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 Abstract 

     The investigate of the dynamic behavior of viral hepatitis to stop the illness from 

spreading have been studied in this paper. A novel stochastic mathematical model 

was created in order to conduct the study. We prove this proposed model has a 

positive unique solution. By looking up the basic reproduction number, we also 

demonstrated the requirements that must be fulfilled for the injured person to heal. If  

𝑅0
𝑠 < 1 it means that the liver will get rid of the virus and heal the infected person. 

While if  𝑅0
𝑠 > 1, the infection grows and the disease can invade all liver cells. 

Computer simulations have also been used to illustrate these findings. 

  

Keywords: Basic reproduction number, Immune responses, Stochastic epidemic  

model, Ito's formula, Numerical simulation  
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 والاستجابة المناعية لانتشار التهاب الكبد الفيروسي نموذج المعادلات التفاضلية التصادفية 
 

 أحمد مرشد كريم 
 قسم الرياضيات, كلية العلوم ,جامعة ديالى, العراق 

 

 الخلاصة 
تم إنشاء    .تمت دراسة السلوك الديناميكي لالتهاب الكبد الفيروسي لوقف انتشار المرض في هذا البحث       

ومن خلال    النموذج المقترح له حل فريد موجب.  اثبتنا ان لهذا  .  نموذج رياضي عشوائي جديد لإجراء الدراسة 
. اذا  أنشاء رقم التكاثر الأساسي، أظهرنا أيضًا المتطلبات التي يجب استيفاؤها حتى يشفى الشخص المصاب 

كان رقم التكاثر الاساسي اقل من واحد, فهذا يعني أن الكبد سيتخلص من الفيروس ويشفى الشخص المصاب,  
تنمو العدوى ويمكن للمرض ان يغزو جميع  وبالعكس اذا كان رقم التكاثر الاساسي اكبر من واحد في هذه الحالة  

   كما تم استخدام المحاكاة الحاسوبية لتوضيح هذه النتائج. خلايا الكبد. 
 

1- Introduction 

    The liver is irritated by hepatitis. This illness may be brought on by active drug and alcohol 

use, autoimmune conditions, germs, viruses, or other foreign bodies. The hepatitis virus comes 

in five primary strains, which are called types A, B, C, D, and E. Though they all result in liver 

disease, they range significantly in terms of the illness's severity, and geographic prevalence. 

Specifically, types B and C together cause the majority of liver cirrhosis, liver cancer, and 

fatalities from viral hepatitis. They also cause chronic illness in hundreds of millions of people. 
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Hepatitis B or C is thought to affect 354 million people globally, and for the majority, testing 

and treatment are still unattainable, [1]. 

 

     Vaccination can help prevent some cases of hepatitis. A World Health Organization study 

revealed that immunization, diagnostic procedures, medications, and awareness campaigns 

could potentially avert 4.5 million preventable deaths in low- and middle-income nations by 

2030 [1]. To interpret experimental results and comprehend the underlying biological 

mechanism causing the epidemic's development, mathematical models of the dynamics of viral 

hepatitis were devised [2-4]. Ordinary differential equations (ODEs) have been the main tool 

used in the enormous quantity of scientific studies on simulating the interaction between 

viruses that cause viral hepatitis and human liver cells [5–8]. Stochastic differential equations 

have received attention recently and have been used to represent several viral diseases, 

including viral hepatitis, AIDS, and coronavirus disease [9-15]. In this work, we will employ 

a stochastic differential equations model to study how viruses that cause liver disorders interact 

with liver cells when immunity is present. We employ stochastic differential equation models 

rather than deterministic ordinary differential equation models for a variety of reasons. 

Particularly when simulating viral hepatitis outbreak phenomena like hepatitis C virus 

dynamics or B virus dynamics, real life is stochastic rather than deterministic. This is because 

virus particles that interact with target liver cells are in the same environmental conditions but 

produce different products. The impact of adding randomness to a deterministic ordinary 

differential equation model is discussed in this study. The utilization of the random differential 

equations model multiple times might lead to the expected distribution of the findings, which 

makes the novel mathematical modeling approach more transparent than the deterministic 

ordinary differential equation models. For instance, the deterministic differential equations 

model will provide us with one anticipated value for the total number of HCV or HBV-infected 

cells at time t. The structure of this article is as follows: in Section 2, we developed a novel 

mathematical model that illustrates how, in the presence of immunity, viral hepatitis illness 

spreads inside liver cells. In Section 3 we discuss the existence and uniqueness of the solution 

for the proposed stochastic  differential equation model. Section 4 describes the stochastic basic 

reproduction number and equilibriums for the new stochastic differential equation model. We 

define the circumstances under which the equilibrium points will be stable or unstable in 

Section 5. While Section 6 presents the key findings. Finally, the conclusion and a few 

suggestions are covered in Section 7. 

 

2. Formulation of the model  

     To comprehend how viral hepatitis spreads within the human liver, how it engages with 

hepatic cells, and to make clear how immunity and therapy affect the processes of 

dissemination and recuperation, as well as the effect of the patient’s psychological state and its 

representation by introducing environmental stochasticity, where the better the patient’s 

psychological state is the higher environmental randomness gives me and this randomness 

contributes to the stability of the system and the recovery of the liver from viruses. Several 

mathematical models have been developed to study the spread of viruses within the liver, the 

most important of which is the model developed by [6].  The behavior of the virus was studied 

in the presence of the treatment, since it was presumed in this model that the hepatocytes were 

infected and uninfected x1(t) cells multiply, and we concur with this hypothesis since the 

human liver's population homeostasis system allows the liver to regenerate (see, for instance, 

[16]). Therefore, the multiplication of already-existing hepatocytes can make up for any loss 

of hepatocytes and the mathematical model offered by [6]  as follows:  
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{
  
 

  
 
𝑑x1(t)

𝑑𝑡
= 𝐺 + 𝑛x1(t) (1 −

x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏x1(t) − (1 − 𝑢)𝑤x3(t)x1(t),

𝑑x2(t)

𝑑𝑡
= (1 − 𝑢)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −

x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t),

𝑑x3(t)

𝑑𝑡
= (1 − µ)𝑞x2(t)−∝ x3(t).                                                        

                  (1) 

     We observe that the immune system responses which are the primary factor in activating 

therapeutic cells are disregarded by the mathematical model (1). While researchers in the 

reference [7] proposed a mathematical model that deals with the interaction between viruses 

that cause liver disease and the host’s immune responses, which is as follows: 
𝑑x1(t)

𝑑𝑡
= 𝐺 − 𝑏x1(t) − 𝑤x3(t)x1(t),                                                                                        

𝑑x2(t)

𝑑𝑡
= 𝑤x3(t)x1(t) − 𝑠x2(t) − 𝛽x2(t)x4(t),                                                                  

𝑑x3(t)

𝑑𝑡
= 𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t),                                                                            

𝑑x4(t)

𝑑𝑡
= 𝑚x2(t)x4(t) − 𝑑x4(t),                                                                                          

𝑑x5(t)

𝑑𝑡
= 𝜏x3(t)x5(t) − ℎx5(t).                                                                                        

(2) 

      In this paper, we integrate mathematical model (1) with mathematical model (2) to provide 

a new mathematical model that represents the interaction of viruses with hepatocytes. 

Several intricate biological elements influence the mechanism by which the virus multiplies 

inside the human body by entering liver cells. These factors also affect treatment efficacy, 

which differs from patient to patient, as well as the psychological state of the patient. For all 

these reasons, we were inspired to  introduce random parameters in the new proposed model, 

which is as follows: 

              :  

{
 
 
 
 

 
 
 
 𝑑x1(t) = (𝐺 + 𝑛x1(t) (1 −

x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏x1(t) − (1 − 𝑢1)𝑤x3(t)x1(t)) 𝑑𝑡 + 𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡),                               

𝑑x2(t) = ((1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t)) 𝑑𝑡 − 𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡),              

𝑑x3(t) = ((1 − 𝑢2)𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t))𝑑𝑡 − 𝜎2𝑢2𝑞x2(t)𝑑𝐵2(𝑡),                                                  (3 )  

𝑑x4(t) = (𝑚x2(t)x4(t) − 𝑑x4(t))𝑑𝑡,                                                                                                                                                                

𝑑x5(t) = (𝜏x3(t)x5(t) − ℎx5(t))𝑑𝑡,                                                                                                                                                             

  

 

with initial conditions 

𝑥1(0) ≥ 0, 𝑥2(0) ≥ 0, 𝑥3(0) ≥ 0, 𝑥4(0) ≥ 0, & 𝑥5(0) ≥ 0.  
Table 1 lists and illustrates every parameter utilized in the mathematical models (1) and (2) as 

well as the new mathematical model (3).  
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Table 1: Model States and Model parameters 

Parameter Description 

𝑥𝑚𝑎𝑥 The liver's maximum growing size. 

x1(t) Symbolizes cells that are prone to infection. 

x2(t) Symbolizes the infected cells. 

x3(t) Symbolize the particles of viruses. 

x4(t) CTLs response. 

x5(t) Symbolize antibody response. 

G It shows the number of uninfected cells produced in a certain amount of time. 

n The fastest rate of both infected and uninfected cell  growth. 

b It shows how many healthy cells are removed in a certain amount of time. 

w It shows the rate at which viral particles enter liver cells. 

s Symbolizes the rate of elimination of infected cells. 

𝛽 Show the rate at which infected cells are eliminated by CTLs. 

q 
It is the highest quantity of contagious virus particles generated from afflicted cells in 

the case of a feeble or ineffectual vaccination. 

𝛼 Symbolizes the rate at which virus particles are eliminated in a certain amount of time. 

k Symbolize rate at which antibody x5(t) neutralized the virus particles x3(t) . 

m Increase the rate of CTLs x4(t) in reaction to an antigen of a virus. 

d The rate of removal of CTLs (x4(t) ) when there are no antigenic. 

τ The rate at which antibodies grow  (x5(t) ) in response to virus particles x3(t) 

h The rate at which antibodies disappear naturally x5(t). 

(1 − 𝑢1) 
It stands for a treatment that prevents infectious viral particles from interacting with 

healthy target cells. x1(t). 

(1 − 𝑢2) 
It is a form of treatment that stops virus particles from congregating in the right way, 

weakening the virus and making it incapable of replicating. 

𝜎1 & 𝜎2 Represents stochastic parameters. 

𝐵1(𝑡) &𝐵2(𝑡) It symbolizes independent standard Brownian motions. 

 

3. Existence and uniqueness   

     In this section, we discuss the existence and uniqueness of the  solution of the proposed 

stochastic  differential equation for the spread of viral hepatitis 

Theorem 3.1: The solution  (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡)) of the proposed stochastic viral 

hepatitis epidemic model (3) is unique on 𝑡 ≥ 0  for any initial value  

(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0)) ∈  𝑅+
5   and the solution will stay in 𝑅+

5    with probability 

one, i.e. (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡)) ∈ 𝑅+
5     for all 𝑡 ≥ 0    a.s.(almost surely). 

proof: The equations of the coefficient are locally Lipchitz continuous for every given initial 

size of population  (𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0)) ∈  𝑅+
5 . There is a single local solution   

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡))   on  𝑡 ∈ [0, 𝜏𝑒), where 𝜏𝑒 is  the moment of explosion. To 

demonstrate that this solution is universal, we prove that 𝜏𝑒 = ∞  a.s. let 𝑘0 ≥ 0 be big enough, 

so that 𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0) and 𝑥5(0)  all lie within the interval  [
1

𝑘0
, 𝑘0] for every 

integer 𝑘 ≥ 𝑘0 .Define the stopping time as 

𝜏𝑘 = {𝑡 ∈ [0, 𝜏𝑒):min{𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡)}

≤
1

𝑘
 𝑜𝑟 𝑚𝑎𝑥{𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡)} ≥ 𝑘 }.                           (4) 
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Where throughout this manuscript we consider inf∅ = ∞ as usual ∅ denotes the empty set. 

Where 𝜏𝑘  is  increasing as 𝑘 → ∞.  
set 𝜏∞ = lim

𝑘→∞
𝜏𝑘, whence 𝜏∞ ≤ 𝜏𝑒 a.s. If we are able to demonstrate that 𝜏∞ = ∞ a.s. then 𝜏𝑒 =

∞ and 𝑥𝑖(𝑡) ∈  𝑅+
5    where 1 ≤ 𝑖 ≤ 5, a.s for all 𝑡 ≥ 0. Put otherwise, all we have to 

demonstrate to finish the proof is that 𝜏∞ = ∞ a.s. for if this assertion is untrue, after which 

there are two constants 𝑇 > 0 and 𝜀 ∈ (0,1) such that  

𝑃{𝜏∞ ≤ 𝑇} > 𝜖.                                                                                                                     (5) 
Thus, an integer exists  𝑘1 ≥ 𝑘0 such that  

𝑃{𝜏𝑘 ≤ 𝑇} ≥ 𝜖 for everyone 𝑘 ≥ 𝑘1 .                                                                                  (6) 
Define a 𝐶2 – function  𝑣: 𝑅+

5 → 𝑅+ by 𝑣(𝑥) = ∑ [𝑥𝑖 + 1 − log(𝑥𝑖)]
5
𝑖=1 . 

      This function's non-negativity is evident from 𝑢 + 1 − log(𝑢) ≥ 0, ∀𝑢 > 0. Applying Ito's 

formula [11], we obtain  

𝑑𝑣(𝑥(𝑡) = 

{(1 −
1

𝑥1(𝑡)
) [𝐺 + 𝑛x1(t) (1 −

x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏x1(t) − (1 − 𝑢1)𝑤x3(t)x1(t)] 

+ (1 −
1

𝑥2(𝑡)
) [(1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −

x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t)] 

+(1 −
1

𝑥3(𝑡)
) 

[((1 − 𝑢2)𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t)) +
1

2
𝜎1
2𝑢1

2𝑤2𝑥3
2 +

1

2
𝑥2
−2𝜎1

2𝑢1
2𝑤2𝑥3

2𝑥1
2

+
1

2
𝑥3
2𝜎2

2𝑢2
2𝑞2𝑥2

2] 𝑑𝑡 + (
𝜎1𝑢1𝑤𝑥3𝑥1

𝑥2
− 𝜎1𝑢1𝑤𝑥3) 𝑑𝐵1(𝑡)

+ (
𝜎2𝑢2𝑞𝑥2
𝑥3

− 𝜎2𝑢2𝑞𝑥2) 𝑑𝐵2(𝑡) 

= [𝐺 + 𝑛x1(t) (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏x1(t) − (1 − 𝑢1)𝑤x3(t)x1(t) + (1 − 𝑢1)𝑤x3(t)x1(t) +

𝑛x2(t) (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t)+ ((1 − 𝑢2)𝑞x2(t)−∝ x3(t) −

𝑘x3(t)x5(t)) −
𝐺

x1(t)
− 

𝑛 (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) + 𝑏 + (1 − 𝑢1)𝑤x3(t)-

(1−𝑢1)𝑤x3(t)x1(t)

x2(t)
− 𝑛 (1 −

x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) + 𝑠 +

 𝛽x4(t) −
(1−𝑢2)𝑞x2(t)

x3(t)
+ ∝+kx5(t) +

1

2
𝜎1
2𝑢1

2𝑤2𝑥3
2 +

1

2
𝑥2
−2𝜎1

2𝑢1
2𝑤2𝑥3

2𝑥1
2 +

1

2
𝑥3
2𝜎2

2𝑢2
2𝑞2𝑥2

2]𝑑𝑡 + (
𝜎1𝑢1𝑤𝑥3𝑥1

𝑥2
− 𝜎1𝑢1𝑤𝑥3)𝑑𝐵1(𝑡) + (

𝜎2𝑢2𝑞𝑥2

𝑥3
− 𝜎2𝑢2𝑞𝑥2) 𝑑𝐵2(𝑡). 

Hence,  

𝑑𝑣(𝑥(𝑡) ≤ [𝐺 + 𝑏 + 𝑠+

∝ +𝑛(1 −
x1(t) + x2(t)

𝑥𝑚𝑎𝑥
)x1(t) + ((1 − 𝑢2)𝑞 + 𝑛 (1 −

𝑥1(𝑡) + 𝑥2(𝑡)

𝑥𝑚𝑎𝑥
))𝑥2(𝑡)

+ (1 − 𝑢1)𝑤x3(t) + 𝛽x4(t) + kx5(t) + (
𝜎1𝑢1𝑤𝑥3𝑥1

𝑥2
− 𝜎1𝑢1𝑤𝑥3) 𝑑𝐵1(𝑡)

+ (
𝜎2𝑢2𝑞𝑥2
𝑥3

− 𝜎2𝑢2𝑞𝑥2) 𝑑𝐵2(𝑡)

= 𝑄 .                                                                                                                                                            (7) 
Consequently,  
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𝐸[𝑣(x1(t)(𝜏𝑘⋀𝑇), x2(t)(𝜏𝑘⋀𝑇), x3(t)(𝜏𝑘⋀𝑇), x4(t)(𝜏𝑘⋀𝑇), x5(t)(𝜏𝑘⋀𝑇)]

≤ 𝑣(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0)) + 𝐸 [ ∫ 𝑄𝑑𝑡

𝜏𝑘⋀𝑇

0

]

≤ 𝑣(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0))

+ 𝑄𝑇.                                                                                                                            (8 ) 
Let  Ω𝑘 = 𝜏𝑘 ≤ 𝑇 for 𝑘 ≥ 𝑘1 and via equation (6) 𝑃(Ω𝑘) ≥ 𝜖. Note that for each  𝜔 ∈ Ω𝑘,there 

is at least one x1(t)(𝜏𝑘, 𝜔), x2(t)(𝜏𝑘, 𝜔), x3(t)(𝜏𝑘, 𝜔), x4(t)(𝜏𝑘, 𝜔), x5(t)(𝜏𝑘, 𝜔) that is 

equivalent 𝑘  or 
1

𝑘
,and so 𝑣((x1(t)(𝜏𝑘), x2(t)(𝜏𝑘), x3(t)(𝜏𝑘), x4(t)(𝜏𝑘), x5(t)(𝜏𝑘)) is no less 

then 𝑘 − 1 − log 𝑘 or (
1

𝑘
) − 1 + log 𝑘. As a result  

𝑣((x1(t)(𝜏𝑘), x2(t)(𝜏𝑘), x3(t)(𝜏𝑘), x4(t)(𝜏𝑘), x5(t)(𝜏𝑘))  

≥ 𝐸(𝑘 − 1 − log 𝑘 )⋀((
1

𝑘
) − 1 + log 𝑘).                                                                    (9) 

Consequently, Equations (6) and (8) imply that 

𝑣(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0)) + 𝑄𝑇

≥ 𝐸 [1Ω(𝜔)𝑣((x1(t)(𝜏𝑘), x2(t)(𝜏𝑘), x3(t)(𝜏𝑘), x4(t)(𝜏𝑘), x5(t)(𝜏𝑘))]

≥ 𝜖 [(𝑘 − 1 − log 𝑘)⋀ ((
1

𝑘
) − 1 + log 𝑘)].                                 ( 10)  

Where  1Ω(𝜔) is the indicator function of Ω. Letting 𝑘 → ∞ leads to the contradiction  

∞ > 𝑣(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0), 𝑥5(0)) + 𝑄𝑇 = ∞ This means  𝜏∞ = ∞ 𝑎. 𝑠, ∎ 

 

4. The stochastic basic reproduction number (𝑅0
𝑠) and equilibriums  

      To comprehend the dynamic viral movement that results in viral hepatitis, in addition to 

understanding whether the liver can mend and get rid of infections. We will use the stochastic 

basic reproduction number, which is expressed by the symbol  𝑅0
𝑠 .This represents the number 

of secondary infections generated by a single infected cell in a hepatocyte population. If 𝑅0
𝑠 <

1,   this means that the liver will get rid of the virus and heal the infected person, because any 

cell carrying the virus will transmit the viruses to less than one cell. Unlike that if  𝑅0
𝑠   > 1  so, 

each infected cell produces on average more than one new infected cell and in this case, the 

infection grows and the disease can invade all liver cells. We can derive the stochastic basic 

reproduction number (𝑅0
𝑠)  for the new mathematical  model  (3) as follows:  

The disease classes for model (3) are: 

  

𝑑x2(t) = ((1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −
x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t))𝑑𝑡

− 𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡),               
𝑑x3(t) = ((1 − 𝑢2)𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t))𝑑𝑡 − 𝜎2𝑢2𝑞x2(t)𝑑𝐵2(𝑡), 

𝐹 = (
(1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −

x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝜎1𝑢1𝑤x3(t)x1(t)

0

) 

𝑉 = (
𝑠x2(t) − 𝛽x2(t)x4(t)

(1 − 𝑢2)𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t) − 𝜎2𝑢2𝑞x2(t)
). 

The dependent variables are  x2(t) and  x3(t)  

From 𝐹, let 𝑓(𝑥2(𝑡) , 𝑥3(𝑡)) = (1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) −

𝜎1𝑢1𝑤x3(t)x1(t) &  𝑔(𝑥2(𝑡), 𝑥3(𝑡)) = 0. 
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Let find the Jacobin matrix  for 𝐹, which is  

 F =   (
𝜕𝑓

𝜕x2(t)
                               

𝜕𝑓

𝜕x3(t)
    

𝜕𝑔

𝜕x2(t)
                              

𝜕𝑔

𝜕x3(t)
         

) = (
𝑛−

𝑛x1(t)+2𝑛x2(t)

𝑥𝑚𝑎𝑥
                       (1−𝑢1)𝑤x1(t)−𝜎1𝑢1𝑤x1(t)  

0                                                                                                0         
). 

Evaluating   F   at   disease- free equilibrium 

F = (
𝑛 −

𝑛𝑥1
∗(𝑡)

𝑥𝑚𝑎𝑥
                     (1 − 𝑢1)𝑤𝑥1

∗(𝑡) − 𝜎1𝑢1𝑤𝑥1
∗(𝑡)    

0                                                                                                0         
)   

from V, let 𝑓(𝑥2(𝑡), 𝑥3(𝑡)) =  𝑠x2(t) − 𝛽x2(t)x4(t) & 𝑔(𝑥2(𝑡), 𝑥3(𝑡)) = (1 − 𝑢2)𝑞x2(t)−∝

x3(t) − 𝑘x3(t)x5(t) − 𝜎2𝑢2𝑞x2(t).  
Let find the Jacobin matrix for 𝑉, which is  

V =   (

𝜕𝑓
𝜕x2(t)

                               
𝜕𝑓

𝜕x3(t)
    

𝜕𝑔
𝜕x2(t)

                              
𝜕𝑔

𝜕x3(t)
         

) = (
𝑠 − 𝛽x4(t)                       0    

(1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞                −∝ −𝑘𝑥5    
). 

Evaluating   V   at   disease- free equilibrium 

V = (
𝑠                                                          0    

(1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞                       −∝        
) 

find 𝑉−1 =
1

−∝𝑠
( −∝                                                          0    
−[(1−𝑢2)𝑞−𝜎2𝑢2𝑞]                          𝑠        

) 

find 𝐹𝑉−1 =

(
𝑛−

𝑛𝑥1
∗ (𝑡)

𝑥𝑚𝑎𝑥
                      (1−𝑢1)𝑤𝑥1

∗(𝑡)−𝜎1𝑢1𝑤𝑥1
∗(𝑡)    

0                                                                                                0         
)

1

−∝𝑠
( −∝                                                0    
−[(1−𝑢2)𝑞−𝜎2𝑢2𝑞]                          𝑠        

) 

= (

1
𝑠
(𝑛 −

𝑛𝑥1
∗(𝑡)

𝑥𝑚𝑎𝑥
) +

[(1 − 𝑢1)𝑤𝑥1
∗(𝑡) − 𝜎1𝑢1𝑤𝑥1

∗(𝑡)][(1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞]
∝ 𝑠

             
(1 − 𝑢1)𝑤𝑥1

∗(𝑡) − 𝜎1𝑢1𝑤𝑥1
∗(𝑡)

−∝
 

0                                                                                                0         
) 

 

finding the Eigenvalues for  𝐹𝑉−1 which are as  

𝜆1 =
1

𝑠
(𝑛 (1 −

x1(t)
∗

𝑥𝑚𝑎𝑥
) +

(1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤x1(t)
∗𝑞

∝
)      𝑎𝑛𝑑 𝜆2 = 0. 

 

Hence,  
1

𝑠
(𝑛 (1 −

x1(t)
∗

𝑥𝑚𝑎𝑥
) +

(1−𝑢1−𝜎1𝑢1)(1−𝑢2−𝜎2𝑢2)𝑤x1(t)
∗𝑞

∝
) is the dominant eigenvalue and 

that yields  𝑅0
𝑠 . 

𝑅0
𝑠 = 

1

𝑠
(𝑛 (1 −

x1(t)
∗

𝑥𝑚𝑎𝑥
) +

(1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤x1(t)
∗𝑞

∝
).                            (11) 

 

To determine the stability of the new model (3), we evaluate the steady states or the equilibrium 

points of this model. The new model has an equilibrium point known as the "disease-free 

equilibrium," just as models (1) and (2). This symbolizes the absence of a virus as well as the 

absence of infected cells (i.e.,x3(t)
∗ = 0& x2(t)

∗ = 0). So when solving the equations in 

model (3), we obtain disease- free equilibrium which is as follows:   

(x1(t)
∗, x2(t)

∗, x3(t)
∗, x4(t)

∗, x5(t)
∗) =  (

𝑥𝑚𝑎𝑥

2𝑛
[𝑛 − 𝑏 ±

√(𝑛 − 𝑏)2 +
4𝑛𝐺

𝑥𝑚𝑎𝑥
] , 0,0,0,0).                                                                               (12) 
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5. Stability of equilibriums  

     The circumstances under which the equilibrium points will be stable or unstable are defined 

in this section. For this aim first, we will study the stability analysis of the disease-free 

equilibrium.  For the new model (3), the Jacobin matrix looks like this: 

J(x1(t), x2(t), x3(t), x4(t), x5(t))= 

[
 
 
 
 
 
 
 
 𝑛 (1 −

2x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏 − (1 − 𝑢1)𝑤x3(t) + 𝜎1𝑢1𝑤x3(t)     

−𝑛x1(t)

𝑥𝑚𝑎𝑥
  − (1 − 𝑢1)𝑤x1(t) + 𝜎1𝑢1𝑤x1(t)     0      0

(1 − 𝑢1)𝑤x3(t) −
𝑛x2(t)

𝑥𝑚𝑎𝑥
− 𝜎1𝑢1𝑤x3(t)   𝑛 (1 −

x1(t) + 2x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠 − 𝛽x4(t)   (1 − 𝑢1)𝑤x1(t) − 𝜎1𝑢1𝑤x1(t)   − 𝛽x2(t)  0 

0                         (1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞                             −∝ −𝑘x5(t)                             0                                   − 𝐾x3(t)

0                                       𝑚x4(t)                                 0                                        𝑚x2(t) − 𝑑                                         0

0                                        0                                𝜏x5(t)                                        0                                           𝜏x3(t) − ℎ
 ]

 
 
 
 
 
 
 
 

. 

In the uninfected steady state, the Jacobin matrix will look like this:  

𝐽0(x1(t)
∗, 0,0,0,0) =  

[
 
 
 
 
 
 
 𝑛 (1 −

2x1(t)
∗

𝑥𝑚𝑎𝑥
) − 𝑏     

−𝑛x1(t)
∗

𝑥𝑚𝑎𝑥
     − (1 − 𝑢1)𝑤x1(t)

∗ + 𝜎1𝑢1𝑤x1(t)
∗         0           0

0          𝑛 (1 −
x1(t)

∗

𝑥𝑚𝑎𝑥
) − 𝑠          (1 − 𝑢1)𝑤x1(t)

∗ − 𝜎1𝑢1𝑤x1(t)
∗               0            0

0             (1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞                                     −∝                          0                          0  
0                                   0                                              0                        − 𝑑                       0
0                                    0                                               0                           0                   − ℎ ]

 
 
 
 
 
 
 

. 

The characteristic equation about 𝐽0(x1(t)
∗, 0,0,0,0) is |𝐽0(x1(t)

∗, 0,0,0,0) − 𝜆𝐼| = 0 

|

|

|
𝑛 (1 −

2x1(t)
∗

𝑥𝑚𝑎𝑥
) − 𝑏 − 𝜆    

−𝑛x1(t)
∗

𝑥𝑚𝑎𝑥
     − (1 − 𝑢1)𝑤x1(t)

∗ + 𝜎1𝑢1𝑤x1(t)
∗    0       0

0        𝑛 (1 −
x1(t)

∗

𝑥𝑚𝑎𝑥
) − 𝑠 − 𝜆               (1 − 𝑢1)𝑤x1(t)

∗ − 𝜎1𝑢1𝑤x1(t)
∗        0     0

0     (1 − 𝑢2)𝑞 − 𝜎2𝑢2𝑞           −∝ −𝜆                        0       0  
0                                            0                                           0                                            − 𝑑 − 𝜆                   0

0,                                          0                                                 0                       0          − ℎ − 𝜆 

|

|

|

= 0. 
 Clearly, the roots of the characteristic equation or the eigenvalue are  𝜆1 = −𝑑,     𝜆2 =

−ℎ  ,    𝜆3 =  −𝑏 + 𝑛[1 −
2𝑥1[𝑡]

∗

𝑥𝑎𝑚𝑥
]],  and the other two eigenvalues are determined by the 

following quadratic equation.  

𝜆2 + 𝑎1𝜆 + 𝑎2 =0.                                                                                                                (13)   

Where 𝑎1 = −(𝑛 −
𝑛x1(t)

∗

𝑥𝑚𝑎𝑥
− 𝑠−∝), 

and 𝑎2 = −∝ (𝑛 −
𝑛x1(t)

∗

𝑥𝑚𝑎𝑥
− 𝑠) − (1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤𝑇0q.  

Obviously, 𝑎1 > 0   and 𝑎2 > 0   if and only if 𝑅0
𝑠 < 1.  Hence, all the eigenvalue have negative 

real parts if and only if 𝑅0
𝑠 < 1. So, 𝐽0(x1(t)

∗, 0,0,0,0) is locally asymptotically stable for  𝑅0
𝑠 <

1and unstable for 𝑅0
𝑠 > 1.  

 

6. Main results    

     In this section, we carried out several numerical simulations to support the theoretical results 

by employing computer simulations. We found from  the theoretical results x2(t) and   

x3(t)     are exponentially  stable, and Lim
𝑡→∞

x2(t) = 0, and Lim
𝑡→∞

x3(t) = 0, if 𝑅0
𝑠 < 1. While 
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x2(t)  and   x3(t)    are unstable if 𝑅0
𝑠 > 1. We will use two examples to show how immune 

responses, active therapy, and stochastic factors all contribute to system stabilization.  

Example 6.1: If we take the parameter values as in the table below: 

Parameter The value 

𝑥𝑚𝑎𝑥 1.0 ∗ 107 𝑐𝑒𝑙𝑙𝑠  𝑚𝑙−1 

G 1.0 ∗ 105𝑐𝑒𝑙𝑙𝑠 𝑚𝑙−1𝑑𝑎𝑦−1 

n 0.1  𝑑𝑎𝑦−1 

b 1.0 ∗ 10−2 𝑑𝑎𝑦−1 

w 4 ∗ 10−7 𝑚𝑙𝑑𝑎𝑦−1𝑣𝑖𝑟𝑖𝑜𝑛𝑠−1 

s 0.1  𝑑𝑎𝑦−1 

𝛽 6.4 ∗ 10−2𝑑𝑎𝑦−1 

q 4.0 ∗ 100 𝑣𝑖𝑟𝑖𝑜𝑛𝑠 𝑐𝑒𝑙𝑙𝑠−1𝑑𝑎𝑦−1 

𝛼 5.0 ∗ 100 𝑑𝑎𝑦−1 

k 2.0 ∗ 1𝑑𝑎𝑦−1 

m 4.4 ∗ 10−7𝑑𝑎𝑦−1  

d 1.0 ∗ 10−2𝑑𝑎𝑦−1 

τ 1.0 ∗ 10−5𝑑𝑎𝑦−1 

h 0.01𝑑𝑎𝑦−1 

(𝑢1) 0.9 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 
(𝑢2) 0.9 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜎1 0.01 

𝜎2 0.01 

 

To calculate the stochastic basic reproduction number first, we find x1(t)
∗ by equation (12) 

which is equal to x1(t)
∗ = 107. We substitute this value with the rest of the values given in 

equation (11) to find (𝑅0
𝑠) as follows 

𝑅0
𝑠 = 

1

𝑠
(𝑛 (1 −

x1(t)
∗

𝑥𝑚𝑎𝑥
) +

(1 − 𝑢1 − 𝜎1𝑢1)(1 − 𝑢2 − 𝜎2𝑢2)𝑤x1(t)
∗𝑞

∝
) 

𝑅0
𝑠 = 10(0.1 (1 −

107

107
) +

(0.091)(0.091) ∗ 4 ∗ 10−7107 ∗ 4

5
). 

 So,  𝑅0
𝑠 = 0.264992 < 1. Because the value of (𝑅0

𝑠) is less than one, this indicates that the 

liver will mend and get rid of the infections. To confirm, we will take the equation of the 

infected cells.  

𝑑x2(t) = ((1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −
x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t))𝑑𝑡

− 𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡)). 
 

Thus, by applying Ito's formula [11] and substitution the parameter values ,we have the solution 

of the infected cells as x2(t) = 103𝑒−(62.799608)𝑡. Thus, in 50 days, the infected cells x2(t) go 

to zero exponentially. These results were verified using the MATLAB program, as shown in 

Figure (1).  
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Figure 1. According to computer simulations, when 𝑅0

𝑠 < 1, the number of infected cells 

exponentially decreases and goes to zero in 50 days. 

If we take the virus particle equation  

𝑑x3(t) = ((1 − 𝑢2)𝑞x2(t)−∝ x3(t) − 𝑘x3(t)x5(t))𝑑𝑡 − 𝜎2𝑢2𝑞x2(t)𝑑𝐵2(𝑡).    
Also, by substituting the parameter values in the virus particle equation and using Ito's formula 

[11], we obtain the following solution: x3(t) = 103𝑒−(1587)𝑡.   Thus, in 30 days, the virus 

particles x3(t) tend to zero exponentially. These results were verified using the MATLAB 

program, as shown in Figure (2).  

   

 
Figure 2: The computer simulation programs the virus particles goes to zero exponentially in 

30 days when 𝑅0
𝑠 < 1, 

 

 While if we take equation of cells susceptible to infection 

 𝑑x1(t) = (𝐺 + 𝑛x1(t) (1 −
x1(t)+x2(t)

𝑥𝑚𝑎𝑥
) − 𝑏x1(t) − (1 − 𝑢1)𝑤x3(t)x1(t))𝑑𝑡 +

𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡). 
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Thus, after substituting  the parameters in the preceding equation, and solve it we find the 

solution equal to x1(t) = 103𝑒100000.089𝑡 . We note from  this result that healthy cells 

x1(t)did not go to zero exponentially when  𝑡 → ∞. This result was shown using the 

MATLAB program, as shown in Figure (3).  

 
Figure 3: The computer simulation programs the uninfected cells did not go to zero 

exponentially when 𝑅0
𝑠 < 1, 

Example 6.2: In contrast to the previous example, we assume that the immunity represented 

by lymphocytes (CTLs) is weak, the treatment is weakly effective, and also the random 

variation (𝜎1) and (𝜎2) is not large enough. Therefore, the parameters will be as in table 3:  

Parameter The value 

𝑥𝑚𝑎𝑥 1.0 ∗ 107 𝑐𝑒𝑙𝑙𝑠  𝑚𝑙−1 

G 1.0 ∗ 105𝑐𝑒𝑙𝑙𝑠 𝑚𝑙−1𝑑𝑎𝑦−1 

n 0.2  𝑑𝑎𝑦−1 

b 1.0 ∗ 10−2 𝑑𝑎𝑦−1 

w 5 ∗ 10−8 𝑚𝑙𝑑𝑎𝑦−1𝑣𝑖𝑟𝑖𝑜𝑛𝑠−1 

s 0.1  𝑑𝑎𝑦−1 

𝛽 6.4 ∗ 10−2𝑑𝑎𝑦−1 

q 5.0 ∗ 100 𝑣𝑖𝑟𝑖𝑜𝑛𝑠 𝑐𝑒𝑙𝑙𝑠−1𝑑𝑎𝑦−1 

𝛼 4.0 ∗ 100 𝑑𝑎𝑦−1 

k 2.0 ∗ 1𝑑𝑎𝑦−1 

m 4.4 ∗ 10−7𝑑𝑎𝑦−1 

d 1.0 ∗ 10−2𝑑𝑎𝑦−1 

τ 1.0 ∗ 10−5𝑑𝑎𝑦−1 

h 0.01𝑑𝑎𝑦−1 

(𝑢1) 0.1 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 
(𝑢2) 0.2 𝑢𝑛𝑖𝑡 𝑙𝑒𝑠𝑠 

𝜎1 0.001 

𝜎2 0.001 

      When finding the basic reproduction number by substituting the values of the parameters 

in equation (11), we find that 𝑅0
𝑠 = 4.498875125 > 1. This outcome indicates that the illness 

will become chronic. To understand this outcome, we use the equation for infected cells. 
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𝑑x2(t) = ((1 − 𝑢1)𝑤x3(t)x1(t) + 𝑛x2(t) (1 −
x1(t) + x2(t)

𝑥𝑚𝑎𝑥
) − 𝑠x2(t) − 𝛽x2(t)x4(t))𝑑𝑡

− 𝜎1𝑢1𝑤x3(t)x1(t)𝑑𝐵1(𝑡)) 
Thus, by substituting the parameter values in the infected cells equation and applying Ito's 

formula, we obtain the following solution: x2(t) = 103𝑒(0.08098)𝑡. So, the infected cells x2(t) 
do not tend to zero exponentially when  𝑡 → ∞. Will use computer simulation, as shown in 

Figure 4, to bolster these findings. 

 
Figure 4: The computer simulation programs the infected cells not tend to zero exponentially 

in 70 days when 𝑅0
𝑠 > 1, 

When we substitute the parameter values into the virus particle equation, we find the 

solution   x3(t) = 103𝑒1995.5𝑡. So, the virus particles x3(t) do not tend to zero exponentially as 

𝑡 → ∞. This result was proven using computer simulations, as shown in Figure (5). 

 

 
Figure 5: Computer simulation programs virus particles not tend to zero exponentially in 70 

days when 𝑅0
𝑠 > 1, 

 

7. Conclusions 

     The following summarizes our article's novelty: By combining two deterministic systems 

and adding environmental stochasticity to them, the behavior of viral hepatitis is examined. We 

have proven using this new mathematical model that if the body has high immunity and takes 

appropriate treatment, and the stochastic variance  𝜎1 and 𝜎2 are large enough. This gives 𝑅0
𝑠 <
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1 When 𝑅0
𝑠 is less than one, this means that each sick cell will transmit the disease to less than 

one cell, and this means that the liver will get rid of the virus and heal the infected person, as 

in Figures 1, 2, and 3. Conversely, in cases of insufficient immunity, therapy is unsuccessful 

and the random variation 𝜎1 and 𝜎2 is negligible, resulting in 𝑅0
𝑠 > 1,  therefore in this instance, 

every unhealthy cell spreads the infection to multiple healthy cells, This means that the virus 

will invade all liver cells and the infected person will not recover, as shown in Figures 4 and 5. 

Because immunity is crucial for protecting the liver from viruses. Therefore, it is necessary to 

maintain immunity by abstaining from drugs, alcohol, and high-sugar foods and beverages.   
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