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Abstract.
In this paper, a harvested prey-predator model involving infectious disease in prey is
considered. The existence, uniqueness and boundedness of the solution are
discussed. The stability analysis of all possible equilibrium points are carried out.
The persistence conditions of the system are established. The behavior of the system
is simulated and bifurcation diagrams are obtained for different parameters. The
results show that the existence of disease and harvesting can give rise to multiple
attractors, including chaos, with variations in critical parameters.

تأثیر المرض والحصاد على السلوك الدینامیكي لنظام الفریسة والمفترس

براهیمإ هبة عبد االله ،رائد كامل ناجي
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المستخلص

د، وج ـ ـوو.تناولن  ا ف  ي ھ  ذا البح  ث نظ  ام ح  صـــاد الفری  سة والمفت  رس وال  ذي یت  ضمن م  رض ف  ي الفری  ســـة
 ـ ـل الاس  تقراریة لجمی  ع النق  اط الثابت  ة الممكن  ة للنظ  ام درس.ووحدانی  ة وقی  د الح  ل للنظ  ام نوق  شة ش  روط .تحلیـــ

بین ت .بمحاك اة س لوك النظ ام ع دد م ن مخطط ــات التف رع رس مت ولق یم مع الم مختلف ة.الاصرار للنظام وجدت
. جـــواذب مختلفة بضمنھا الفوضىالنتائج بان وجود المرض والحصاد في النظام یؤدي الى وجـــود

1. Introduction:
It is well know that, in nature species does

not exist alone. In fact, any given habitat may
contain dozens or hundreds of species, some
times thousands. Consequently, the possibility
of spread of the disease in a community
becomes larger as the number of infected
species in the habitat increases. Accordingly, the
study of the effect of disease on the dynamical
behavior of interacting species has a vital
biological significance in ecology. In the last
two decades, numbers of prey-predator models
with infectious diseases have been investigated
[1-5]. All these models, reached at the
conclusion that disease may cause vital changes
in the dynamics of an ecosystem.

On the other side, the study of population
dynamics with harvesting is a subject of
mathematical bio-economics, and it is related to

the optimal management of renewable resources
[6]. Therefore the impact of harvesting on the
dynamical behavior of interacting species has
been considered by many researchers [7-9].
Most of these studies reached to the following
conclusions: harvesting may be used as a
biological control for the coexistence of the
species, but unregulated harvesting might lead to
extinction in one or more species. Recently,
Chattopadhyay et al [9], proposed and analyzed
a harvested prey-predator system with infection
on prey population. They assumed that, the
predator feeds on the susceptible prey
population according to Holling type-II
functional response (nonlinear type), while it
feeds on infected prey population according to
Lotka-Volterra type of functional response
(linear type). They observed that harvesting of
infected prey may be used as a biological
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control for the persistence in an infected prey-
predator system.

In this paper, the harvested prey-predator
model of Chattopadyay et al, is modified by
assuming that the predator species feeds on both
the susceptible prey species and the infected
prey species, according to the Holling type-II
functional response. The possibility of
occurrence of chaotic behavior is considered.
The impact of disease and harvesting on the
dynamical behavior (especially chaotic
dynamic) are studied analytically as well as
numerically. The persistence conditions of the
model are established.

2. The Mathematical Model:
Let    and tItS be the numbers of the

susceptible and infected prey population at time
t respectively. Let  tZ be the number of the

predator population at time t . The dynamics of
a harvested prey-predator model with infection
on prey population can be represented by the
following set of differential equations:
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Where the positive parameters
( ,,,, cKr gbh ,,,,,,  ) are defined as

following: The constants r and K are,
respectively, the intrinsic growth rate and
carrying capacity of the prey species in the
absence of predation and harvesting; The
constants ,,c and  represent the infection

rate, maximum attack rate, and the half
saturation coefficient, respectively; The
constants  and  denote to the death rates of
the infected prey and the predator, respectively;
The constant h represents the growth rate of
predator due to predation of infected prey and
hence it can be written as eh  with 10  e ;
The constant  represents the amount of

handled susceptible prey in unit time; The
constant b denotes to attack rate of infected
prey relative to susceptible prey; Finally, the
constant g represents the growth rate of the

predator due to predation of susceptible prey.
Moreover the non-negative constants

,, 21 EE and 3E are the harvesting efforts for the

susceptible prey, infected prey and predator,
respectively.
Obviously, the right hand sides of Eqs. (1a-1c)
are continuously differentiable functions on

  0,0,0,ZI,S, 33  ZISRR and hence

they are Lipschitzian functions. Therefore the
solution of system (1) exists and is unique.
Furthermore, the solution of system (1) with
non-negative initial conditions is bounded as
shown in the following theorem. It is easy to
verify that, the necessary condition of
coexistence of all species in system (1) is given
by

11 0 ErEr  (2)

Therefore, from now onward, we assume that
condition (2) is always holds.
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system (1) with positive initial conditions. Since
we have

.1 1SE
K

S
rS

dt

dS











Then according to the comparison theorem [10,
pp. 31], we obtain that

 
 

r

ErK
tSSup

t

1lim





, which gives

 
 

0;1 


 t
r

ErK
tS .

Let        tZtI
h

tS
g

tW 


(4)

Now according to condition (3), the time
derivation of Eq. (4) along the solution of
system (1) can be written as
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 1ErKg 
 . Again, by applying the

comparison theorem on the above differential
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inequality we obtain that:
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Hence all the solutions of system (1) that initiate
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R are confined in the region
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Thus these solutions are uniformly bounded, and
then the proof is complete. 
It is well known that, the ecological system is
said to be dissipative if the solution of the

system, which initiate in 3
R is uniformly

bounded as t . Therefore, system (1) is
dissipative.
3. Two-dimensional subsystems analysis:

There are two of two-species subsystems to
be considered. The first subsystem is obtained
by assuming the absence of predator species (i.e.

0Z ).
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However, the second subsystem is obtained by
assuming the absence of infected species (i.e.

0I )
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Now, the existence and stability analyses of all
possible equilibrium points of these subsystems
are carried out and the following results are
obtained:
Subsystem (5) has at most three non-negative
equilibrium points, namely  0,00 q ,
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1 r
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are always exist, while 2q exists in the interior

of 2
R of SI -plane under the following

condition
   21 ErErcK   (7)

In addition to above, 0q is unstable saddle

point; while 1q is locally asymptotically stable

provided that
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Note that, the satisfying of condition (8) means
that there is no positive equilibrium point in the

2. RInt of SI -plane or equivalent the infected

population will face extinction while the
susceptible population grows to its maximum
value. Finally, 2q is locally asymptotically

stable in 2. RInt of SI -plane whenever it exists.

Keeping the above in view, the global stability
of the positive equilibrium point 2q is

investigated in the following theorem.
Theorem (2): Suppose that the positive
equilibrium point 2q of the subsystem (5) exists,

then it is a globally asymptotically stable in the
2. RInt of SI -plane.

Proof: Assume that  
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ISH 1,  . Clearly,
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Hence  , IS does not change sign and is not

identically zero in the Int. 2
R of the SI -plane.

Then according to Bendixson-Dulic criterion
[11, pp. 26], there is no periodic solution in the

2. RInt of SI -plane.

Now, since all the solutions of the subsystem (5)
are uniformly bounded and 2q is a unique

positive equilibrium point in the 2. RInt of SI -

plane.. Hence, by using the Poincare-Bendixson
theorem [11], 2q is a globally asymptotically

stable. ■
Similarly, subsystem (6) has at most three non-
negative equilibrium points, namely  0,00 Q ,

11 qQ  and  ZSQ  ,2 where
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always exist, while 2Q exists in 2. RInt of SZ -

plane under the following conditions;
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Now, it is easy to verify that 0Q is unstable

saddle point; while 1Q is locally asymptotically

stable provided that
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Obviously, satisfying condition (10) means that
there is no positive equilibrium point in in

2. RInt of SZ -plane or equivalently the predator

population will face extinction while the
susceptible population grows to its maximum
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value. Finally, 2Q is locally asymptotically

stable in 2. RInt of SZ -plane

if and only if
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While, 2Q is unstable and there is a stable limit

cycle surrounding it provided that;
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Moreover, the global stability of the positive
equilibrium point 2Q is investigated in the

following theorem.
Theorem (3): Suppose that the positive
equilibrium point 2Q of the subsystem (6) exists

and is locally asymptotically stable in 2. RInt of

SZ -plane. Then it is a globally asymptotically

stable in the 2. RInt of SZ -plane

Proof: Similar to proof of theorem (2) with the

Dulac function  
SZ

ZSB
1

,  . ■

4. Stability analysis of system (1) with
Persistence:

In this section, the existence of the
equilibrium points, stability analysis and
persistence of system (1) are discussed. It is
observed that, the following equilibrium points
exists for the system (1)
1. The equilibrium point  0,0,00 P always

exists.

2. The axial equilibrium point   0,0,1
1 r

ErK
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


always exists.
3. The predator free equilibrium point

 0,,2 ISP  , where S and I are given in 2q ,

exists in the Int. 2
R of the SI -plane under

condition (7).
4. The disease free equilibrium point

 ZSP  ,0,3 , where S  and I  are given in 2Q ,

exists in 2. RInt of SZ -plane under conditions

(9a) and (9b).
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Now, the local dynamical behaviors of the
system (1), around each of these equilibrium
points, are carried out by computing the
Jacobian matrix   4,3,2,1,0; iPJ i and then

compute the egenvalues for the resulting matrix.
The following results are obtained:
The eigenvalues of  0PJ are 0101  Er ,

  0202  E , and   0303  E .

Hence, 0P is unstable saddle point.
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Clearly condition (14) means that, the planer
equilibrium points 2P and 3P do not exist.

However, 1P is unstable saddle point if and only

if at least one of the planer points 2P or 3P

exists.
The eigenvalues of  2PJ satisfy the following

relations;
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where 3,2,1for;2 jj represent the

egienvalues in the ZIS ,, -direction respect-

tively. Clearly, the real part of 21 and 22 have

the same sign as that of 2221   , moreover, 2P

is locally asymptotically in 3. RInt or unstable

saddle point, depending on whether the
eigenvalue 23 is negative or positive

respectively.
Similarly, it is easy to verify that, the
eigenvalues of  3PJ satisfy the following
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Clearly, the real part of 31 and 33 have the

same sign as that of 3331   , moreover, 3P is

locally asymptotically stable in 3. RInt or

unstable saddle point, depending on whether the
eigenvalue 32 that describes the dynamics in

the I -direction is negative or positive
respectively.
Finally, the Jacobian matrix of system (1) at the
positive equilibrium point 4P is given by
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simplifying the resulting terms, we obtain that:

 215321

1
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AAA 
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Obviously, in addition, to conditions (19) and
(21), 01 M and 02 M if and only if the

following condition holds:

)(

))((

*

2*

K
r

K
r

cZ

ccBZ
b








 (22)

Further, it is easy to verify that 0 , if in
addition to conditions (19), (21) and (22) the
following condition satisfies:

2

1

M

M
h  (23)

Therefore, according to the above analysis, the
following theorem can be easily proved.
Theorem (4): Assume that the positive

equilibrium point 4P exists in 3. RInt . Then 4P

is locally asymptotically stable if and only if the
conditions (19), (21), (22) and (23) are hold.
Proof. Follow directly by applying Routh-
Hurwitz criteria. ■
It is well known that, biologically the
persistence of the system means that the survival
of all population of the system in future time,
however mathematically it means that strictly
positive solution do not have omega limit set in
the boundary planes of non-negative cone.
Therefore, the persistence condition of system
(1) is established in the next theorem. This
theorem is applicable when there are no
nontrivial periodic solutions in the boundary
planes.
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Theorem (4): Assume that there are no
nontrivial periodic solutions in the boundary
planes of system (1). Then the necessary
conditions for the persistence of system (1) are

023  (24a)

032  (24b)

Where 23 and 32 are given in Eq. (15c) and

(16c) respectively. However, the sufficient
conditions for the persistence of the system (1)
are

023  (25a)

032  (25b)

Proof: The boundedness of the solution is
proved in theorem (1). Also 23 and 32 are the

eigenvalues, which gives the stability in the
positive direction orthogonal to the SI and SZ -
planes respectively. So, if there are nontrivial
periodic solutions in the SI -plane and if 023 

then there are orbits in the positive cone, which
approach 2P . Therefore condition (24a) is one

of the necessary conditions for the persistence.
Similarly, with respect to 3P , the other

necessary condition (24b) holds.
Now in order to prove that, conditions (25a) and
(25b) are the sufficient conditions for
persistence we have to consider system (1).

Let ),,(1 ZISg
st
ds  , ),,(2 ZISg

dt
dI  and

dy
dZ

),,(3 ZISg , then it is clear that the following

conditions are satisfied:

1. 0
2

1  




B

Zb

K
r

I

g
c

 ; for the regions

sufficiently close to the SI -plane. 01 

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

BZ

g  ;
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2 




B

Z
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g
c  ; 02  
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

BZ

g   
2
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B

hIbIg

S

g 






 ;

 
2

3

B

ShbSg

I

g 






 . Further
S

g



 3 and
I

g



 3 remains

positive for the regions sufficiently close to
planes SZ and IZ .
2. The prey grows in the absence of predation,
infection and harvesting that is

  00,0,0  rg , and
2

1

B

Z

K
r

S

g 
 



 then we

obtain   00,0,1  




K
r

S

g
S . However the predator

population dies in the absence of the preys (i.e.
    00,0,0 33  Eg  ).

3. There are no equilibrium points in the IZ -
plane.
4. In the absence of susceptible prey the predator
can’t survive on the infected prey. Therefore,
there exists two planer equilibrium points

 0,,2 ISP  and  ZSP  ,0,3 in the SI and

SZ -planes respectively.

Hence, according to Freedman and Waltman
theorem [12], the system (1) persists if the
conditions (25a) and (25b) are satisfied. ■
Theorem (5): Suppose that the conditions (25a)
and (25b) hold and there are a finite number of
limit cycles in the SZ -plane. Then, the
persistence conditions for system (1) take the
form

     0,0,

0

2  dtttg

T

 (26)

for each limit cycle     tt  , in the SZ -plane,

here T is the time period of the limit cycle.

Proof: Let there exists a limit cycle in the SZ -
plane, then the Jacobian matrix about the limit
cycle    ttS  ,   0tI ,    ttZ  can be

obtained as follows:

  00,,
223
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

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
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
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




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









Z

g

I

g

S

g

Z

g

I

g

S

g

ZgZZ

g

SSSg

ZISJ

Consider a solution of system (1) with positive
conditions  321 ,,  sufficiently close to the

limit cycle. Then from the jacobian matrix,
2

I

is a solution of the system

        10;,0,2  IIttg
dt

dI
 .

That is

      



















t

0

2321
2

,0,exp,,, dtttgt
I




Hence, by Taylor , s expansion theorem, we have
   

     2

t

0

2

31321

,0,exp

,0,,,,,


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Then I increases or decreases according as

    
T

dtttg

0

2 ,0,  , is positive or negative

respectively.
Since 3P and these limit cycles (in the SZ -

plane) are the only possible limits of trajectories
with positive initial conditions, then these
trajectories go away from the SI and SZ -planes
if the conditions (25a), (25b) and (26) are hold.
Hence the proof is complete. 

5. Numerical Analysis:
In this section, the global dynamics of the

solution of system (1) in the positive octant is
investigated numerically. One of the most
important systematic tools for investigation of
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the dynamics is constructing a bifurcation
diagram, as a function of changes in a control
parameter keeping the rest of parameters fixed.
System (1) is solved numerically using the
Predictor-Corrector method with sixth order
Runge-Kutta method, and then successive
maxima of the predator species Z is plotted as a
function of control parameter. Fig. 1(a). shows
the bifurcation diagram of system (1) as a
function of the intrinsic growth rate  r in the

range 90  r . Keeping other parameters fixed
as the following:

0.0,2,10,5,0.0

,4.3,4,0.0,5.0

50,,15,06.0,400

32

1







EhgE

Eb

cK







(27)

The figure shows the sensitivity of the solution
for the changing in the parameter r . It is
observed that, there is alternate between the
chaotic and periodic regions. Further, as r
increases the chaotic regions become narrower
and the system approaches to periodic behavior.
Typical attracting set of the system (1) is drawn
in Fig. 1(b) for 1r with the rest of parameters
given by Eq. (27). Fig. 1(b) a long with its time
series, as shown in Fig. 1(c), shows clearly the
chaotic dynamic of system (1).
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Figure 1.(a): Bifurcation diagram as a function of
r in the range 90  r , keeping other

parameters as in Eq. (27).(b)Chaotic attractor for
1r . (c) Time series for attractor in (a).

Another bifurcation diagram as a function of the
infection rate  c , varying in the range

07.002.0  c keeping the rest of parameters as
in Eq. (27) with 1r , is drawn in Fig. 2(a) and
it is blown up Fig. 2(b) in the range

03.002.0  c , these figures demonstrate the
rout to chaos through sequence of periodic
doubling. Moreover, it is observed that, as c

increases further 065.0c , the predator species
will face extinction and the solution will
approach to predator free equilibrium point in
the SI -plane.

Figure 2. (a): Bifurcation diagram as a function of
c in the range 07.002.0  c , keeping other

parameters as in Eq. (27) with 1r .(b) Blown up
of (a) in the range 03.002.0  c .

The bifurcation diagram in Fig. 3(a). is drawn
between the successive maxima of the predator
species and the natural death rate of infected
species   in the range 72   , keeping other

parameters fixed as in Eq. (27) with 1r . The
figure confirms our expectation regarding to the
sensitivity of the solution to the  . The chaotic
behavior of the solution is clearly visible in the
range 62   , in between there is number of
periodic regions, see for example 3.325.3   ,

5.345.3   , 6.447.4   .
In addition to the above it is observed that, as
the infection rate increases further 5.9 the
infected species I faces extinction and then the

D3 -system (1) will be reduced to D2 -
subsystem (6). Typical attracting set a long with
its time series are drawn in Figs. 3 (b-c) for
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6.9 keeping other parameters as in Eq. (27)
with 1r .
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Figure 3.(a): Bifurcation diagram as a function of
 in the range 72   , keeping other

parameters as in Eq.(27) with 1r .(b)Periodic

attractor in 2. RInt of SZ -plane. (c) Time series

of Figure 3(b).
Now, In Figs. 4(a-c), the global dynamical

behavior of the system (1) is discussed, through
plotting the bifurcation diagrams as a function of
the harvest rate  3,2,1iEi in the ranges

6.00 1  E , 5.60 2  E , and 25.00 3  E

respectively, keeping other parameters fixed as
in Eq. (27) with 1r . In all of these figures, it is
observed that, the system has different types of
the dynamical behavior including chaos. Clearly
as the parameters  3,2,1iEi increase, the

dynamic of the system (1) will return to periodic
state from the chaotic state and hence the
harvest rates have a stabilizing effect on the
system (1).

Figure 4: Bifurcation diagram as a function of
harvest rates for the parameters given in Eq. (27)
with 1r . (a) 6.00 1  E . (b) 5.60 2  E . (c)

25.00 3  E

In the following an investigation for the effect of
harvested rate 2E of infected prey species on the

dynamical behavior of system (1), the attracting
sets of system (1) are drawn in Figs. (5a-5e) for

,4.0,2.0,02 E 25.1,0.1 respectively keeping

other parameters fixed as in

02.02,,10

,5,4.3,4,4.0,5.0

,50,15,06.0,400,1
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Figure 5:.Attracting sets of system (1) for
parameters set as given in Eq. (28). (a) Chaotic
attractor for 0.02 E (b) Chaotic attractor for

2.02 E (c) Long periodic attractor for 4.02 E

(d) Long periodic attractor for (e) Period-1

attractor for 25.12 E in 3. RInt .

It is clear from Figures 5 (a-e) that, the system
(1) still chaotic in case of

02.0and,0.0,4.0 321  EEE , while as 2E

increases the solution of system (1) returns to
periodic attractor from the chaotic attractor as
shown in case of 4.01 E , 25.12 E , and

02.03 E .

6. Discussions and conclusions:
The mathematical model of chapter two is

modified so that the predator species feeds on
both the susceptible population and infected
population according to the Holling type-II
functional response. In order to investigate the
effects of the disease and the harvesting on the
dynamical behavior of the prey-predator model,
the stability analysis of the modified model is
carried out analytically as well as numerically.
The conditions of the survival of all the species
are established. It is observed that, on contrast to
the prey-predator model given in chapter two,
the predator species in the modified model can
survive on the susceptible population even in
case of the absence of the infected population.
The complexity of the system increases due to
adding the new non-linear term in the first and
third equations of the system (1). Further, we
can not found a Lyapunov function for the
system (1), instead of that the global stability of
the system (1) is studied numerically and the
following conclusions can be drawn:
1. For small value of the intrinsic growth rate

 5.8r , the system (1) has rich dynamics

including chaos and periodic as shown in
Figure 1 (a-c). However, as r increases
further the system return to stable dynamic.

2. For small value of infection rate  c , the

system (1) undergo periodic dynamic due to
the rarity of the infected prey and the
existence of the alternate food (susceptible)
for predator, while as c increase slightly the
system (1) enter to the chaotic regions
through sequence of periodic doubling as
shown in Figure 2(a-b). Moreover, increases
c further causes extinction in predator
species due to the effect of disease on the
susceptible prey species as well as predator
species, and then the solution approach to a
stable point in SI -plane.

3. The system (1) is very sensitive to the
natural death rate of the infected prey   as

shown in Fig. 3(a). It is observed that, for
62   the system (1) has a rich dynamics

including chaos, however as  increase
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further  5.9 , the system (1) return to

periodic dynamic in 2. RInt of SZ -plane

due to the extinction of infected prey species
as shown in Figure 3(b-c).

4. According to the Figures. 4(a-c) it is
observed that, in general the chaotic
behavior of the system (1) can be avoided,
and then the system return to periodic state
by increasing the harvesting rates iE

( 3,2,1i ) slightly. Moreover, it is observed

that increasing 3E further the system will be

facing extinction and the trajectory will

approaches to stable point in 2. RInt of SI -

plane, however increasing 2E further (i.e.

62 E ) the D3 -system (1) will reduces to

D2 -system (6) and then the trajectory
approaches to periodic dynamic in SZ -
plane.

5. From Figure 5(a-e), it is clearly that the
harvesting rates iE ( 3,2,1i ) work as a

control parameters on the system.
Especially, when we choose iE ( 3,1i )

small and varying 2E regularly.

Finally, according to the above observations to
control the chaotic behavior of the system (1)
and hence control the disease, the value of the
intrinsic growth rate of the susceptible prey
should be taken as 5.8r .
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