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Abstract

Let R be a commutative ring with identity, and let M be a left R-module. We
define a proper sub-module N of an R-module M to be a weakly 2-quasi-prime sub-
module if whenever 0 # r;,m € N,ry1, € R,m € M, then either n>m € N or €
r,2m € N. This concept is an expansion of the idea of a 2-quasi-prime sub-module,
where a proper sub-module N of an R-module M is said to be a 2-quasi-prime sub-
module if for all a,b € R, x € M and abx € N then either a?x € N or b?x € N.
Various properties of weakly 2-quasi-prime sub-modules are considered.

Keywords: prime sub-module, weakly prime sub-module, 2-quasi-prime sub-
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1. Introduction:

Throughout this paper, R be a commutative ring with identity and M be a unity R-module.
A sub-module N of M is prime sub-module if wheneverr € R,m € M,rm € N, implies m €
N or r € [N: M], where [N:M] ={r € R, rM < N}, see [1], [2]. In 1999, the quasi-prime
sub-module was introduced and studied by Muntaha, see [3], such that a sub-module N of M
IS a quasi-prime sub-module if n,,meN, forr;,r, € R, me M impliess rnmeN
or,,meN. In [4] F. D. Jasem and A. A. Elewi introduced a 2-prime sub-module,
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whenrm € N,r € R,m € M, then either m € N or,r? € [N: M], and then then N is a 2-
pirme sub-module, which is an extension of a prime sub-module. The idea of 2-quasi-pirme
sub-module was introduced by F. D. Jasem and A. A. Elewi [5], where a 2-quasi-prime sub-
module N is defined as a valid sub-module of an R-module M, if for all a,b € R, x € M and
abx € N then either a’x € N or, b?>x € N.

In 2022 by Marziye Jamali and Reza Jahani-Nezhad in [6], defined the concept of a
weakly prime sub-module. Recall that a proper sub-module N of M is a weakly prime sub-
module if whenever 0 = rm € N,r € R,m € M, then either m € N or, r € [N: M]. Clearly,
every prime sub-module is a weakly prime sub-module. To make a 2-prime sub-module more
general, [7] introduced the conception of a weakly 2-prime sub-module, where sub-module N
of an R-module M is a weakly 2-prime if and only if for every0 #rm € N,r e R, m € M,
then either m € N or r2? € [N: M].

In this paper, we give a definition of a weakly 2-quasi-prime sub-module as follows: a
proper sub-module N of an R-module M is a weakly 2-quasi prime sub-module if
whenever 0 # ryr,m € N, 71, € R,m € M, then either ;?m € N or, € ,2m € N. As well
as we many properties for this kind of sub-modules have been proven such as, a proper sub-
module N of an R-module M is a weakly 2-quasi-prime sub-module exclusively if [Ng: (m)]
is a weakly 2-prime ideal, forallm € M, m € N.

2. Weakly 2-quasi-prime sub-modules

In this section we present the idea of a weakly 2-quasi-prime sub-module as an extension
of a 2-quasi-prime sub-module, where a valid sub-module N of M is a 2-quasi-prime sub-
module if for all a,b € R, x € M and abx € N then either a?x € N or, b?x € N, vice versa
(see, [5]).
Definition 2.1:

A proper sub-module N of an R-module M is weakly 2-quasi prime if, whenever 0 +#
r,r,;m € N,1y1, € R,m € M, then either ;?m € N or € ,2m € N.

An ideal I of a ring R is called weakly 2 —prime ideal if it is weakly 2-quasi-prime sub-
module of R.
Remarks and examples 2.2:
1. Every sub-module that is a 2-quasi-prime is also a weakly 2-quasi-prime sub-module
Proof: Let N be a 2-quasi-prime sub-modules of an R-module M, and let 0 # r;,m € N.
Then by assumption either r,?m € N or, € r,2m € N and so N is a weakly 2-quasi-prime
sub-module.
2. The converse of (1) is not true in general for example: The zero sub-module of the Z-
module Z,, is a weakly 2-quasi-prime sub-module but it is not 2-quasi-prime sub-module,
because 3.2.2 € {0},but 32.2 ¢ {0} and 22.2 ¢ {0}.
3. By, [5] every quasi prime sub-module is a 2-quasi-prime sub-module and. By (1), we
obtain every quasi prime is a sub-module that is a weakly 2-quasi-prime. But the convers is
not true, also by having the same example in (2) we have {0} in Z,, it is not a quasi-prime
sub-module, since 3.2.2 € {0},but 32.2 ¢ {0} and 22.2 ¢ {0}.
4. Each prime sub-module is a weakly 2-quasi-prime sub-module, since by [3] every prime
sub-module is a quasi-prime sub-module and by (1) we obtain the result.

The convers of (4) not always holds true for example: The sub-module ,N = 2Z@(0)of

the Z-module Z@Z is not prime sub-module, but it is weakly 2-quasi- prime sub-module,
given that it is quasi-prime and by (3) we get the result.
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5. The sub-module Z of the Z-moduleQ is not weakly 2-quasi-prime sub-module, since
3.2.-€Z,but3%- ¢ Z and22.- ¢ Z.
6. Every weakly 2- prime sub-module is a weakly 2-quasi-prime sub-module.
Proof: Let N be a weakly 2-prime and let 0 # r;, € R,m € M such that 0 # r;r,m € N, SO
r.(r,m) € N, by assumption either ,m € N or, r;?m € [N: M]. Thus either r,?m € N or
rn’m S N,ie,n’meN or, Er,>m€N.
The convers of (5) not always holds true for example: the Z-module Z®Z,N =
2Z@®(0), N is a weakly 2-quasi-pirme sub-module. But N is not weakly 2-prime  sub-
module. Since (0,0 # 2(3,0) € N and(3,0) € N, 2% ¢ [2Zd(0):; ZDZ].
7. The sub-module of a weakly 2-quasi-prime sub-module need not be a weakly 2-quasi-
prime sub-module, for instant if N = (2) < Z,,, then N is weakly 2-quasi-prime sub-module
of Z,, , but L = (6) < Z;, is not a weakly 2-quasi-prime sub-module, since 0 # 2.3.1 € (6),
but 22.1 ¢ (6) and 32.1 & (6).
A semi prime sub-modules is not relation to a weakly 2-quasi-prime sub-module
8. Semi prime sub-module is not required to be a weakly 2-quasi-prime sub-module.
Not that 6Z is semi prime Z-sub-module of Z, but it is not a weakly 2-quasi-prime sub-
module, since 0 # 2.3.1 € 6Z, but 22.1 ¢ 6Z and 32.1 ¢ 6Z.
Also, a weakly 2-quasi-prime sub-module is not required to be a semi prime sub-
modules.
Take 8Zof the Z-module Z as an example is a weakly 2-quasi-prime sub-module, but it is not
a semi prime sub-modules.
9. Every maximal sub-module of an R-module M is a weakly 2-quasi-prime sub-module.
But the convers is not true, since (0)is a weakly 2-quasi-prime sub-module of the Z-
module Z, yet it is not a maximal in Z.
Now we will give a characterization for a weakly 2-quasi-prime sub-modules.
Theorem 2.3:
A proper sub-module N of an R-module M is a weakly 2-quasi-prime sub-module if and
only if [Ng: (m)] is an ideal that is weakly 2-prime, for allm € M;m & N.
Proof:
Let N be a weakly 2-quasi-prime sub-module and let0 # ab € [Ng: (m)], such thatm €
M, m & N anda, b € R. Hence ab(m) € N and thus abrm € N. Since N is a weakly 2-quasi-
prime sub-module, so either a2 € N orb?r?m € N. Thus either a? € [Ng: (m)] or b? €
[Ng: (m)]. Therefore, [Ng: (m)] is an ideal that is weakly 2-prime.
For the convers: suppose [Ng: (m)] is an ideal that is weakly 2-prime, wherem € M,
m & N. To show that N is a weakly 2-quasi-prime sub-module: Take0 # abm € N, such
thata,b € R, m € M. Thus 0 # a,b € [Ng: (m)] and by assumption either a? € [Ng: (m)] or
b? € [Ng: (m)], so either a?m € N or b?>m € N. Therefore N is a weakly 2-quasi-prime sub-
module.
The following lemma is necessary to prove the next sub-modules:

Lemma 2.4:

Let C and D be two sub-modules of an R —module M, for every d € D,
where [Cg: (d)] is an ideal which is a weakly 2-prime, then [Cr: D] is an ideal which is a
weakly 2-quasi-prime.

Proof:

Let r,, 7, € R, such that 0 # ryr, € [Cr: D]. Thus ry,7,d € C, for every d € D, s0 0 #
7,1y € [Cr: ()] ... ... (1). By assumption [Cg: (d)] is a weakly 2-prime ideal, thus either
112 € [Cr: (d)] or 1,2 € [Cg: (d)], for every d € D. This implies that either r;2d € C or
r,2d € C. Suppose that ;2 & [Cr: (d)] andr ,2 & [Cg: (d)]. Therefore, there exists t,,t, € D,
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such that r,%t, € D and r,%t, € C. Thus ;2 & [Cr: (t;)] and 1,2 & [Cg: (t)], by (1) 7,7 €
[Cr: (t1)]. But [Cg: (t1)] is a weakly 2-prime ideal, thus 1,2 € [Cg: (t1)], sory?t, € C. In the
same way we can prove that 0 # r;,7, € [Cg: (t,)], implies that r,%t, € C. On the other hand,
by (1) 0 # ry,15 € [Cr: (t; + t;)], SO either 1,2 € [Cr: (t; + )] or 1,2 € [Cr: (t + t,)].
Hence, either ,%(t; + t,) € C or r,%2(t; + t,) € C. This means either r,%t; + %t, = C, € C
or n%t; + r,%t, = C, € C. Thus either r,2t; = C; —r,%t, € C or ry%t, = C, — 1%t € C,
which is a contradiction. So, either r; € [Cg: D] or r, € [Cr: D]. Thus [Cg: (d)] is an ideal
which is a weakly 2-prime.

Proposition 2.5:

Let M be an R-module over aring R and K € M. Then K is a weakly 2-quasi-pirme of M
if and only if [Kg: L] is an ideal of R that is weakly 2-prime.
Proof:

Take K be a weakly 2-quasi-prime of M, thus by using Proposition 2.3, we get [Kz: (x)]
is an ideal of R that is a weakly 2-prime, for every x € M, x ¢ K. Also, by using the same
Proposition 2.3, we get [Ky: (x)] is an ideal which is weakly 2-prime, for each x € L. So, by
Lemma 2.4, we get the result.

Now, for the other side take 0 # ryr, € K, where 7,7, € R and m € M, SO ry1y, €
[Kg: (m)] and m € L € M, by assumption [Kg: (m)] is an ideal which is a weakly 2-prime,
then eitherr;? € [Kg: (m)] or 1,2 € [Kg: (m)]. This means that ;% € K or 1,2 € K. Hence,
K is a weakly 2-quasi-prime of M.

Corollary 2.6:
Let M be an R —module over a ring R and N be a proper sub-module of M. If N is a
weakly 2-quasi-prime sub-module of M. Then [Ng: M] is a weakly 2-prime.

The convers of pervious corollary is not true in general:

Note: consider the Z-module Q and let Z be a sub-module of Q. Notice that [Zz: Q] =

(0) is an ideal that is 2-prime of Z. But Z is not a weakly2-quasi-prime, since 3.5.% € Z, but
32.—¢Zand5%—¢Z.
Notice that, the intersection of two weakly 2-quasi-prime sub-modules may not be a
weakly 2-quasi-prime sub-module as the following remark shows:
Remark 2.7:
The two sub-modules 2Z and 3Z of the Z-module Z are weakly 2-quasi-prime sub-module

(since they are 2 -prime sub-module), but 2Z N 3Z = 6Z is not weakly 2-quasi-prime sub-
module, since 2.3.1 € 6Z, but 22.1 ¢ 6Z and 3%2.1 ¢ 6Z.

The following proposition describe the condition that makes the intersection of two weakly
2-quasi-prime sub-modules be a weakly 2-quasi-prime sub-module:

Proposition 2.8:

Let H and F be two sub-modules of an R-module L. If H is a weakly 2-quasi-prime sub-
module of L and H is not contained in F. Then H N F is a weakly 2-quasi-prime sub-module
of L.

Proof:

Because H ¢ F. Then H N F is a proper sub-module of H. Take x,y € R and f € F,
such that 0 # xyF € H n F. Thus, 0 # xyh € F. By assumption H is a weakly 2-quasi-prime
sub-module of L, so either x2f € F or y?f € F. But f € F andx?f € H,sothatx>f e HNF
ory2f € HN F. Therefore, H N F is a weakly 2-quasi-prime sub-module ofL .
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Now, let W be an R-module and K be sub-module of W, S is multiplicative set of R,
then K(S) = {x € W:3t € S such that tx € K}, [8].

Proposition 2.9:

Let M be an R —module and N be a proper sub-module of M. If I = [Nk: M] be an ideal
of R that is a weakly 2 -prime and N(T) = N, where (T =R —1I), then N is a weakly 2-
quasi-prime sub-module of M.

Proof:

Let x,t € R and m € M, such that 0 # xtm € N, notice that R — I is multiplicatively
closed, [9]. Now, suppose s2.m & N, thus s & [Ng: M] =1, so s € T. This implies that tm €
N(T). By assumptionN(T) = N, therefore, t?m € N, which is means that N is a weakly 2-
quasi-prime sub-module of M.

Note that the convers of the above proposition is not true as shown by the following example:
Let M =Zg,N =(4), it is clear that Nis a weakly 2-quasi-prime sub-module. Thus
[(4)r: Zg, ] = 4Z, which is a weakly 2 -prime ideal. ButT = Z — 4Z,

N(T) = {x € M:3t € T such that tx € N} = {0,2,4,6} # N.

3. Some properties of weakly 2-quasi-prime sub-modules

Some basic results and properties of the concept weakly 2-quasi-prime sub-modules
have been given in this section.

Recall that an R-module M is called multiplication module for every sub-module N of
M, if there exists an ideal I of R such that IM = N, [10].

Now, we will give another characterization for a weakly 2-quasi-prime sub-module in
class of multiplication modules.
Proposition 3.1:

Let M be a multiplication of an R-module and N be a proper sub-module of M.Then

the following statements have the same meaning.
1. N is a weakly 2-quasi-prime sub-module.
2. The ideal [Ng: M] of R is an ideal that is a weakly 2-prime.
3. For a weakly 2-pirme ideal | of R, N=IM.
Proof:

1 =)2 Take N be a weakly 2-quasi-prime sub-module of M. To prove that [Ng: M] is an
ideal that is a weakly 2-prime: let ¢,k € R, such that t,k € [Ng: M], so tkm € N, for every
m € M. But N is a sub-module that is a weakly2-quasi-prime, so either t? € [N: (m)] or k? €
[N: (m)]. Then [Ng: M] is an ideal of R that is a weakly 2-prime, by Lemma 2.4
2= 3) It is clear that by using Corollary 2.6.
3= 1) Itis clear that by using Remarks and example 2.2.5.

Proposition 3.2

Let M and M’ be two R —modules and let f: M — M’ be an R-epimorphism. If N is a sub-
module of M'that is a weakly2-quasi-prime. Then f~1(N)is a sub-module of M that is a
weakly 2-quasi-prime.

Proof:

To prove f~1(N) is a sub-module of M that is a weakly 2-quasi-prime, we went to prove
[f~Y(N) g: M] is a weakly 2-quasi-prime ideal. N < M’, such that f "1(N) € A. Let 0 # ab €
[f7Y(N) g:A] and also abA € f~1(N). Thus f(abA) € f(f~1(N), so abf(A) S N.
Therefore, 0 # ab € [Ng: f(A)]. But N is a sub-module of M’ that is a weakly 2-quasi-prime,
then either a? € [Ng: f(A)] or b% € [Ng: f(A)], thus either a?f(A) S N or b2f(A) S N, i.e.,
either a?4 € f~1(N) or b2A € f~1(N). Therefore, either a? € [f~1(N) z:A] or b? €
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[f~Y(N) g: 4], thus [f~1(N) z: 4] is an ideal that is a weakly 2-quasi-prime, so f~1(N) is a
sub-module of M is also weakly 2-quasi-prime .

Proposition 3.3:

Let f: M — M' be an R-epimorphism, such that Kerf < A, where A is a sub-module of M
that is a weakly 2-quasi-prime, then f(A) is a sub-module of M'that is a weakly 2-quasi-
prime.

Proof:

To prove f(N)is a sub-module of M'that is a weakly 2-quasi-prime, we prove that
[f(A)g:N'] is an ideal of R that is a weakly 2-quasi-prime, for all N’ € M'and N’ < f(A).
Since f is an epimorphism, then ff'(N") = N'. Letf(N) = N’, it follows thatf (N) 2 f(4).
Now, to prove that [f(A)g: f(N)] is a weakly 2-quasi-prime ideal of R, let a, b € R such that
0+ ab€[f(A)g:f(N)],so 0=+ abf(N) S f(A). Thus, for eachx € N, abf(x) € f(A), SO
f(abx) = f(s), for some s € A4, then 0 # abx — s € Kerf < A and hence abx € A, for each
x € N. Hence, ab € [Ag: N]. But [Az: N] is a weakly 2-quasi-prime ideal ofR, so either a? €
[Ag: N] or b? € [Ag: N], thus either a?N € A or b2N € A, so either a?f(N) € f(A) or
b%f(N) € f(A). Therefore, either a? € [f(A)g: f(N)] or b% € [f(A)g: f(N)] is an ideal of
R that is a weakly 2-quasi-prime and hence then f(A) is a sub-module of M’ that is weakly 2-
quasi-prime.

Corollary 3.4:
Let 4 and B be two sub-modules of R-module M andA € B. Then % is a sub-module of %

that is a weakly 2-quasi-prime if and only if B is a sub-module of M that is a weakly 2-quasi-
prime.

Proof:
Let f: M — M /A be a natural mapping, then the result follows by Proposition 3.3.

Proposition 3.5:

Let B a sub-module of M that is a weakly 2-quasi-prime, such that B; is a proper M, then
B, is a sub-module of M, that is a weakly 2-quasi-prime.
Proof:

Let:—i,z—j € Rg and % € M;. Suppose that 0 # :—1:—2 % € B, so there exists b € Band s €

2
S such that =.2 2
Lt Tt

But B is a sub-module of M that is a weakly 2-quasi-prime, thus either r;?2ms € B or

2 2 2 2
r,2ms € B. Hence, either rtlzr?s € Bg or % € B;. That means - € Bg or% € B,
2

2
17ts 2°ts 17t

therefore, B, is a sub-module of M that is a weakly 2-quasi-prime.
Recall that Homgz (M, , M, ) is the set of all R-homomorphism from M;to M, [5].
Proposition 3.6:
Let M; and M, be two R-modules and let Ais a weakly 2-quasi-prime sub-module of
M, such that Homg (M, A) is a proper of Homgz(M; , M, ), then Homg(M; , A )is a weakly 2-
quasi-prime sub-module of Homg(M; , M, ).

= % such that (r;r,ms — tyt,th)m = 0, which implies that r;7,ms € B.

Proof:
To show that Homgz (M, ,A) is a weakly 2-quasi-prime sub-module of Homg (M, , M, ),
let 0 # ryr,f € Homz(M, ,A), then for each x € My, rr,f(x) € A. But A is a weakly2-

1237



Rahman and Elewi Iragi Journal of Science, 2025, Vol. 66, No. 3, pp: 1232-1238

quasi-prime sub-module of M,, then either r2f(x) € A or r,2f(x) € A, thus implies that
either r,2f € Homgx(M; ,A) or r,2f € Homg(M, ,A).

Conclusions:

1-Every sub-module that is a 2-quasi-prime is also a weakly 2-quasi-prime sub-module.
2-Every weakly 2- prime sub-module is a weakly 2-quasi-prime sub-module.

3-A proper sub-moduleN of an R-moduleM is a weakly 2-quasi-prime sub-module if and only
if [Ng: (m)] is an ideal that is weakly 2-prime, for allm € M,m & N.

4-Let M be an R-module over a ring R and N be a proper sub-module of M. If N isa

weakly 2-quasi-prime sub-module of M. Then [Ng: M] is a weakly 2-prime.

5-Let M and M’ be two R —module and let f: M — M’ be an R-epimorphism. If N is a sub-
module of ' that is a weakly 2-quasi-prime. Then f~1(N)is a sub-module of M that is a
weakly 2-quasi-prime.

6- Let A and B be two sub-modules of R-module M andA < B. Then % is a sub-module of %

that is a weakly 2-quasi-prime if and only if B is a sub-module of M that is a weakly 2-quasi-
prime.
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