniformly bounded {uX}5_,, {(v¥}5,, {uk32, and {vX¥}7_,. We extract
convergent subsequences from these sequences, which we refer to as {uX}, {v{‘} {u¥}, and
{vX}, such that

{uf, uk} = {uy,u,} in 12(0, T; HX(Q)) N L*(Qr) as K — o, (3.29)
{v¥,v5} = (v, v,} in L2(0, T; HX(Q)) N L*(Qr) as K - oo, (3.30)

and

{uf, uf} = {uy, u} in L*(0,T; L?(Q)) as K — oo, (3.31)

{vf, vE} =" (v, v,} in L”(0,T; L*(Q)) as K - oo, (3.32)

"and " —* ", respectively, denote weak and weak-star convergence. For the elements in
the first composite Galerkin approximation (3.20), we show how to approach the limit.
Consider the expression:

fl(ul,vl, ) = 3au1 —a(ul) —v1 +oz(u2 —ul)
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and it can be readily demonstrated that
lfil < C(|u{‘|3 + |uf| + [v¥| + |u’2‘|) (3.33)

Then we find that

4
ff|f1|3dxdt<cff <|u| b+ [k + |3> daxdt. (334

Taklng into account the bounds (3.29) and (3.30), along with the embeddings L4(QT) S

Ls(QT) and L%(Qp) <—>L3(QT) we observe that f; is uniformly bounded in Ls(QT)
Therefore, employing weak compactness arguments, we can assert the existence of p €

4

L3(Qy) such that

4

fi—=p inl3(Qr) ask — oo. (3.35)

4
We further demonstrate that in L3 (Qr), P¥*f; likewise tends weakly to p. Define the
orthogonal projection to P¥,G* := I — p*. Remember that (P*v, p*) 1 = (v, p*) ;1 for all
p¥in Vk, v e H'(Q). This implies that ||P*v — v||; < ||[p* — ||, for all pk € V¥, ve
H(Q). Consequently, since V¥ is dense in H*((), for every v € H*(Q)), we have P¥v — v
in H1(Q); thatis, G*u — 0in H'(Q) as k — . Additionally, for any v € L*(Q), we get
H' & L*(Q7) and, consequently, G*¥u — 0in L*(Q). Let 9 € L*(Q;) be arbitrarily chosen.
Then, using the orthogonal property of G* and Hélder’s inequality,

T T
PXf, — p,9)dt| = [(fy — p,9) — (f1, G¥I)]dt], (3.36)
0

T T
<|[ Gi-povdel+ [ 1Als 1650 N0ude > 0,05k >, (337)
0 0 ’3

Acknowledging the strong convergence of G*9 to 0 in L*(Q) and relation (3.35), we obtain
4
PXfi = pinL3(Q7) as k — oo. (3.38)
Similarly, consider
fo(uf, vf, v§) = uf — svf + B(v§ —vf),
we have

12l < C([uf] + |vE| + [vE]), (3.39)

Then, it follows that

f [ 1me dxdt<cf [ (b + ok 087) e (3.40)

Taking into account the bounds (3.29) and (3.30), along with the injection L*(Qy) © L?(Q),
we deduce that f; is uniformly bounded in L?(Q;). Consequently, through weak compactness
arguments, there exists & € L2(Q) such that

fo = §inL*(Qr) as k > co. (3.41)
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We show that P f, also tends weakly to & in L2(Qr). We have G*v — 0 in H(Q) as k —
oo, Moreover, it follows form the injection H1(Q) < L?(Q) that G¥v — 0 in L2(Q) for all
v € L2(Q). Let ¥ € L2(Qy), then by utilising Hélders inequality and the orthogonality of G,
we arrive at

f (P*fy) — £,9) dt
0

< +

f (f2, G*O)dt
0

fo -0

T T
= f (fz - 5:19) dt| + f ”fz||L2(Q)||Gk19||L2(Q)dt — 0 ask
0 0
- . (3.42)
Then, it follows that
Pkf, = &in12(Qr) as k - o, (3.43)

In the same way, consider

fo(uf, uf, v¥) = 3auf - a(u§)3 — vk —a(uf —uk),
we have
1fal < € (| ()| + [ + [w5] + [u]). (3.44)
Then, we find that

Tl T R
f J |f513dxdt < Cf j <|u§| + |uk]? + |vE P + |uf|3> dxdt. (3.45)
0 Ja 0 Ja

Taking into account the bounds (3.29) and (3.30), as well as the embedding's L*(Q;) ©

4 4 4
L3(Qg) and L?*(Qp) © L3(Q7), we observe that f; is uniformly bounded in L3(Q7).
Consequently, through weak compactness arguments, we establish the existence of p €

Lg(QT) such that
4
fz = pinL3(Qr) as k — oo, (3.46)

4
We show that PXf; also tends weakly to p in L3(Qy). Define G* := I — p¥, the projection
orthogonal to P*. Now recall that (P*v, p*),1 = (v,p%)y1 for all p* € V¥, v e HI(Q),
which implies ||P*¥v —v||; < |Ilp* — v||; for all p* € V¥, v € H'(Q). Thus, as V* is dense
in H1(Q) we have P*v — v in H1(Q) forall v € H'(Q), i.e. G¥u — 0 in H*(Q) as k — oo.
We also have H! & L*(Q;) and so G¥u — 0 in L*(Q) for all v € L*(©). Consider an
arbitrary 9 € L*(Qr), then using Hélder’s inequality and the orthogonality of G*

j (P*fy — p,0)dt j [(fs — . ) — (fs, GE9)]dt
0 0

T T
< || 5= p2de] + [ Wfll, 8 16%8llgade — 0,05k o (347)
0 0 3

Taking into account the strong convergence of G*9 to 0 in L*(Q) and relation (3.46), we have
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Pkfy = p in L%(QT) as k — oo, (3.48)
Similarly, consider
fa(vt i, vE) = uf — 6v — p(v —vi),
we have
Ifal < C(|uk| + [vE| + [vE]), (3.49)

Then, it follows that

T T
f f \f,|2dxdt < Cf f ([k]* + [v5]" + |vk|*) dcat. (3.50)
0 JQ 0o JQ

Upon observing the inequalities (3.29) and (3.30), as well as the inclusion L*(Qr) © L2(Qy),
it can be deduced that f, is uniformly bounded in L?(Q;). Consequently, employing weak
compactness arguments, there exists an element & € L2(Qr) such that

fa = §inL?(Qr) as k - oo. (3.51)

We show that P¥£, also tends weakly to & in L?(Q;). We have G¥v — 0 in H'(Q) as k —
oo. Furthermore, it follows form the injection H'(Q) & L?(Q) that G¥v — 0 in L?(Q) for
all veL*(Q). Letd € L>(Qr), by utilizing Hélders inequality and the orthogonality of G*,
we arrive at

j (P*f) — £,9) dt
0

T
< + f (fo, G¥9)dt
0

T
f (f, — &,9) dt
0

T
< +f ”f4”L2(Q)”Gk19”L2(Q)dt — 0 as k - oo, (352)
0

T
f (f, — &,9) dt
0

Then, it follows that

Pkf, = &inL?(Qr) ask — oo. (3.53)

1] 4
Considering that Au¥ € 12 (O, T; (H'(Q)) ) and P¥f, € L3(Qr), we can infer from (3.20) that
k , 4
% is uniformly bounded in L2 (O, T; (Hl(Q)) ) + L3(Q7). Through weak compactness
k ' 4
arguments, it follows that % converges weakly to some 7 in L2 (O, T; (Hl(Q)) ) + L3(Q7).

By the uniqueness of weak convergence, we conclude that ) = %, implying

d k d 4
S i 20T (@) + 130 as k - o (354)
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Initially, recall from (3.29) that u¥ — w, in the space L?(0, T; H(Q)) n L*(Q7) with the dual
space L2 (0, T; (Hl(ﬂ))') + Lg(QT). Additionally, using the Sobolev Embedding Theorem
and the density of H1(Q) in L?(£), we have the dense inclusion H1(Q) & L*(Q), implying
L5(Q) & (H'())  and consequently L? (0.7; (H'®)') + 15Q,) C I (0.7; (' @)").

4
Consider an arbitrary function 9(t) € €5°(0, T; H(Q)) within the space L3(0,T; H*()). By
performing integration by parts and utilizing the weak convergence of u¥ to u, in

12(0,T; (H(®)") + L3(Qr) and L (0, T; (H(@)"), we derive
fT L P f ( dﬁ)dt fT( dﬁ)dt—fT(dul ﬁ)dt
o \ dt’ -, g “a) T ) Car '

After recognizing that — e Cy’ (0 T; Hl(ﬂ)) and due to the weak convergence of u —to 7 in
Lz (0, T; (H(Q)) ) we obtaln.

17 (25,9 de - f] 3, 9)ar.

Thus, due to the distinctiveness of weak boundaries, we can conclude that % =, ie, i

dat
4 in L3 (o, T; (H'(Q))') ask - oo.

Now as uf —u, in L2(0,T; H1(Q)) we have (see [39] , p. 204) Auf — Au, in the space
’ 4 ’
12 (O,T; (H1() ) c L3 (O, T; (H(Q)) ) Hence, we achieve the necessary limit transition

4 I}
for all terms in Lz (0, T; (H1(Q)) ) To establish the equality p = f; in equation (3.35), we
utilize several well-known theorems. Employing the Lions-Aubin Theorem [23]

= {n: n € 12(0,T; HY(Q); % €13 (0, T; (Hl(ﬂ))')}:LZ(QT).

Since uf € w, a subsequence, still denoted as, can be extracted u¥, such that u¥ — u, in
L?(Qr). Consequently, u¥ — u; (pointwise) almost every where in Q. Given that f; is
locally Lipschitz in Q, This continuity entails that fl(ul,vl,uz, ) f1(uqg, v1,uz,v5)
(pointwise) almost everywhere in Q. The application of Lemma 1.3 from Lions, yields

fl(u1'v1’u2’ ) f1(u1,171;u2;772)EL3(QT) (3.55)

given the uniqueness of weak limits, we can infer that p is equal to f; as it was originally
duz

k !
stated. In the same way dstz —2inlLs (O, T; (H' () ) as k — oo, Au¥ — Au, in the space

2 (HY(Q)) dvf  dvi dvi | dvz oo (H1(Q))
L (0 T; (HY(Q)) ) and we can show that —t ——%, =% —~=2in L (0 T; (H (Q)))
LZ(QT) fz(ul,vl,llz, ) fz(ul,vl, uz,vz) in LZ(QT) and Av1 —‘Avl,sz —‘sz in
12 (0, T; (H1(Q)) ) Finally, it remains to show that u,, vy, u,, and v, € C([0, T]; L2(Q)). To

obtain that u,, v;,u,, and v, € C([0,T]; L?€), we employ a revised edition of another well-
established outcome from [40]. We have shown u;,u, € L?(0,T; H*(Q)) n L*(Q;) and
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du1

— ,duz € L? (0 T; (H1(Q)) ) + 15 (Q7). Moreover, it has been proved that v, v, €

(0, T;H Q)N 12(Q)  and 22,22 ep2(0,7;(HN(Q))') +L2(Qr).  Since

L? (0, T; (Hl(ﬂ))') + Lg(QT) and L? (0, T; (Hl(Q)) ) + L?(Q7) are the dual spaces of
L*(0,T; H(Q)) n L*(Q) and L2(0,T; HY(Q)) N L?(Qy), respectively, then we deduce that
Uq, Uy, Vg and (%) € C([O, T], LZ(.Q.))

3.4 Uniqueness
To demonstrate uniqueness, let’s suppose there exist two solutions uj, u?, vi, v, uj,u3,
and v3,v5 of the weak form (3.1) —(3.4), with initial conditions ui(.,0) = uf,(.),

u3 (.,0) —ulo( )., v1(.,0) = U10( ), vi(.,0) = le( ), uz(.,0) = uzo( ), u%( ,0) =
uzo( ) and v3(. 0) = vzo( ), v2(. 0) = Uzo() respectively. Setting w; = ul —u?, w, =
vi —v? w3 =ul —uiand w, =vi —v3, and setting n = wy, 1 = wy, N = W3, N = w, iN
(3.1) — (3.4), sub tracting the weak forms and employing this subtraction in the process
yields

d 1d
8——f |, |? dx+ f Iwzlzdx+£——f |ws|%dx + = |w4|2dx
Q

2dt
+d1f |Vw1|2dx+d2f IVa)ZIde+d1f IVa)3|2dx+d2f [V, |?dx
Q Q Q Q

+6fQ |(1)2|2dx+6fQ |a)4,|2dx+afQ (W) - W) w,dx
a| () - ()wsdx
Q

= 3af lwq|?dx + a(w; — wy, w;) + B(wy — Wy, wy) + 3af |ws|%dx
Q Q

— a(w; — wy, w3)
— B(ws — w3z, wy). (3.56)

Applying Young’s inequalities (2.6), yields that
af (@) - @i andr=a [ (@h?+utut + @h?odds
Q Q

1\2 2\2
> an ((u;) + (u;) Ywy|2dx.

(3.57)
a f (@d)? — W) wdx = a f (@d)? + udud + (22w’
Q

> afﬂ ((u;) +( 2) )|w3|2dx.

Replacing (3.57) and (3.58) in (3.56) results in

(3.58)
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1 d |, dx+——f |w Izdx+£——f |w Izdx+——J |wy|?dx
Zdt 1 2dt 2 3 2dt *

+d1f |Vw1|2dx+d2f IVwZIde+d1f Inglzdx+d2J Ve, [2dx
Q Q Q Q
ul 2 u2 2
+5f |a)2|2dx+5f |a)4|2dx-|—af (ﬁ.}.g
ul 2 u2 2
+af (( 2) +( ) \0s[2dx
) 2

+af |w3—w1|2dx+ﬁf lws — w,|?dx
Q Q

|(U1|2dx

< 3af |wq|?dx + 3af |ws|?dx.
Q Q
(3.59)

By neglecting final ten terms on the left side of inequality (3.59) and multiplying the results
by 2, while taking into account the supplementary term (fﬂ |w,|?dx +fQ |w4|2dx) on the

right side, we derive

| ottt 5 [t eg [ losfax+ 3 [ o

Sdtﬂ wq|?dx ). w,|?dx gdtﬂ w3 |?dx i) wy|?dx
S6a[f sla)llzdx+j Ia)zlzdx+j ela)3|2dx+f |w4|2dx]. (3.60)

Q Q Q Q

Application of Gronwall Lemma 2.1 gives

ellwy 1§ + llw,ll§ + ellwsllf + llwall§
< exp(6aT) (ellw; (0)|I§ + w2 (01§ + ellwz (0)1IF + llws(0)1IF). G61)
3.61
Thus, if ul(0) =u?(0),vi(0) = v2(0),ui(0) = uz(O) and v1(0) = v2(0), we deduce
uniqueness uj(t) = u2(t), vll(t) = vf(t) ui(t) = u? (t) and vzl(t) = vzz(t) for all ¢t
However, if ul(0) # u2(0),vi(0) # v2(0),u(0) # u3(0) and vi(0) # v2(0), then we
have continuous dependence in L2(Q).

4. Strong solutions

We introduce a weak formulation of the system (1.1) -(1.6). (M) find u,(.,t), v,(.,t),
uz (., t), 172 (., t) € Hl(.Q.) SUCh that ul(.,O) = ul,o(.), Ul(.,O) = vllo(.), uZ(.,O) =
Uy o(.),and v, (.,0) = v, 4(.), for almost every t € (0,T),

k
) <%’nk> +dy(Vug, V) = a(f (uf), ") = (v1'n*) + a(uz —ui'n®), (4.1)
k
(aaitl'n ) + d, (Vof, vnk) = (uf,n*) — §(vE, n*) + B(vk — vE n"), (4.2)
K
‘g(aaitz > + dl(Vuz,Vn") = a(f(ulzc) Uk) (vz, k) - oz(u2 ul,n"), (4.3)
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k
<aait2’7 >+d2(V”2'V”k) (uf, ) — 6(vk,n*) — B(v¥ — vi',n"). (4.4)

Theorem 4.1. Assume that u, g, V10, Uz, Va0 € H(Q), then the system (1.1) - (1.6)
possesses a unique, strong solution {u,, v, u,, v,} satisfying

uy (%, 6), v, (%, £), up (x, 1), v, (x, t) € L?(0,T; H*(Q)) n C([0, T], H*(Y)), (4.5)
and the equations (1.1) - (1.6) hold as equalities in L2 (Qy).
Furthermore, the

(u1,0 (x),v19 (x)) — (u1 (x, 5 Uq,0, Uz,0, Ul,o)' %1 (x, & U0, V1,00 Uz,o)):

(uz,o(x); V20 (x)) — (uz (x, t; Uq,0, Uz,0, Uz,o), Uy (X; t; Uz 0, V1,0 Uz,o)) ,
is continuous in H1(Q).

Proof: In order to establish both the existence and uniqueness of robust solutions, additional
regularity outcomes are imperative. These can be attained through the application of more a
priori estimates.

4.1 Existence
In this context, we will establish the subsequent estimates, which play a crucial role in this
section.

Estimate I: Choosing n* = —Au¥, n* = —Avk, n* = —Au%, n* = —Av¥ in the weak forms
(4.1) - (4.4), respectively Combining the results and integrating by parts leads to

SEEI |Vuk|* dx +2dtf |vwk|® dx+e;af |vuk|” dx+2dtf |Vwk|dx +

dy J, |Au{‘| dx +d, [, |Au§| dx +d, [, |Av{‘| dx +d, [, |Av§| dx +a [ |Vuf —
Vu1| dx + B [, |Vl - Vv1| dx +3a [ (|usu1| dx +3a [, |u’2‘Vu2| dx +

8, |vwk|® dx+6 [, |Vwk|dx = 3a [, |Vuk|dx +

3a [, |Vuk|’dx. (4.6)
Add (f, |vvl["dx + , |w§|2dx) on the right-hand side, multiplying by 2,
L f kP dx + 2 [ Vol [Fdx + e 2 [ [vul[Pdx + 5 [ |vok]dx +

2d, [, |Au{‘|2dx+ 2d, [, |Au’2‘| dx +2d, [, |Avf|2dx+2d2 |Av§| dx +
2a [, |Vuf — Vu1| dx+2,8f |Vv2 Vv1| dx +6a [ (|u'fVu1| dx +

6a [, |u§Vu§| dx + 26 [, |va| dx + 26 [, |Vv§| dx < 6a (e [, |Vuf| dx +
e [, [Vub | dx + [, |Vvf | dx + [, |Vv§ |2dx. (4.7)

Application of Gronwall Lemma 2.1 gives

+ 24, ||uk|?

e|uk (T)l + |vf(T)| + e|u'2‘(T)| + |V§(T)| + 2d1||u{‘|| 2orn?) T

L?(0,T,H?)

+ 2B||vk — vk

2d2||v ” 1 ||L2(0,T,H1) t

+ 2d2||v || + 20(||u2 -

||L2(0,T,H1)

2
+ 26||v§”L2(O,T,H1) <

LZ(OTHZ)
6a||usuf||

LZ(OTHZ)
+ 6a||u§Vu'2‘|| + 26||v{‘||

L>(Q7) L*(Q7) L?(0,T,HY)
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m( |u’<(0)| +|v{‘(0)| +8|u'z‘(0)| +
) ) (4.8)

Then, we deduce that uf, v¥,u%, v¥, are uniformly bounded in L*(0, T; H* (%)), see Theorem
3.1. We now recall that L'(0,T; H*(Q)"), which is the pre-dual of L*(0,T; H*(Q)), is a
separable Banach space but not reflexive. Therefore, we conclude from the first and second
bounds in (4.8) that

{u1;v1;u2; }_‘ {uy, v1,up, vy} in LOO(O T; Hl(ﬂ)) (4.9)

Then, we have uq, v;,uy,and v, € L” (O,T ; Hl(ﬂ)). We utilize established elliptic regularity
results for bounded, convex, open domains. This involves considering the eigenvalue
equations (3.7) and (3.8), as detailed in [38], Theorem 3.2.1.3, and Remark 3.2.1.4, we have
for fixed (finite) k that z;, € HX(Q)(i=1,..,k), and hence
uk(,0), vE(,t),uk(,t) and v¥(.,t) € L?(Q) for ae. t € (0, T) Thus, by [38] Theorem
3.1.3.3, we have [juf||, < cllauf] , [lu]l, < C||auf]|,, for some positive constant C and
a.e. t € (0,T). Therefore, from the fifth to eighth bounds in (4.8), we conclude that u¥, v¥, uk
and v are uniformly bounded in L?(0,T; H2(2)). Since L?(0,T; H2()) is a reflexive
Banach space (see [40] page 40), then, by compactness arguments (see [38] page 289), we
deduce the existence of subsequence’s uy, V4, uy,and v, € L? (0, T:H 2(Q)) such that

{uf, v¥,uf, vE} = {uy, vy, up, v} in 12(0, T; HA(Q)). (4.10)
; 2 2 ouf avf
Thus, we arrive at uy, vy, uy, and v, € L2(0,T; H2(Q)), furthermore as —1=0,—1=0,
k k
aaﬁ = 0 and aﬁ = 0 on 94, it follow by the weak convergence of uk - uy, v¥ - vy, uk -
u, and v¥ — v, in H2(Q), that == 6u1 =0, % = 0,22 _ gand 22 6”2 = 0 on L2(dQ).
. au'f k vk ouk k vk .
Estimate 11: Set n* =S =0t =25n the weak form (4.1)-(4.4)
respectively, combine the results, yields
auk uk d 2
efﬂ - d+f —E dx + [ —f|Vuf|dx+
k k k k
- dtf |Vu2| dx + Zdtf |Vv1| d + Zdtf |Vv2| dx+4dtf k| " dax +
4dtf |k| dx f |u2—u1|d + f |v2—v1|dx+6——f |vf| dx +
3a d vk
k _3ad u¥ dx + 32 uk dx+ uk 1dx+ o us—=dx —
vk 6u1 k 6u2
Jo vi=tdx— [, v (4.11)

By applymg Young’s 1nequality (2.5) on the final four terms in the right-hand side, we have
that

2
dx (4.12)
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f 124 < f|"|d +1f il 413
. uk e x uy| dx 2] |4t x (4.13)
ouk ouk|”
—f vk —Ldx < —f [vk| dx+—f — dx (4.14)
. Ous 2 € ouk
- K—~d< —f v¥ dx+—f —| dx. (4.15)
fﬂ 2 "¢ q vl 2), | ot

Combining (4.12) - (4.15) in (4.11) and multiplying through by 2, gives

ouk|® vk|? ouk|? vk|? d 12
e[ — dx+f — dx+£f — dx+f — dx+d1—f |vuk|"dx

+ dli.f |Vu§|2dx+ dzi.f |Vv{‘|2dx + dzif |Vv§|2dx
d d d

a ad d

E__f |u{‘| dx+2d f |u§|4dx+aafﬂ |u2 —u1| dx
_|_,3%f |v2—v1|dx+6 f |v{‘| dx + 68— f |v§| dx

3a—f [uk| dx+3a—f |u’2‘| dx

1

o[ lutlaxs [ futlaxe | otfar

1
+—f |v2| dx. (4.16)
€ Ja
Integrating over time (0, t), lead to

2 2 2

”% LZ(QT) % LZ(QT) ”63_1? LZ(QT) aa_”té‘ L2(Qr )+d1|uf(T)|2+d1|u§(T)|i+
d |V (D[] + dy oS (D] + STk (D], +S[us D], , + alluf (1) - uf (D)),
+B||vE(T) — vf (T)|| +6||v (T)|| +5||v (T)|| +3a||u (0)|| + 3al|uf (0)||
< 3alu ||y + 3alluf (s + 1 |lv "Ilem)+ v “||L2(9)+|Iu’f||Lzm)+|| "Ilem)
d1|u1(0)| +d1|u’2‘(0)| +d2|v{<(0)| +d2|v{<(0)| + = ||u k(0)|| + = ||u ’2<(0)||0’4
al|uk(0) — uk ()| + B[lvE(0) — vEO[} + 8[|vEO)]; +
5||v§(0)||0. (4.17)

Considering the bounds in Estimates |, specifically, L*(Q;) < L*(Qp), H'(Q7) ©
L*(Q7), H*(Q7) © L*(Q7), and given that the initial condition w, g, vy 9, U0, V20 € HY, it
follows that the right hand side of (4.17) is bounded by a positive constant. Consequently,

6aut1 aa”tl a;z and 2 are uniformly bounded in L2(Q;). Since L2(Q;) is a reflexive Banach
k .,k ..k

space, by compactness arguments, we deduce the existence of subsequence's u¥, vk, u¥, vk €
L?(Q7) such that
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ouk avk ouk ovk ou, 0vy Odu, 0v,
vl - vl in L*(Qr). 4.18
{at ot ' at ' ot {at at ' ot 6t} n L7(0r) (4.18)
Thus, we have that % % % nd 6172 € L2(Q7),uy, vy, u, and v, € L2(0,T; HY(Q)), uy

and u, € L(0,T; L4(Q)),v1 and vz € L*(0,T;L2(Q) and (up —uy), (v, —vy) €
L*(0,T; L?(Q)).

Lemma 4.1. For some n > 0, suppose that
¢ €L2(0,T; H"+1(Q)) € 12(0,T; H71(Q)).
It follows that ¢ € C([0, T]; H*(Q)).

Proof: (See [37], pages 191-194).
Here, in our case, n = 1, H""1(Q) = H?(Q), H"(Q) = HYX(Q),H""1(Q) = L?(Q). Thus,
from Lemma 4.1 we have that uf, vf, u¥, and v¥ € ¢([0, T]; H*(Q)).

4.2 Continuous dependence

Assume ul,u? vi,vZ ul,ui and vi, vz satisfy the weak form (4 1) - (4.4), with initial
conditions ui(1,0) = ui (), uf(,0) = uf (), vi(.,0) = vi(), v7(.,0) = vi,(.),
u3(.,0) = uz0(), u3(.,0) =uj,() and v3(.,0) = v3,(.), v3(.,0) = v3,(.), respectively,
such that uf o(.) # uZ,(.), vio(.) # vf(.), uze() = use(.) and v34(.) # v35,4(.). Setting
w; = uj —u, w, = v — v, w; =ul —u and w, = v3 — v and setting n = —Aw; + w,
and 1 = —Aw, + Wy, N = —Aw; + w3, N = —Aw, + w, in (4.1) - (4.4), Subtracting weak
forms results, after integrating by parts, in

Zdtf (lw1]? + [V, [*)dx + zarf (lwz|? + [V, |*)dx + S——fg (lwsl? + [Vws|*)dx +
2dtf (|wa]? + |Vwy|?)dx + dy fQ (Vw1 |? + |Aw,|»)dx + d, fQ (IVw,|? + |Aw,|?)dx +
dy [, IVos|* + |Aws|?)dx + d; [, (IVwul? + [Awl?)dx + a [, ((u])? - @) (-Aw, +
wpdx +a [, (u3)° — W3)*)(—Aw; + w3)dx + a [, lws — w1]* + [Vws — Vo |?dx +
B [, lws — 3| + |V, — Vw,|dx + 8 [ |w,|?dx + 68 [ [Vw,|?dx +

8 [ lwal?dx +6 [, [Vwul?dx = 3a [, (|w|* + [V, |*)dx + 3a [, (los|* +
|Vws|?)dx. (4.19)
Applying Young's inequalities (2.6), yields that

af, (u)® = W) (Aw; + w)dx = a [, (Wi —uf)((@)? +ujuf + W)?)(-Aw; +
w)dx > af, ((”T) C )(Ilelz

lw,]?)dx. (4.20)

af, (u2)® = W$)*)(—Aw; + wz)dx = a [, (u; —ud)((uz)? + uzuj + u3)*) (—Aw; +
w3)dx = an ((u%) ()" )(|V0)3|2

lws|?)dx. (4.21)

Substitute (4.20) and (4.21) in to (4.19), add (J|w,]|? + ||w4ll?), on the right-hand side,
multiplying by 2, leads to
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d
e—llos I + ||wz||1 te ||w3||1 ||a)4||§ +2d, [, (IVoq|? + [Aw, |[*)dx +
2, [, (Vanl? + oy e + 24, N (Veos 2 + 180y e + 2d, [, (Ve |? +
212
Ay |)dx + 2a [, ((“1) +280) (190, 2 + o Ddx + 24 ((”2) (uf) )(IVa) 2 +

lwsDdx + 2a [, (lws — w1]? + [Vws — Va|?)dx + 28 [, (|ws — wz|* + [V, —
Vw,|?)dx + 26 [ lw|?dx + 28 [ [Vw,|?dx + 28 [, lwal?dx + 26 [, [Vaw,|?dx <
6a(llws |l + llwsllf + llwlIF + llowyll?).

(4.22)
By neglecting final (twelve) terms on the left side of inequality (4.22), application of
Gronwall Lemma 2.1 we have
ellw; (MIF + llw (M + ellws (M + lwa(TIF

< (ellw (O)IF + llw (0I5 + ellws (0113

+ ||ws (T)]|? exp(6aT). (4.23)
Thus, if (u1(0),v{(0),u3(0),v3(0)) = (u2(0),v#(0),u3(0),v2(0)) then
(w1(0), w,(0), w3(0), w,(0)) = (0,0,0,0) and hence it follows from (4.23) that
(wl(T),wZ(T),a)3(T),w4(T))—(OOOO) and  hence  ul(T) =u(T), vi(T) =

vZ(T), ul(T) = u5(T) and vi(T) = v2(T) for all t, we deduce uniqueness of solution.
However, if (u{(0),v{(0),u3(0),v3 (O)) + (u(0),v7(0),u3(0),v2(0)), Thus, we establish
continuous dependence in H(Q). This concludes the proof of Theorem 4.1.
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