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Abstract  

     In this study, we look into how the peristaltic flow MHD is affected by rotation, 

heat transfer, elasticity wall characteristics, and slip conditions. For simplification, 

the governing equations, infinite wavelength and small Reynolds numbers have 

been used to study the Newtonian fluid in a porous canal. Heat transport, elasticity, 

rotation, and slip conditions are taken into account. The Brinkman number, 

Hartman number, and other parameters are evaluated to observe their effects on the 

stream function, temperature, velocity, and coefficient of heat transfer. The results 

indicate that when these parameters are varied, more trapped boluses develop. 

Figures and graphs discuss and illustrate the impact of various values on these 

factors. The MATHEMATICA software has been used to compute numerical 

results.   

 

Keywords:  Elasticity wall, Peristaltic Transport, Slip condition, coefficient of heat 

transfer, Brinkman number, Rotation. 

 

 MHD التمعجيتأثير شروط الانزلاق مع الدوران وكذلك خصائص الجدار مع انتقال الحرارة على النقل 
 

 2، مصطفى حاتم *1حاتم ناهي

 1 قسم الرياضيات, مكتب الوزير, وزارة التعليم ىالعالي والبحث العلمي, بغداد, العراق 
 2 قسم الرياضيات, جامعة الاسراء الاهلية, بغداد, العراق 

 

  الخلاصة 
التمعجي        التدفق  تأثر  كيفية  في  سننظر  الدراسة،  هذه  الحرارة، وخصائص    MHDفي  وانتقال  بالدوران، 

الانزلاق.   وظروف  المرونة،  مسامية    لتبسيطجدار  قناة  في  النيوتوني  السائل  دراسة  تم  الحاكمة،  المعادلات 
تحت شروط الطول الموجي الطويل وعدد رينولدز الصغير. يتم أخذ ظروف النقل الحراري والمرونة والدوران  
والانزلاق في الاعتبار. يتم تقييم رقم برينكمان ورقم هارتمان والمعلمات الأخرى لمعرفة مدى تأثيرها على درجة  
الحرارة والسرعة ومعامل نقل الحرارة ودالة التدفق. وتشير النتائج إلى أنه عندما تتغيير هذه المعلمات، تتطور  
تم   العوامل.  لهذه  المختلفة  القيم  تأثير  بيانياً  وتوضح  الأشكال  تناقش سلسلة  المحاصرة.  الجرعات  من  المزيد 

 لحساب النتائج العددية. MATHEMATICAاستخدام برنامج 
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1. Introduction 

     The process of fluid transformation that is known as peristaltic transport is brought about 

by a sinusoidal wave propagating through the canal walls. The peristaltic phenomenon is 

widely observed in a variety of industrial, engineering, and biological contexts. Among these 

are the flow of urine from the  kidney to the bladder, food swallowing through the esophagus, 

blood circulation in the tiny blood arteries, ovum migration in the fallopian tubes, and other 

processes. The concept of peristaltic pumping has been used in the construction of several 

contemporary mechanical systems to move fluids without the need for internal moving parts 

that is similar to the heart-lung machine blood push. Numerous works are performed in this 

filed, we will mention some of them below. In [1], the authors analytically and numerically 

investigated and focuses on how the magnetic field and wall slip circumstances affect the 

peristaltic transport of the Newtonian fluid in an asymmetric canal. The effects of the heat 

transfer and wall slip conditions on MHD peristaltic flow with infinite wavelength and small 

Reynolds number have been used to investigate the Newtonian fluid in a porous canal that 

has properties of an elastic parapet [2]. Under assumption that the infinite wavelength and 

small Reynolds number, the authors [3] examined and investigated the effects  of heat 

transfer, elasticity parapet characteristics, and parapet slip conditions on the peristaltic 

transport of conduction Bingham fluid in asymmetric canal. This study presents an analytical 

analysis of the movement of the Williamson fluid with heat transfer via a tube with slip at 

borders and complaisant parapet properties. A theoretical model that is roughly developed is 

made of flexible, complaisant, spring backed tubing with parapets that is chosen to motion in 

a sinusoidal wave pattern [4]. In [5], the authors analytically provided a study of the 

mathematical model that describes the slip peristaltic low of a nanofluid and they also 

analytically examined in this study. For the temperature distribution and nanoparticle 

concentration, precise expressions were inferred. The study in [6] examines how 

magnetohydrodynamics (MHD) affects Ree-Eyring fluid's peristaltic transport in a rotating 

frame. The findings deal with applying each of the Ree-Eyring fluid's governing equations 

methodically (analytically), furthermore with the axial and secondary velocities, auxiliary 

stream flow rate, and bolus. The authors [7] served  applications as inspiration for their study  

which models the peristaltic flow of a Ree–Eyring liquid via a homogeneous complaisant 

canal while taking into account the effects of changing thermal conductivity and viscosity. In 

[8], the main goal of the research project is to investigate blood circulation in the small 

vessels by accounting for wall properties such as thickness, slip, and varying thermal 

conductivity. Under the presumptions of long wavelength and low Reynolds number, authors 

in [9] have been studied how the elasticity of the flexible parapets affects the MHD peristaltic 

flow of the Newtonian fluid in a two-dimensional porous canal with heat transfer. The 

peristaltic flow of nanofluid in a conduit with compliant walls is also examined in this paper. 

The Brownian motion and thermophoresis effects are discussed in [10]. The analytical study 

of peristaltic flow and heat transmission in a 2-dimensional plane tube with complaisant 

parapet properties and slip at the borders is also investigated in this work. A roughly 

constructed theoretical model is made of flexible, compliant walled pipe with a spring 

backing, selected to move in a sinusoidal wave pattern [11]. The article discusses the impact 

of mass and heat transfer on the (MHD) peristaltic flow in a planar canal with complaisant 

parapets. Maxwell's incompressible fluid is contained in a porous medium [12].  The work 

provides a thorough analysis of the novel concept of porous medium in conjunction with an 

altered version of Darcy's law. Ree-Eyring fluid models have been used as the foundation for 

research on nanofluid flow. The flow crosses the recurved canal is produced by the peristaltic 

waves generated by the contraction and relaxation of smooth muscle. Additionally, 

fluctuating viscosity and magnetohydrodynamics are involved in the flow kinetics [13]. The 

authors examined how heat and mass transfer affects the Casson fluid's hydro-magnetic 
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peristaltic flow through an asymmetric channel in a rotating inclined system [14]. The study 

in [15] examines the effects of rotation, magnetic field, and several variables, including flow 

rate, density, viscosity, Grashof, Bingham, and Brinkman numbers regarding the peristaltic 

transport of viscoplastic fluid through the porous material using mixed convection heat 

transfer analysis. The study in [16] examines the effects of rotational variation and other 

variables on the peristaltic flow of mixed convection in an incompressible viscoplastic fluid. 

In asymmetrical two-dimensional canal, the authors also examined some variables including 

density, viscosity, flow velocity, tapering, Grashof number, Bingham number, and Brinkman 

number regarding the examination of mixed convection heat transfer for peristaltic 

viscoplastic fluid transport taking into account the following assumptions the long 

wavelengths, small Reynolds numbers, peristaltic transport in asymmetric border walls, 

tapering horizontal canals, and asymmetric canals to have varying wave and phase 

amplitudes. In [17], the study describes how Bingham's fluid behaves peristaltically in an 

asymmetric channel made of porous material. It is anticipated that the fluid will be sensitive 

to a strong, inclined magnetic field and flow through a porous media. The work in [18] 

examines the rotation and heat transfer during the peristaltic flow of a micropolar fluid in a 

vertical symmetric channel. The infinite wavelength approximation and small Reynolds 

number flow analysis have been also developed. The Bingham plastic fluid's peristaltic flow 

is examined for relation to heat transfer, rotation, and an induced magnetic field in two 

dimensions. The relationship between rotating momentum, energy, and the induced magnetic 

field equations [19]. The peristaltic flow of the Powell-Eyring fluid through a porous media 

with heat transfer in an inclined asymmetric channel with an inclining magnetic field is 

studied for relation to the influence of the rotation variable and other variables [20]. The 

impact of nonlinear thermal radiation and magnetic force on the peristaltic transport of a 

hybrid bio-nanofluid in a symmetric canal with a porous medium is discussed [21]. One of 

the most important characteristics of fluid flow in various mechanical scenarios is the ability 

to display slip at the solid barrier. Consequently, the purpose of the article in [22] is to clarify 

the slip effect that results from unrestricted convection and rotational viscous fluid flow 

across an elongated plate with mass and heat transfer when a continuous magnetic field 

passes through a porous media. The authors [23] use an incompressible non-Newtonian fluid 

to investigate the effects of the rotation of an inclined magnetic felid and an inclined 

symmetric channel with slip condition on peristaltic transport. Consideration is also given to 

the slip conditions for concentration and heat transfer. In [24], a fluid-porous composite 

system with rigid-rigid boundaries that are protected from temperature and concentration is 

the subject of the study on triple diffusive magneto convection. In a two-layers system, the 

impact of a heat source and temperature gradient on the Brinkman-Bènard Triple-Diffusive 

magneto-Marangoni (BBTDMM) convection is examined [25]. 

 

      In this paper, we will display how influence the slip, rotation and effect of heat transfer on 

peristaltic transport magnetohydrodynamics with elastic wall, some  properties are also 

studied in this research. 

 

2. Mathematical equations 

     We examine the Newtonian viscous fluid's flow via a uniformly thick and two-

dimensional conduit. It is assumed that the channel's walls are elastic and act as if they are an 

extending membrane that is being subjected to moving, reasonably amplitude sinusoidal 

waves. The mathematical form of the canal wall is given as follows: 

𝑦 = ƞ(�̅�, 𝑡̅) = 𝑑 + �̅��̅� + 𝑎 𝑠𝑖𝑛 (
2𝜋

𝜆
)(�̅� − 𝑐𝑡̅); Where, �̅̅̅� ≪ 1.                                       (1) 
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     The following are the predominant equations of motion for the present problem: 

The continuity equation is: 

  
𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0.                                                                                                                    (2) 

 

The momentum equation on the X-axis is given by   

𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 𝜌Ω (Ω�̅� + 2

𝜕�̅�

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+ 𝜇[

𝜕2�̅�

𝜕�̅�2+
𝜕2�̅�

𝜕�̅�2] − 𝜎𝐵0
2�̅� −

𝜇

𝑘
�̅�.            (3) 

The momentum equation on the Y-axis is as follows:  

𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 𝜌Ω (Ω�̅� − 2

𝜕�̅�

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+ 𝜇[

𝜕2�̅�

𝜕�̅�2
+

𝜕2�̅�

𝜕�̅�2
] −

𝜇

𝑘
�̅�.                        (4)  

The energy equation is given by 

𝜌𝐶𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) = 𝛾 (

𝜕2�̅�

𝜕�̅�2 +
𝜕2�̅�

𝜕�̅�2) + ʋ[2 [(
𝜕�̅�

𝜕�̅�
)

2

+ (
𝜕�̅�

𝜕�̅�
)

2

] + (
𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
)

2

].           (5) 

 

        Where �̅� and �̅� denote the velocity components along the X̅ and Y̅ directions, 

respectively, the density is represented by 𝜌, the fluid's coefficient of viscosity is represented 

by 𝜇, �̅� is the pressure, 𝑑 is the canal's mean half-width, the amplitude is represented by 𝑎, λ 

is the wavelength, c is the wave's phase speed, the canal's dimensional asymmetric is denoted 

by �̅�, 𝜎 represents the fluid's electrical conductivity, 𝐵0 is used for the magnetic field, 𝐶𝜌 is 

the particular heat at a fixed volume, ʋ is the fluid's kinematic viscosity, 𝛾 represents the 

fluid's thermal conductivity, 𝑇 is the fluid's temperature, the parameter for permeability is 𝑘, 

and Ω is the rotation parameter. 

 

The dominant equation of motion for the plastic parapet is as follows: 

𝐿∗(ƞ) = 𝑃 − 𝑃0.                                                                                                                       (6) 

 

     Where 𝐿∗ is an operator, it is used to depict how a stretched membrane moves when 

viscous damping forces are applied, it is given by: 

𝐿∗ = −𝜏
𝜕2

𝜕�̅�2 +  𝑚1
𝜕2

𝜕�̅�2 + 𝐶
𝜕

𝜕�̅�
                                                                                                  (7) 

 

     Continuity of the stress at 𝑦 = ±ƞ and using x-momentum equation, this yields the 

following: 

 
𝜕

𝜕�̅�
𝐿∗(ƞ) =

𝜕�̅�

𝜕�̅�
= 𝜌Ω (Ω�̅� + 2

𝜕�̅�

𝜕�̅�
) + 𝜇(

𝜕2�̅�

𝜕�̅�2 + 
𝜕2�̅�

𝜕�̅�2)- 𝜌 (
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 

𝜎𝐵0
2�̅� −

𝜇

𝑘
�̅�,                                                                                                                          (8) 

𝑢 =  ∓ℎ 
𝜕�̅�

𝜕�̅�
 𝑎𝑡 𝑦 = ±ƞ = ±[𝑑 + �̅� �̅� + 𝑎𝑠𝑖 𝑛 (

2𝜋

𝜆
) (�̅� − 𝑐𝑡)] ,                                           (9) 

�̅� = 𝑇0 𝑜𝑛 𝑦 = −ƞ, �̅� = 𝑇1 𝑜𝑛 𝑦 = ƞ .                                                                                (10) 

 

     In this case, τ represents the membrane's elastic tension, mass per unit area is denoted by 

𝑚, 𝐶  is the viscosity dampen might coefficient, 𝑃0  is the pressure that the muscles are 

applying to the wall's exterior, and the parameter for dimensional slip is ℎ. We assume  𝑦 =
0. 

The stream function 𝜓 in a way that 𝒖 =  
𝝏𝝍

𝝏𝒚 
, 𝒗 = −

𝝏𝝍

𝝏𝒙
, and non-dimensional quantities: 
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�̅� =
𝑥

𝜆
, �̅� =

𝑦

𝑑
, �̅� =

𝜓

𝜆
, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
, ƞ̅ =

ƞ

𝑑
, �̅� =

𝑑2

𝑐𝜆𝜇
𝑝, 𝐾 =

𝑘

𝑑2 , �̅� =
𝑢

𝑐
, �̅� =

𝑣

𝛿𝑐
, 𝛿 =

𝑑

𝜆
, 𝑅𝑒 =

𝜌𝑐𝑑

𝜇
, 𝛾 =

𝑘

𝑑2
, 𝑀 = √

𝜎

𝜇
𝑑 𝐵0, 𝑃𝑟 =

𝜌ʋ𝐶𝑝

𝑘
, 𝐸𝑐 =

𝑐2

𝐶𝑝(𝑇1−𝑇0)
, 𝜀 =

𝑎

𝑑
, 𝑚 =

𝜆�̅�;

𝑑
, 𝛽 =

ℎ

𝑑
, 𝑡̅ =

𝑐𝑡

𝜆
, 𝐸1 =

−𝜏𝑑3

𝜇𝑐𝜆3
, 𝐸2 =

𝑐𝑚1𝑑3

𝜇𝜆3
, 𝐸3 =

𝑐𝑑3

𝜇𝜆2
, 𝐴 =

𝜌𝑑2Ω2

𝜇
.                                                                               (11)   

                                                                                                           

     Where δ and 𝜀 are the dimensionless geometric parameters 𝑅𝑒 , 𝑃𝑟,𝐸𝑐 are the Reynolds 

number, Prandtl number, Eckert number, respectively. 𝐸1, 𝐸2, 𝐸3 𝑎𝑛𝑑 𝑀 are the 

dimensionless elasticity parameters and Hartman number, m and β are the asymmetric 

parameter and  slip parameter or Knudsen number, respectively.  

Using equations (1-10) with help equation (11), we get  

 

𝑅𝑒𝛿 [
𝜕2𝜓

𝜕𝑡𝜕𝑦
+

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3
+ (𝐴 − 𝑀2 −

1

𝐾
)

𝜕𝜓

𝜕𝑦
,                    (12)                       

𝑅𝑒𝛿3 [
𝜕2𝜓

𝜕𝑡𝜕𝑥
+

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦
] = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 [𝛿2 𝜕3𝜓

𝜕𝑥3
+

𝜕3𝜓

𝜕𝑥𝜕𝑦2
] + 𝛿2[𝐴 −

1

𝐾
]

𝜕𝜓

𝜕𝑦
,            (13)                     

𝑅𝑒𝛿 [
𝜕𝜃

𝜕𝑡
+

𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
] =

1

𝑃𝑟
(𝛿2

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
) 𝜃 + 

𝐸𝑐  [4𝛿2 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝜓

𝜕𝑦2 − 𝛿2 𝜕2𝜓

𝜕𝑥2 )
2

]  ,                                                                                (14)                        

𝜕𝜓

𝜕𝑦
= ∓𝛽

𝜕2𝜓

𝜕𝑦2    𝑎𝑡 𝑦 =  ±ƞ = ±[1 + 𝑚𝑥 + 𝜀 sin 2𝜋 (𝑥 − 𝑡)] ,                                             (15) 

𝛿2
𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3
− 𝑅𝑒𝛿[[

𝜕2𝜓

𝜕𝑡𝜕𝑦
+

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
] + (𝐴 − 𝑀2 −

1

𝐾
)

𝜕𝜓

𝜕𝑦
 

= [𝐸1
𝜕3

𝜕𝑥3 + 𝐸2
𝜕3

𝜕𝑥𝜕𝑡2 + 𝐸3
𝜕2

𝜕𝑥𝜕𝑡
]ƞ                                                                                          (16) 

 

Additionally, it is presumable that the streamline's zero magnitude at the line y=0, i.e. 

𝜓(0) = 0,                                                                                                                              (17) 

𝜃 = 0 𝑜𝑛 𝑦 =  −ƞ;   𝜃 = 1  𝑜𝑛 𝑦 = ƞ                                                                                    

 The solution to the problem 

     The following equations can be used to determine the solution by applying the infinite 

wavelength approximation, ignoring the wave number, and using the small Reynolds number 

(12-16) that 
𝜕𝑝

𝜕𝑥
=  

𝜕3𝜓

𝜕𝑦3 + (𝐴 − 𝑀2 −
1

𝐾
)

𝜕𝜓

𝜕𝑦
,                                                                                               (19) 

−
𝜕𝑝

𝜕𝑥
= 0                                                                                                                                (20) 

As shown by equation (20), 𝑝 is not a function of 𝑦. 
1

𝑃𝑒
 
𝜕2𝜃

𝜕𝑦2
+ 𝐸𝑐(

𝜕2𝜓

𝜕𝑦2
)2 = 0.                                                                                          (21) 

 

      The compatibility equation on differentiation equation (19) with regard to  𝑦 is as 

follows: 
𝜕4𝜓

𝜕𝑦4 + (𝐴 − 𝑁)
𝜕2𝜓

𝜕𝑦2 = 0                                                                                                  (22) 

Where  𝑁 = √𝑀2 +
1

𝐾
. 

Equation (16) gives : 
𝜕3𝜓

𝜕𝑦3
+ (𝐴 − 𝑁)

𝜕𝜓

𝜕𝑦
= 𝐸1

𝜕3ƞ

𝜕𝑥3
+ 𝐸2

𝜕3ƞ

𝜕𝑥𝜕𝑡2
+ 𝐸3

𝜕2ƞ

𝜕𝑥𝜕𝑡
 .                                                             (23)  
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with boundary conditions (15, 17) and (23) in closed form gives the following: 
𝜓 =

−
4𝜋2(1−𝑒√𝐴−𝑘𝑦−𝑒√𝐴−𝑘(η1+η2)+𝑒√𝐴−𝑘(−𝑦+η1+η2)+𝑒√𝐴−𝑘η2𝑦(√𝐴−𝑘+𝐴𝛽−𝑘𝛽)+𝑒√𝐴−𝑘η1𝑦(√𝐴−𝑘−𝐴𝛽+𝑘𝛽))𝜖(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])

(𝐴−𝑘)3 2⁄ (𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))
  

 

Substituting the value of 𝜓 into equation (21) and the temperature and subject to condition 

(18), we get: 

 

θ = −
1

4(𝐴−𝑘)
BR(

16𝑒−2√𝐴−𝑘𝑦+2√𝐴−𝑘(η1+η2)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
+

64𝑒√𝐴−𝑘(η1+η2)𝜋4𝑦2𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])

(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))
+

16𝑒2√𝐴−𝑘𝑦𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
) −

1

4(η1−η2)(𝐴−𝑘)
𝑦(4𝐴 − 4𝑘 +

16BR𝑒2√𝐴−𝑘(η1+η2)(−𝑒−2η1√𝐴−𝑘+𝑒−2η2√𝐴−𝑘)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
−

64BR𝑒√𝐴−𝑘(η1+η2)(η1−η2)(η1+η2)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])

(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))
−

16BR(𝑒2η1√𝐴−𝑘−𝑒2η2√𝐴−𝑘)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
) −

1

4(η1−η2)(𝐴−𝑘)
(BRη2(

16𝑒−2η1√𝐴−𝑘+2√𝐴−𝑘(η1+η2)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
+

64𝑒√𝐴−𝑘(η1+η2)η12𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])

(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))
+

16𝑒2η1√𝐴−𝑘𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
) +

η1(−
16BR𝑒−2η2√𝐴−𝑘+2√𝐴−𝑘(η1+η2)𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
−

16BR𝑒2η2√𝐴−𝑘𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])2

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))2
− 4(𝐴 − 𝑘)(1 +

16BR𝑒√𝐴−𝑘(η1+η2)η22𝜋4𝜖2(2(E1+E2)𝜋Cos[2𝜋(𝑡−𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])(2(E1+E2)𝜋Cos[2𝜋(−𝑡+𝑥)]+E3Sin[2𝜋(𝑡−𝑥)])

(𝐴−𝑘)(𝑒√𝐴−𝑘η1(−1+√𝐴−𝑘𝛽)−𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))(𝑒√𝐴−𝑘η1(1−√𝐴−𝑘𝛽)+𝑒√𝐴−𝑘η2(1+√𝐴−𝑘𝛽))
)))  

 

Where 𝐵𝑟 = 𝐸𝑐 𝑃𝑟  is the Brinkman number. 

The following formula provides the wall's coefficient of the heat transfer [2]: 

 

𝑍 = ƞ𝑥 𝜃𝑦 .                                                                                                  )24 ( 

 

4. Discussion of the results  

        The coefficient of the heat transmission, temperature, velocity, and stream function 

distributions of these variables wit respect to β, m, K, M, and Ω are discussed in this section. 

4.1 Velocity profile  

          We examine the velocity distribution in relation to several variables. The velocity 

profile is clearly seen in Figure 1 from A to E. It was observed that the rising values of β, and  

M indicate a decrease in the velocity, however, the rising values of (m, K, Ω) indicate an 

increase in the velocity. 
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Figure1: Velocity distributions (x=0.2, t= 0.1). (A) E1=0.1, E2=0.5, E3=0.5,𝜀 = 0.1, Ω =

0.2, m=0.0, M=2.0,𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (B) E1=0.8, E2=0.5, E3=0.4, 𝜀 = 0.1, Ω =

0.2, 𝛽=0.2, M=3.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (C) E1=0.5, E2=0.5, E3=0.1, 𝜀 = 0.2, Ω =

0.2, 𝛽=0.3, M=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1). (D) E1=0.2, E2=0.7, E3=0.15, 𝜀 = 0.15, Ω =

0.2, 𝛽=0.2, K=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1). (E) E1=0.2, E2=0.7, E3=0.1, 𝜀 =

0.15, 𝛽=0.2, M=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1, 𝐾 = 2.0).   

4.2 The temperature profile  

     This section discusses the behaviour of temperature when varying the values of the 

variable parameters. The behaviour of the temperature variable is shown in Figure 2. This is 

evident from Figure 2 (A-F).  As the values of (β, m, k, Ω, BR) increase, the temperature 

rises. It falls when the Hartman number (M) increases. 

 

A B 

C D 

E 
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Figure. 2 Temperature distributions (x=0.2, t= 0.1). (A) E1=0.5, E2=0.5, E3=0.5,𝜀 =

0.1, Ω = 0.2, m=0.1, BR=3.0, M=2.0,𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (B) E1=0.8, E2=0.5, 

E3=0.4, 𝜀 = 0.1, Ω = 0.2, 𝛽=0.2, BR=4.0, M=3.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (C) E1=0.5, 

E2=0.5, E3=0.1, 𝜀 = 0.2, Ω = 0.2, 𝛽=0.3, M=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1). (D) E1=0.2, 

E2=0.7, E3=0.1BR=5.0,, 𝜀 = 0.15, Ω = 0.2, 𝛽=0.2, K=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1). (E) 

E1=0.2, E2=0.7, E3=0.1, 𝜀 = 0.15, 𝛽=0.2, M=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝐵𝑅 = 2.0, 𝑚 = 0.1, 𝐾 =

2.0). (F) E1=0.2, E2=0.7, E3=0.1, 𝜀 = 0.15, 𝛽=0.2, M=2.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.1, 𝐾 =
2.0, Ω = 0.2).  

 

4.3 The coefficient of the heat transfer 

     The fluctuation in the heat transmission coefficient (Z) for different values of the relevant 

parameters is analysed and showed in Figure 3. It is noted that the heat transfer coefficient 

exhibits oscillating behaviour as a result of peristalsis. Presented in Figs.3   from (A–F) for 

illustration. We have seen that an increase in the values of (β, K, Ω, BR) indicates a rise in 

the coefficient of heat transfer; on the other hand, an increase in the value of (M) implies the 

opposite. 

 

C D 

A 
B 

E F 
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Figure. 3 Coefficient of Heat Transfer (y=0.4, t= 0.1). (A) E1=0.4, E2=0.1, E3=0.1,𝜀 =

0.1, Ω = 0.2, m=0.2, BR=3.0, M=3.0,𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (B) E1=1.2, E2=0.5, 

E3=0.1, 𝜀 = 0.1, Ω = 0.2, 𝛽=0.1, BR=2.0, M=5.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝐾 = 2.0). (C) E1=0.3, 

E2=0.1, E3=0.1, 𝜀 = 0.2, Ω = 0.2, 𝛽=0.1, BR=3.0, M=4.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 = 0.2). (D) 

E1=0.5, E2=0.1, E3=0.1,BR=2.0, 𝜀 = 0.1, Ω = 0.2, 𝛽=0.2, K=0.5, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 =

0.1). (E) E1=0.5, E2=0.1, E3=0.1, 𝜀 = 0.1, 𝛽=0.2, M=3.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝐵𝑅 = 2.0, 𝑚 =

0.1, 𝐾 = 0.5). (F) E1=0.5, E2=0.1, E3=0.1, 𝜀 = 0.1, 𝛽=0.2, M=3.0, 𝜇 = 2.0, 𝜌 = 0.9, 𝑚 =
0.1, 𝐾 = 0.5, Ω = 0.2).  

4.4 The stream function 

      Trapping is an intriguing peristaltic transport event. In this part, we examine the effects of 

various parameters on the fluid's steam function. Figures (4-8) clearly show how the slip 

parameter and rotation affect fluid entrapment. With an increase in the slip parameter, we 

find that streamlines shut loops producing a cellular flow motif in the canal and increase 

trapped bolus, Additionally, we observe that when the slip parameter is increased, the number 

of bolus is decreased (see Figure 4 from (a) to (d)). The quantity and size of the trapped bolus 

that is apparent in Figure 5 (a-d) rise as the value of 𝑚 increases. Furthermore, one can see 

that in Figure 6(a-b), the size of the trapped bolus grows with increasing 𝑘 and more trapped 

bolus occurs with increasing 𝑘. Figure 7(a-d) illustrates how 𝑀 affects trapping and shows 

B 
A 

C D 

E F 
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how the number of boluses increases as the 𝑀 parameter value increases. Additionally, when 

the rotation value increases, some boluses are implied, and the bolus at the left of the channel 

expands (see Figure 8(a-d). Additionally, it starts when 𝑀 rises in value. 

 
 

 
Figure. 4: Stream Function ( t=0.1, E1=0.6, E2=0.4, E3=0.1, ϵ=0.2, M=4, k=0.05, m=0.1, 

Ω=0.2, μ=2.0, ρ=0.9).     

 

 
Figure  5: Stream Function (𝑡 = 0.1 , E1 = 0.4, E2 = 0.1, E3 = 0.2, 𝜖 = 0.2, 𝑀 = 4, k =
0.1, 𝜇 = 2.0, 𝜌 = 0.9, 𝛽 = 0.0, 𝛺 = 0.2. 
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Figure  6: Stream Function (𝑡 = 0.1, E1 = 1.2, E2 = 0.5, E3 = 0.1, 𝜖 = 0.15, 𝑀 = 5, k =
0.1, 𝑚 = 0.2, 𝛽 = 0.1, 𝜇 = 2.0, 𝜌 = 0.9, 𝛺 = 0.2) 

 

 

 
 

Figure  7: Stream Function (𝑡 = 0.1, E1 = 0.7, E2 = 0.7, E3 = 0.7, 𝜖 = 0.15, k = 0.05,
𝑚 = 0.25, 𝛽 = 0.05, 𝜇 = 2.0,   𝜌 = 0.9, 𝛺 = 0.2). 
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5. Conclusions 

     This study examines how the slip circumstances, rotation, and heat transmission affect the 

Peristaltic flow of MHD in porous channels when wall features are taken into consideration. 

The current investigation has the following observations: 

1. When the value of the slip β and M increases, the magnitude of the axial velocity 

decreases at the channel's edges and center. On the other hand, we can see in the  situations k, 

Ω, and  m. 

2. The temperature increases as the values of β, k, m, Ω,  and BR grow, however, it decreases 

when M increases. 

3.  When the parameters β, k, Ω, and  BR increase, the coefficient of the heat transfer 

increases as well; in contrast, when M, and  m  increase, the opposite occurs. 

4. A decreasing number of boluses and an expansion of the bolus at the left of the channel 

are implied by the trapped bolus volume increasing with rotation value. 

5. As the parameter k increases, the trapped bolus's volume grows. Additionally, more 

trapped bolus emerges. 

6. This research can be used in applications in the digestive system, as well as the movement 

of food and waste within the intestine. 
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