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Abstract.

In this paper, a harvested prey-predator model involving infectious disease in prey is
considered. The existence, uniqueness and boundedness of the solution are
discussed. The stability analysis of al possible equilibrium points are carried out.
The persistence conditions of the system are established. The behavior of the system
is smulated and bifurcation diagrams are obtained for different parameters. The
results show that the existence of disease and harvesting can give rise to multiple
attractors, including chaos, with variationsin critical parameters.
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1. Introduction:

It is well know that, in nature species does
not exist alone. In fact, any given habitat may
contain dozens or hundreds of species, some
times thousands. Consequently, the possibility
of spread of the disease in a community
becomes larger as the number of infected
species in the habitat increases. Accordingly, the
study of the effect of disease on the dynamical
behavior of interacting species has a vita
biological significance in ecology. In the last
two decades, numbers of prey-predator models
with infectious diseases have been investigated
[1-5]. All these models, reached at the
conclusion that disease may cause vital changes
in the dynamics of an ecosystem.

On the other side, the study of population
dynamics with harvesting is a subject of
mathematical bio-economics, and it is related to
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the optimal management of renewable resources
[6]. Therefore the impact of harvesting on the
dynamical behavior of interacting species has
been considered by many researchers [7-9].
Most of these studies reached to the following
conclusions: harvesting may be used as a
biological control for the coexistence of the
species, but unregulated harvesting might lead to
extinction in one or more species. Recently,
Chattopadhyay et a [9], proposed and analyzed
a harvested prey-predator system with infection
on prey population. They assumed that, the
predator feeds on the susceptible prey
population according to Holling type-ll
functional response (nonlinear type), while it
feeds on infected prey population according to
Lotka-Volterra type of functional response
(linear type). They observed that harvesting of
infected prey may be used as a biological
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control for the persistence in an infected prey-
predator system.

In this paper, the harvested prey-predator
model of Chattopadyay et al, is modified by
assuming that the predator species feeds on both
the susceptible prey species and the infected
prey species, according to the Holling type-ll
functional response. The possibility of
occurrence of chaotic behavior is considered.
The impact of disease and harvesting on the
dynamical  behavior (especially chaotic
dynamic) are studied analytically as well as
numerically. The persistence conditions of the
model are established.

2. The Mathematical Model:

Let S(t) andI(t) be the numbers of the
susceptible and infected prey population at time
t respectively. Let Z(t) be the number of the
predator population at time t. The dynamics of
a harvested prey-predator model with infection
on prey population can be represented by the
following set of differential equations:

aS_ o (1_S+! _C|_L_E1 (1a)

dt K y+S+bl

d g %2 g, (1b)

dt y+S+bl

@@ __ 9 + hiZ -E3Z (1o)
dt y+S+bl  y+S+bl

Where the positive parameters
(r,K,c,a, ¥, 2,0,h,u,b,g) are defined as

following: The constants r and K are
respectively, the intrinsic growth rate and
carrying capacity of the prey species in the
absence of predation and harvesting; The
constants c,«, and y represent the infection
rate, maximum attack rate, and the haf
saturation  coefficient, respectively; The
constants 1 and 6 denote to the death rates of
the infected prey and the predator, respectively;
The constant h represents the growth rate of
predator due to predation of infected prey and
hence it can be written as h=ea with 0<e<1;
The constant u represents the amount of
handled susceptible prey in unit time; The
constant b denotes to attack rate of infected
prey relative to susceptible prey; Finaly, the
constant g represents the growth rate of the
predator due to predation of susceptible prey.
Moreover  the  non-negative  constants
E,,E,, and E; are the harvesting efforts for the

131

Iragi Journal of Science, 2012, vol .53, No.1, pp 130-139

susceptible prey, infected prey and predator,
respectively.

Obvioudly, the right hand sides of Egs. (1a-1¢)
are continuously differentiable functions on
R®={S1,2)eR%$20,120,2>0/ and hence
they are Lipschitzian functions. Therefore the
solution of system (1) exists and is unique.
Furthermore, the solution of system (1) with
non-negative initial conditions is bounded as
shown in the following theorem. It is easy to
verify that, the necessary condition of
coexistence of al speciesin system (1) is given
by

r-g,>0er>E (2
Therefore, from now onward, we assume that
condition (2) is always holds.

Theorem (1): All the solutions of system (1),
which initiate in R® are uniformly bounded if
the following condition holds

g9

;(%+cj—£c>0 3

Proof: Let (S(t)1(t),z(t)) be any solution of the
system (1) with positive initial conditions. Since
we have

B2 es
K

—<r
dt

Then according to the comparison theorem [10,

pp. 31], we obtain that

lim Sup S(t) < @ : which gives
S(t)S@;Vt >0.

r
Let W(t):%s(t)+£l(t)+2(t) @

Now according to condition (3), the time

derivation of Eq. (4) along the solution of

system (1) can be written as

d_W < 9 5_@ S—
a u

So, if we assume L =min{E;, A +E,,0 + E;}, we

EI[A+E2]—Z[0+E3].

get

d—WSES—LP&EHZ},m

a u u o

W s w=W i wep

a u dt

where ,B:M. Again, by applying the
u

comparison theorem on the above differential
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inequality we obtain that:

Jim SJpW(t)S%:W(t)S%;VtZO

Hence all the solutions of system (1) that initiate
in R® are confined in the region

€+gforanyg>0}.

Bz{(S,I,Z)eRf ‘W <
Thus these solutions are uniformly bounded, and
then the proof is complete. [
It is well known that, the ecological system is
said to be dissipative if the solution of the
system, which initiate in R®is uniformly
bounded as t— o . Therefore, system (1) is
dissipative.
3. Two-dimensional subsystems analysis:
There are two of two-species subsystems to
be considered. The first subsystem is obtained
by assuming the absence of predator species (i.e.

Z=0).

9B _s[ra-8)-c -E,]=gy(5.1)

dt 5)
di (

[cS-2-E,]=g,(S.1)

However, the second subsystem is obtained by
assuming the absence of infected species (i.e.
| =0)

& - kb5 i
d—Z:z[—9+9—S—E] ©
t s 73

Now, the existence and stability analyses of all
possible equilibrium points of these subsystems
are carried out and the following results are
obtained:

Subsystem (5) has at most three non-negative

equilibrium  points, namely  q,=(00),
q, = (@ ,0) and q,=(S7)  where
S=X%, 7= CK(r";ji;rK(TEZ) Clearly, g, and q,

are aways exist, while g, exists in the interior
of R?
condition
cK(r—E)>r(1+E,) (7)

In addition to above, q, is unstable saddle
point; while g, is locally asymptotically stable
provided that
r(A+E,) )
or-g)

Note that, the satisfying of condition (8) means
that there is no positive equilibrium point in the

of 39 -plane under the following

K<
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Int.R? of 9 -plane or equivalent the infected
population will face extinction while the
susceptible population grows to its maximum
value. Finadly, q, is localy asymptoticaly
stablein Int.R? of S -plane whenever it exists.
Keeping the above in view, the global stability
of the positive equilibrium point g, is
investigated in the following theorem.

Theorem (2): Suppose that the positive
equilibrium point g, of the subsystem (5) exists,
then it is a globally asymptoticaly stable in the
Int.R? of S -plane.

Proof: Assume that H(S1)=2%.

H(S,1)>0 be C' functioninthe Int.R? of S -

plane. Now, since
A(S1)= a(Hgl)+ o(Hg,) _-r.
0S ol IK

Hence A(S,1) does not change sign and is not
identically zero in the Int. R? of the S -plane.
Then according to Bendixson-Dulic criterion
[11, pp. 26], there is no periodic solution in the
Int.R? of S -plane.

Now, since all the solutions of the subsystem (5)
are uniformly bounded and q, is a unique
positive equilibrium point in the Int.R? of S -
plane.. Hence, by using the Poincare-Bendixson
theorem [11], g, is a globally asymptotically

stable. [
Similarly, subsystem (6) has at most three non-
negative equilibrium points, namely Q, =(0,0),

Clearly,

Q=9 and Q,=(8,2) where
S = 7(9+E3) : 7' = VQ[K(T—E1)V/—2W(9+E3)] here
v Kuy

w=(g-0-E;). Note that, Q, and Q, are
always exist, while Q, existsin Int.R? of SZ -
plane under the following conditions;

g>0+E; (93)
K(r—Ep)y >ry(0+Es) (9b)
Now, it is easy to verify that Q, is unstable
saddle point; while Q, islocally asymptotically
stable provided that
ry(0+E;)
(r—Ey)w
Obviously, satisfying condition (10) means that
there is no positive equilibrium point in in
Int.R? of SZ -plane or equivalently the predator

population will face extinction while the
susceptible population grows to its maximum

K< (10)
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value. Finaly, Q, is locally asymptoticaly

stablein Int.R? of SZ -plane
if and only if

r(y +29)

(r-g)
While, Q, isunstable and there is a stable limit
cycle surrounding it provided that;
r(y +23)

(r-E)

Moreover, the global stability of the positive
equilibrium point Q, is investigated in the
following theorem.
Theorem (3): Suppose that the positive
equilibrium point Q, of the subsystem (6) exists
and is locally asymptotically stablein Int.R? of
< -plane. Then it is a globally asymptotically
stablein the Int.R? of SZ -plane

Proof: Similar to proof of theorem (2) with the

Dulac function B(S,2) 1

4. Stability analysis of system (1) with
Per sistence:

In this section, the existence of the
equilibrium  points, stability analysis and
persistence of system (1) are discussed. It is
observed that, the following equilibrium points
exists for the system (1)

1. The equilibrium point P, =(0,00) aways
exists.

2. The axial equilibrium point P, = (X-5)
aways exists.

3. The predator free equilibrium point
P, =(5,7,0), where S and T are given in g,
exists in the Int.R? of the S -plane under
condition (7).

4. The disease free equilibrium point
P, =(S,0,2'), where S' and I aregivenin Q,,
exists in Int.R? of SZ -plane under conditions

K< (11)

K > (12)

,o,o)

(9a) and (9b).

5. The positive equilibrium point
Po=(s17.Z7);  where 1" =Spl)
zZ = (csk‘l'EZ)(“'*“S*), while S* is a posi-tive

a

root of the second order equation:

r[l— S+1 J_C B

exists uniquely in Int.R? if and only if one of
the following sets of conditions holds:

*

uz
i;/+S+bI*i
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Max{S,§'}<S" and E<9+E3<g (139)
S<S <S and 9+E3<E (13Db)
S<S" and g<9+E3<E. (13¢c)

Now, the local dynamical behaviors of the
system (1), around each of these equilibrium
points, are carried out by computing the
Jacobian matrix J(P)i=01234 and then
compute the egenvalues for the resulting matrix.
The following results are obtained:

The eigenvalues of J(R)) are Ay =r-FE; >0,
dop=—(A+E,)<0, and Agp=-(0+E;)<O0.
Hence, P, isunstable saddle point.

The eigenvalues of J(PR) are given by

Iy =—(r+E)<0, 2, =%CB_j_E,, and
113 gK(r_El)

Ty K(r-E)
asymptotically stable
following condition holds:

=—0+ E;. Therefore, P, islocally

that the
r(2+E,) ry(0+Es)
e

Clearly condition (14) means that, the planer
equilibrium points P, and P, do not exist.

However, P, isunstable saddle point if and only
if at least one of the planer points P, or P

exists.
The eigenvalues of J(P,) satisfy the following

relations;

provided

K<min.{

121"1‘2,22 :—&(1+E2)<0 (15&)

S = [eK (r - Elgl; r(A+E,) L0 (15h)

Iy = Sl//+|(h—(9 b—_E3b_)—;/(0+E3) (150)
y+S+M)

where Ayjiforj=123 represent  the

egienvalues in the S 1,z -direction respect-
tively. Clearly, thereal part of 1,, and 1,, have
the same sign as that of 1,, + 1,,, moreover, P,

is locally asymptotically in Int.R® or unstable

saddle point, depending on whether the
eigenvalue 1, IS negative or positive
respectively.

Similarly, it is easy to verify that, the

eigenvalues of J(R,) satisfy the following

relations

131+/133:—§+ 'HZ§2<O (16a)
(r+s)
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Sz’
Ay g = ﬁ(‘ygj_s)g >0 (16b)
cS'—A—E,)(y+S)-az’
= (S (69

Clearly, the real part of A5 and A4 have the
same sign as that of A4, + A5, moreover, P; is

locally asymptotically stable in Int.R® or

unstabl e saddle point, depending on whether the
eigenvalue A5, that describes the dynamics in
the | -direction is negative or positive
respectively.

Finally, the Jacobian matrix of system (1) at the
positive equilibrium point P, isgiven by
I(P,)=ay ), ,, where

__#8 L al'Z
A3 =—"5 <0, ay =cl +T>0’

*

ubz"

uz
2 B2

B

-
K+

)

.
—_al

B 5 <0,

ag=0;with B=y+S +bl".

Then the characteristic equation of J(P,) is
given by

2B AN+ AL+ A =0

Where

A= _(311 + azz)

A = —(— 8118y, + 8383, + @8y + a13a31)
As =ay (a11a32 - a12a31) + &3 (a22a31 - a21a32)
Therefore, by substituting the values of a;

abl’z
ax»

>0, ay

v g+1” (bg—h)
BZ

7 h+S'(h-bg)
BZ

(17)

i, and
then simplify the terms we obtain:
_1B%S’ +Z*K(y S +a bl*)

A= KB2

Thus A >0 if and only if the following
condition holds

1B2S" > Z'K(uS +abl) (19)
Now, according to the signs of the elements of
the Jacobian matrix J(P,) together with the

following conditions:

(18)

0<1" <79 oro<s < rh (20)
_bg ba —
1<E<L(h_bg) (21)

uyg+1 (bg-h)
It is easy to verify that
A =S1Z [ra B2(y h+ S’ (h—bo)] ~[y g + 1" (bg ~ ]
+okB(uly h+S (h—bg)] ~aly g+ 1 (bg - N> 0
Moreover,
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A=A —Ag= _(an +ay )(anazz —ap a21)
+8g (8 ay3 +apay)
+ag (azz a23+ay3 a21)
Thus, by substituting the values of a; ,
simplifying the resulting terms, we obtain that:

A=AR—Ay= 15[M1_hM2]

KB
Where
My = ST'B[B%S - Z'K(uS +abl"))
@z (c+1)~bZ" (cu+12) + cB2(c + 1))

and then

+uygS Z (rB2-uKZ")
+7 goKS'1'Z" (BZ(C+%) - ybz*)
+bgKS'1"Z" (al” + uS)(c + L) B?
+bgkS1'Z" (@ - w)(a 1'b+ u S)
And
M, =KS'1'Z (al” + S ) (& +0)B?
+KSTZ (- )t b+ S )+ ey K b2
+ayKuS1'Z" +cuyKB2S'1'Z"
Obvioudly, in addition, to conditions (19) and
(21), M;>0 and M, >0 if and only if the

following condition holds:
o< (o z**+ cB?)(c+L)

Z (cu+4g)
Further, it is easy to verify that A>0, if in
addition to conditions (19), (21) and (22) the

following condition satisfies:
M 1

2
Therefore, according to the above analysis, the
following theorem can be easily proved.
Theorem (4): Assume that the positive
equilibrium point P, existsin Int.R®. Then P,
islocally asymptotically stable if and only if the
conditions (19), (21), (22) and (23) are hold.
Proof. Follow directly by applying Routh-
Hurwitz criteria. [
It is well known that, biologically the
persistence of the system means that the survival
of all population of the system in future time,
however mathematically it means that strictly
positive solution do not have omega limit set in
the boundary planes of non-negative cone.
Therefore, the persistence condition of system
(1) is established in the next theorem. This
theorem is applicable when there are no
nontrivial periodic solutions in the boundary
planes.

(22)

h< (23)
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Theorem (4): Assume that there are no
nontrivial periodic solutions in the boundary
planes of system (1). Then the necessary
conditions for the persistence of system (1) are
A3 =0 (24a)
Agp 20 (24b)
Where 1,; and 45, are given in Eg. (15c) and
(16c) respectively. However, the sufficient
conditions for the persistence of the system (1)
are

Ap3 >0 (25a)
Agp >0 (25b)
Proof: The boundedness of the solution is
proved in theorem (1). Also 4,; and 15, arethe
eigenvalues, which gives the stability in the
positive direction orthogonal tothe S and SZ -
planes respectively. So, if there are nontrivial
periodic solutionsinthe S -planeand if 1,5 <0
then there are orbits in the positive cone, which
approach P,. Therefore condition (24a) is one
of the necessary conditions for the persistence.
Similarly, with respect to P;, the other

necessary condition (24b) holds.
Now in order to prove that, conditions (25a) and
(25b) are the sufficient conditions for
persistence we have to consider system (1).

dz

Let $£=0:,(51.2), §=0.(51.2) and §
=05(S,1,2), then it is clear that the following
conditions are satisfied:

09 _ —r _ uzb . i
1. TR O <0; for the regions
.. _ oYy _ —u .
sufficiently close to the S -plane. 2+ ==£-<0;
M _~ aZon- 9 _-a 09; _ gy+bl)-hi .
s =CtGr> 00 =g <0 F=Tm—

893 _ —gSb+h(y+S a9 o9 .
2 —Z) Further == and =% remains

ol oS ol
positive for the regions sufficiently close to
planes &Z and 1Z.
2. The prey grows in the absence of predation,
infection and harvesting that is

_r z

0
g(000)=r>0, and - ris2

obtain 2(s,0,0)=- <0. However the predator
population dies in the absence of the preys (i.e.
95(0,00)=—(0 + E5) < 0).

3. There are no equilibrium points in the 1Z -
plane.

4. In the absence of susceptible prey the predator
can't survive on the infected prey. Therefore,
there exists two planer equilibrium points
P, =(5,7,0) and P,=(S,0,Z") in the S and
<7 -planes respectively.

then we
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Hence, according to Freedman and Waltman
theorem [12], the system (1) persists if the
conditions (254) and (25b) are satisfied. =
Theorem (5): Suppose that the conditions (25a)
and (25b) hold and there are a finite number of
limit cycles in the SZ-plane. Then, the
persistence conditions for system (1) take the
form

.ngz(a(t).O,!V(t))dt >0

for each limit cycle (#(t).i7(t)) in the Sz -plane,
here T isthetime period of the limit cycle.

Proof: Let there exists a limit cyclein the SZ -
plane, then the Jacobian matrix about the limit

(26)

cycle S{t)=4(t), 1(t)=0, Z({t)=w() can be
obtained as follows:

0,+S% ST ST
J(S1,2)= 0 g9, 0

2% 7% g,4z%

Consider a solution of system (1) with positive
conditions (ay,a,,a5) Sufficiently close to the

limit cycle. Then from the jacobian matrix, (;22

isasolution of the system

& [ob 07 0)=1.
That is

t
%(t’ a1,05,03)= eXPL[ 92(5(0,0, W(t))dt]
Hence, by Taylor ' s expansion theorem, we have
| (t,al,az,as)— | (t,al,O,a3)

t
= eXp[j 92 (J(t),oy ‘V(t)dt)] P
0
Then | increases or decreases according as
T
J'gz(g?(t),o,ﬁ(t))dt , is positive or negative
0

respectively.

Since P; and these limit cycles (in the SZ-
plane) are the only possible limits of trajectories
with positive initial conditions, then these
trgjectories go away fromthe S and SZ -planes
if the conditions (25a), (25b) and (26) are hold.
Hence the proof is complete. [

5. Numerical Analysis:

In this section, the globa dynamics of the
solution of system (1) in the positive octant is
investigated numerically. One of the most
important systematic tools for investigation of
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the dynamics is constructing a bifurcation
diagram, as a function of changes in a control
parameter keeping the rest of parameters fixed.
System (1) is solved numerically using the
Predictor-Corrector method with sixth order
Runge-Kutta method, and then successive
maxima of the predator species Z isplotted asa
function of control parameter. Fig. 1(a). shows
the bifurcation diagram of system (1) as a
function of the intrinsic growth rate (r) in the

range 0<r <9. Keeping other parameters fixed
asthe following:

K =400,c=0.06, p =15,y =50,

b=05E,; =00, =4,1=34,
E,=00,0=59g=10,h=2E; =0.0
The figure shows the sensitivity of the solution
for the changing in the parameter r. It is
observed that, there is aternate between the
chaotic and periodic regions. Further, as r
increases the chaotic regions become narrower
and the system approaches to periodic behavior.
Typical attracting set of the system (1) is drawn
in Fig. 1(b) for r =1 with the rest of parameters
given by Eqg. (27). Fig. 1(b) along with its time
series, as shown in Fig. 1(c), shows clearly the
chaotic dynamic of system (1).

(27)

12

16 18

Figure 1.(a): Bifurcation diagram as a function of
rintherange 0<r <9, keeping other
parametersasin Eqg. (27).(b)Chactic attractor for
r=1.(c) Timeseriesfor attractor in (a).
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Another bifurcation diagram as afunction of the
infection rate (c), varying in the range
0.02< ¢ <0.07 keeping the rest of parameters as
in Eq. (27) with r =1, isdrawn in Fig. 2(a) and
it is blown up Fig. 2(b) in the range
0.02<¢<0.03, these figures demonstrate the
rout to chaos through sequence of periodic
doubling. Moreover, it is observed that, as c
increases further c¢> 0.065, the predator species
will face extinction and the solution will
approach to predator free equilibrium point in
the S -plane.

100

(&

20

&0

=
R

5
=

20

0.03

0
002 0.022 0.024 0026

Figure 2. (a): Bifurcation diagram asa function of
cintherange 0.02< ¢ <0.07, keeping other
parametersasin Eq. (27) with r =1.(b) Blown up
of (a) intherange 0.02<c<0.03.

0028

The bifurcation diagram in Fig. 3(a). is drawn
between the successive maxima of the predator
species and the natural death rate of infected
species (1) intherange 2< A <7, keeping other
parameters fixed as in Eq. (27) with r =1. The
figure confirms our expectation regarding to the
sensitivity of the solution to the 1 . The chaotic
behavior of the solution is clearly visible in the
range 2< 1 <6, in between there is number of
periodic regions, see for example 3.25< A < 3.3,
345<21<35,447<1<46.

In addition to the above it is observed that, as
the infection rate increases further 1 >9.5 the
infected species | faces extinction and then the
3D-system (1) will be reduced to 2D -
subsystem (6). Typical attracting set along with
its time series are drawn in Figs. 3 (b-c) for
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A =9.6 keeping other parameters as in Eq. (27)
with r =1.

100

@

20

&0

Max. (2)

40

20

Predator

400
300
04 200

Susceptible prey

02

Infected prey 100

0

(©)

350 Susceptible
prey

—

Now
a o
S o

Population
N
=1
o

Predator

.
a
=}

=
Q
=}

o
=}

o

N

2.05
Time

21
x10"

Figure 3.(a): Bifurcation diagram as a function of
A intherange 2< 1 <7, keeping other
parametersasin Eq.(27) with r =1.(b)Periodic
attractor in Int. Rf of & -plane. (c) Time series
of Figure 3(b).

Now, In Figs. 4(a-c), the global dynamical
behavior of the system (1) is discussed, through
plotting the bifurcation diagrams as afunction of
the harvest rate E(i=123) in the ranges
0<E <06, 0<E, <65, and 0<E;<025
respectively, keeping other parameters fixed as
in Eq. (27) with r =1. In all of thesefigures, itis
observed that, the system has different types of
the dynamical behavior including chaos. Clearly
as the parameters E;(i=123) increase, the
dynamic of the system (1) will return to periodic
state from the chaotic state and hence the
harvest rates have a stabilizing effect on the
system (1).
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04 0.5 0.6

Mas. ()

Figure 4: Bifurcation diagram asa function of
harvest ratesfor the parametersgiven in Eq. (27)
with r=1.(a) 0<E; <0.6.(b) 0<E, <6.5.(c)

0<E; <025
In the following an investigation for the effect of
harvested rate E, of infected prey specieson the

dynamical behavior of system (1), the attracting
sets of system (1) are drawn in Figs. (5a-5€) for
E,=0,0204, 10,125 respectively keeping

other parameters fixed asin
r =1, K =400,c=0.06, u =15,y =50,

b=05E; =04,0a=4,1=34,0=5,
g=10,h=2,E; =0.02

(28)
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It is clear from Figures 5 (a-€) that, the system
D till chaotic in case of
E,=04,E,=00,and E; =0.02, while as E,
increases the solution of system (1) returns to
periodic attractor from the chaotic attractor as
shown in case of E =04, E,=125, and

E, =0.02.

6. Discussions and conclusions:

The mathematical model of chapter two is
modified so that the predator species feeds on
both the susceptible population and infected
population according to the Holling type-ll
functional response. In order to investigate the
effects of the disease and the harvesting on the
dynamical behavior of the prey-predator model,
the stability analysis of the modified model is
carried out analytically as well as numerically.
The conditions of the survival of al the species
are established. It is observed that, on contrast to
the prey-predator model given in chapter two,
the predator species in the modified model can
survive on the susceptible population even in
case of the absence of the infected population.
The complexity of the system increases due to
adding the new non-linear term in the first and
third equations of the system (1). Further, we
can not found a Lyapunov function for the
system (1), instead of that the global stability of
the system (1) is studied numerically and the
following conclusions can be drawn:

1. For small value of the intrinsic growth rate
(r <85), the system (1) has rich dynamics
including chaos and periodic as shown in
Figure 1 (ac). However, as r increases
further the system return to stable dynamic.

2. For small value of infection rate (c), the
system (1) undergo periodic dynamic due to
the rarity of the infected prey and the
existence of the alternate food (susceptible)
for predator, while as ¢ increase slightly the
system (1) enter to the chaotic regions
through sequence of periodic doubling as
shown in Figure 2(a-b). Moreover, increases
¢ further causes extinction in predator
species due to the effect of disease on the
susceptible prey species as well as predator
species, and then the solution approach to a
stable pointin 9 -plane.

Figure5:.Attracting sets of system (1) for | "
parameters set as given in Eq. (28). (a) Chaotic 3. The system (1) is very sensitive to the
attractor for E, =0.0 (b) Chaotic attractor for natural death rate of the infected prey (1) as

E, =0.2 (c) Long periodic attractor for E, =0.4 shown in Fig. 3(a). It is observed that, for

(d) Long periodic attractor for (€) Period-1 2<2<6 the system (1) has arich dynamics
attractor for E, =1.25 in Int R3 including chaos, however as A increase
=1 RS,
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further (1>95), the system (1) return to
periodic dynamic in Int.R? of SZ-plane
due to the extinction of infected prey species
as shown in Figure 3(b-c).

According to the Figures. 4(ac) it is
observed that, in general the chaotic
behavior of the system (1) can be avoided,
and then the system return to periodic state
by increasing the harvesting rates FE;
(i=12,3) dightly. Moreover, it is observed
that increasing E; further the system will be
facing extinction and the trgjectory will
approaches to stable point in Int.R? of S -
plane, however increasing E, further (i.e.
E, >6) the 3D-system (1) will reduces to

2D -system (6) and then the trajectory
approaches to periodic dynamic in <Z-
plane.

From Figure 5(a-€), it is clearly that the
harvesting rates E, (i=12,3) work as a
control  parameters on the system.
Especialy, when we choose E; (i=13)
small and varying E, regularly.

Finally, according to the above observations to
control the chaotic behavior of the system (1)
and hence control the disease, the value of the
intrinsic growth rate of the susceptible prey
should betakenas r >85.
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