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Abstract  

     This study investigates the impact of spatial resolution enhancement on supervised 

classification accuracy using Landsat 9 satellite imagery, achieved through pan-

sharpening techniques leveraging Sentinel-2 data. Various methods were employed to 

synthesize a panchromatic (PAN) band from Sentinel-2 data, including dimension 

reduction algorithms and weighted averages based on correlation coefficients and 

standard deviation. Three pan-sharpening algorithms (Gram-Schmidt, Principal 

Components Analysis, Nearest Neighbour Diffusion) were employed, and their efficacy 

was assessed using seven fidelity criteria. Classification tasks were performed utilizing 

Support Vector Machine and Maximum Likelihood algorithms. Results reveal that 

specific synthetic PAN bands, notably PAN10, PAN2, and PAN9, demonstrate superior 

performance in image fusion and classification tasks. This study underscores the 

significance of selecting fusion algorithms and panchromatic bands tailored to 

applications, with Support Vector Machine classifiers showcasing resilience across 

diverse fusion methods. Even though the PAN8 band has exhibited lower overall 

accuracy, it is helpful in effectively delineating some land cover classes. 
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     الخلاصة   
لصور         للإشراف  الخاضعة  التصنيف  دقة  على  المكانية  الاستبانة  تحسين  تأثير  في  الدراسة  هذه  تبحث 

 Sentinel، والتي تم تحقيقها من خلال تقنيات الشحذ العام بالاستفادة من بيانات  9القمر الصناعي لاندسات  
2 ( بانكروماتي  نطاق  لتجميع  مختلفة  طرق  استخدام  تم   .PAN  بيانات من   )Sentinel 2  ذلك في  بما   ،

خوارزميات تقليل الأبعاد والمتوسطات المرجحة بناء على معاملات الارتباط والانحراف المعياري. تم استخدام  
للشحذ   خوارزميات  تقييم    الشامل ثلاث  وتم  جار(،  أقرب  انتشار  الرئيسية،  المكونات  تحليل  شميدت،  )غرام 

معايير للدقة. تم تنفيذ مهام التصنيف باستخدام خوارزميات آلة متجه الدعم وخوارزمية    سبعة فعاليتها باستخدام  
نطاقات   أن  النتائج  تكشف  الأقصى.  سيما    PANالاحتمال  ولا  المحددة،    PAN2و  PAN10الاصطناعية 

اختيار  PAN9و أهمية  على  الدراسة  تؤكد هذه  والتصنيف.  الصور  دمج  مهام  من  كل  في  فائقا  أداء  تظهر   ،
خوارزميات الاندماج والنطاقات البانكروماتية المصممة خصيصا لتطبيقات معينة، مع مصنفات الة متجه الدعم  

قد أظهر دقة إجمالية أقل    PAN8على الرغم من أن نطاق    التي تظهر المرونة عبر طرق الاندماج المتنوعة. 
 ولكنه مفيد في تحديد بعض فئات الغطاء الأرضي بشكل فعال.

 
1. Introduction 

     Land use and land cover (LULC) information is paramount in various geospatial 

applications, such as regional administration, urban planning, and environmental 

management [1, 2]. The LULC is critical for comprehending the intricate interplay between 

humans and their environment. Land Cover encompasses the physical attributes of the Earth's 

surface, including vegetation, soil, and water, while Land Use delineates human activities and 

purposes for utilizing the LC [3]. Developing accurate maps of LULC classification is vital 

for collecting valuable information about these applications [4-6].  

 

     In this era, remote sensing data has become one of the most important sources of 

information about the earth’s cover by various satellite platforms due to its availability and 

continuity [7].  

 

     The Landsat program, known for its long-standing history, has significantly impacted 

Earth observation with its continuous imaging program from space. Landsat-9, equipped with 

(OLI-2), captures a high dynamic range (14-bit) and the Thermal Infrared Sensor (TIRS). 

This enhanced radiometric resolution of OLI-2 provides higher sensitivity, opening new 

frontiers in the field and facilitating global mapping [8-11]. 

 

     The Sentinel-2 mission aimed to provide high spatial resolution wide-swath satellite data 

for diverse applications and complement other missions. It shares similar wavelengths and 

the same geographic coordinate system with Landsat data, making it an excellent opportunity 

to combine these two types of satellite data [12, 13]. All Landsat Sentinel-2 data are available 

to users under the free and open data policy [14, 15]; one of the drawbacks of the sentinel-2 

satellites is that they lack the panchromatic (Pan) band [16]. 

     The panchromatic (Pan) band is usually recorded with the maximum spatial resolution 

allowed by the satellite sensor and the transmission's ability of the data link, so it provides a 

detailed geometric feature. On the other side, the multispectral (MS) bands are collected with 
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a lower spatial resolution (half or quarter of resolution) due to the constraints of signal-to-

noise ratio and the transmission ability of data link, with higher spectral resolution [17]. 

     Increasing both spectral and spatial resolutions is fundamental for refining mapping 

accuracy. However, fusing remote sensing data collected using different sensors is 

challenging [18]. Several requirements must be achieved, and the fusing should be carefully 

performed, pixel size must be unified, and images should be co-registered [19, 20]. 

Integrating multi-sensor images by fusion can provide higher-quality images than those from 

one platform [21, 22]. In contrast to the challenge of fusing data from multiple sensors, pan-

sharpening with a single sensor does not require image-to-image registration [23]. The MS 

bands fused with PAN bands to enhance the spatial resolution using the pan-sharpening 

process, which is essential in many mapping and remote sensing applications [17, 24, 25].  

     The component substitution (CS) algorithms family comprises many widespread pan-

sharpening methods [26], including the Gram-Schmidt method (GS) and the principle 

component method (PC) [27]. One of the most widely used algorithms is the Gram-Schmidt 

method. It performs better than most pan-sharpen methods in enhancing image sharpness and 

reducing color distortion [22, 28]. The principal component analysis PC rotates multispectral 

data into principal components, replacing the first PC with the PAN band to enhance image 

sharpness and spectral information in subsequent PCs. It executes a multidimensional 

coordinate system rotation to convert the original inter-correlated bands into a new set of 

uncorrelated PCs [29, 30].  The nearest-neighbor diffusion (NN) is a multi-resolution analysis 

(MRA) method that employs a weighted linear combination of various bands in the 

neighboring pixels.to enhance spatial details while maintaining spectral quality [31, 32]. 

    In this work, three data-dimensional reduction methods were employed to extract 

synthesized panchromatic (PAN) bands from the four (10 m) Sentinel-2 bands, along with 

selecting individual bands, the average of the four bands, and the weighted average of the 

four bands depending on the correlation coefficient (r) between Landsat-9 bands and the four 

Sentinel-2 bands and the standard deviation (s) values of the Sentinel 2 bands. 

     Dimensionality reduction converts the data into a lower-dimensional space. It is a helpful 

way to remove unnecessary variation in the data and extract lower dimensions [33], such as 

the analysis of the independent components (ICA), the non-negative matrix factorization 

(NMF), and Gram -Schmidt transformation (GST) [34-36]. Several metrics were used to 

assess the fused image quality, including root mean square error (RMSE) [37, 38], spectral 

angle mapper (SAM)[39], relative global-dimensional synthesis error (ERGAS) [40] Peak 

signal-to-noise ratio (PSNR)[41-43], correlation coefficient (r), structural similarity index 

(SSIM) [44],  and universal image quality index (UIQI) [45]. These indicators have been 

widely used to evaluate the performance of the data fusion algorithms. 

     Satellite image classification is one of the main tasks of remote sensing applications. 

Remote sensing image classification accuracy is enhanced when several data sources are used 

in the processing [46]. Indeed, due to the similarity in spectral characteristics among different 

surface types [47], the utilization of powerful classification algorithms becomes essential. 

Support vector machine (SVM) is a popular nonparametric supervised machine learning 

algorithm for digital image classification because it can deal with nonlinear classification 

situations using a small number of samples [48, 49]. The SVM approach is a statistical 
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learning theory. This technique determines the location of decision boundaries, which creates 

the best separation of the image classes [50, 51]. Compared with many existing classifiers, 

the SVM classifier can attain competitive results using small training samples [52, 53]. This 

characteristic is essential for precision classifications, as acquiring ground truth data proves 

costly, daunting, and time-consuming, necessitating field surveys and laboratory experiments 

[53]. The maximum likelihood (ML) classifier, one of the most common classifiers used in 

remote sensing applications, hinges on assumptions of normal distribution, equal covariance, 

and sufficient training samples [54, 55]. 

    Bouslihim and his coauthors in 2022 [56] compare the performance of pan-sharpened 

Landsat 9 and Sentinel-2 imagery for land-use classification using machine-learning 

classifiers. The researchers Mansourmoghaddam, Mohammad, et al. 2022 [57] evaluate the 

Sentinel-2, Landsat-8, and their fused images' efficacy in enhancing the LC map accuracy for 

Yazd, Iran, by using the Gram-Schmidt technique, a primarily spatial fusion of Landsat-8 

images with Sentinel-2 images. Similarly, Sigurdsson, Jakob, et al. 2022 [58] adopted a 

similar approach by fusing data from Copernicus Sentinel-2 (S2) and Landsat 8 (L8) 

satellites. The researchers Ali, Zahraa R. and Muhaimeed, Ahmad S. 2016 [6] used Sentinel-2 

data to classify land cover in Baghdad City, Iraq. They used a support vector machine (SVM) 

classifier to classify the data into seven land cover classes: water, built-up, vegetation, bare 

land, soil, salt-affected land, and rocks. Thanh Noi, Phan, and Martin Kappas 2018 [59] 

compared the performance of three machine learning classifiers - random forest (RF), k-

nearest neighbors (kNN), and support vector machines (SVM) for land use/cover 

classification using Sentinel-2 image data. Topaloğlu, R.H. et al.,2016 [60] classified the land 

cover of Istanbul city using both maximum likelihood and support vector machine classifiers 

for two datasets after making geometric corrections to them. The first is a dataset from the 

Landsat 8 satellite with a resolution of 30 m, and the second is collected from similar bands 

of the Sentinel-2 satellite after resampling it from 10 and 20 m to 30 m. The work conducted 

by researchers [61-64] used the computation of overall accuracy based on the confusion 

matrix to evaluate the classification results.  

     Rimal, Bhagawat Rijal, Sushila Kunwar, and Ripu 2020 [65] discovered that the Support 

Vector Machine (SVM) classifier outperformed the Machine Learning classifier regarding 

user and producer accuracies. Additionally, SVM demonstrated effectiveness in land cover 

classification. 

 

     Abdulwahab et al. (2023)[66] used three pan sharpening techniques to enhance the spatial 

resolution of 175 hyperon bands from 30 to 15m using LS9 PAN. They used Principal 

Components Analysis (PC), the Gram-Schmidt algorithm (GS), and Nearest Neighbour 

Diffusion (NN). They reduce the dimensionality of the hyperspectral data using the MNF 

transformation. They found that PC and GS performed similarly in preserving the spectrum 

and enhancing the details of the fused images, as judged by visual inspection. However, NN 

showed less improvement than the other two techniques. 

 

     This study aimed to identify the most effective methods for synthesizing PAN bands with 

a 10m spatial resolution from Sentinel-2's four 10m bands. When used to fuse Landsat 9 data, 

how these extracted bands affect the overall accuracy of land cover classification compared 
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to using the original Landsat 9 bands directly was investigated. If land cover classification 

based on these fused bands delivers higher accuracy than the original bands, it would 

demonstrate the study's success. Additionally, it aimed to provide recommendations for 

combining specific fusion methods and classification algorithms based on the achieved 

accuracy. 

 

2. Data and methods  

2.1 Data sources  

     The satellite imagery from Landsat-9 OLI/TIRS C2 L2 and Sentinel-2A MSI were used. 

The Landsat 9 OLI C2 L2 collection provides global surface reflectance products [67]. The 

satellite scene data of the study site were extracted from the original scene identified by 

LANDSAT_PRODUCT_ID= "LC09_L2SP_168037_20231018_20231019_02_T1". The 

scene center time was recorded at "07:33:52.2487420Z". 

    The Landsat-9 satellite has two instruments: the Operational Land Imager 2 (OLI-2) and 

the Thermal Infrared Sensor (TIRS-2). The Landsat-9 consists of 11 channels (dynamic range 

14-bit), the first seven channels being multispectral (visible, near-infrared, shortwave 

infrared) recorded at 30 m spatial resolution. The eighth band is panchromatic, which has a 

resolution of 15 m. TIRS-2 consists of two thermal infrared channels with a spatial resolution 

of 100 m 

 [8-11, 68]. 

    The panchromatic band was downloaded from LANDSAT_PRODUCT_ID= 

"LC09_L1TP_168037_202311018_20231019_02_T1" as it was not included in the Level 2 

bundles. All the data (8 bands) were collected from the OLI-2 sensor. Band 9 (Cirrus) and 

TIRS-2 were neglected in this work. Landsat data was downloaded from 

https://earthexplorer.usgs.gov/. 

    Sentinel 2A data was acquired from the European Union's Earth observation program 

through https://dataspace.copernicus.eu/. Sentinel-2A was equipped with the Multispectral 

Imager (MSI), which consists of 13 channels with various spatial resolutions (10, 20, and 60 

m) and wavelengths covering the visible, near-infrared, and shortwave infrared spectrums. 

However, Sentinel-2 does not have a conventional panchromatic band [15, 69]. Level-2A 

(surface reflectance, ortho-images in UTM/WGS84 projection) are available to users under a 

free and open data policy [14, 70]. The study region was extracted from the original scene 

with the ID: S2A_MSIL2A_20231018T074921_N0509_R135_T38SMB_20231018T113602. 

    The scene center time was recorded at 07:49:21.024Z. Only the four bands with 10m 

spatial resolution were used in this work.  

    Both satellite data are freely available worldwide and share the same geographic 

coordinate system, making it an excellent opportunity to combine these two types of satellite 

sensor data [12]. 

 

Both datasets were undergone geometric correction, ensuring accurate spatial representation. 

The atmospheric correction was also applied to convert the sensor radiance to surface 

reflectance. All these corrections, performed by the data providers, enhance the reliability of 

the datasets. However, it is essential to note that the panchromatic band (Band 8) of Landsat 

9 is an exception and has not been atmospherically corrected by the data provider. 
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Table 1:The used satellite scenes 

Satellite Scene 
Spatial 

Resolutions 
Date Used bands 

Scene Dimensions 

(Pixel) 

Landsat 9_OLI 30&15 m 18 October 2023 Bands 1-7&8 (1000 × 1000) 

Sentinel 2b 10 m 18 October 2023 Bands 2-4 & 8 

 

(3000x3000) 

 

 

2.2 Study area 

     The study area is located north of Baghdad City. It extends over parts of three 

governorates, covering parts of Baghdad, Salah al-Din, and Diyala governorates, and situated 

between the coordinates 42° 40’ 15.60" and 45° 40’ 15.60" longitude and 37° 12’ 35.28" and 

37° 30’ 35.28" latitude, spanning 900 km². This predominantly agricultural area encompasses 

several small towns and cities, including Al-Mushahada, Al-Tarmiyah, Al-Abayji, and Al-

Dujail on the right bank of the Tigris River. At the same time, the left bank features 

Mansouriya, Al-Saadiyah, Al-Sindiyah, Habhab, Al-Khalis, and Al-Ghalibiya. It poses 

residences scattered among orchards and farmlands. The river, coursing from north to south, 

is bordered by palm groves of varying densities and heights, interspersed with citrus trees. 

Many fish breeding ponds, varying in size, shape, and depth, are especially noticeable on the 

river’s right side, some of which are dry. Vineyards and fruit plantations distinguish the 

western and northwestern regions. The area showcases three types of farmlands: dry soil 

unprepared for agriculture, plowed land ready for winter cultivation, and lands covered with 

natural vegetation, which comprise a significant portion of the study area. The study area was 

derived from images of the Landsat-9 and Sentinel-2A satellites taken on 18 October 2023. 

This period marks a transitional phase between the end of the summer and the beginning of 

winter agricultural seasons; hence, many lands are either at the start of their preparation for 

winter season agriculture or at the termination of the summer season, with some lands 

cultivated with various types of fodder crops. The area also houses several greenhouses, but 

they were disregarded as they constitute less than 1% of the study area.  
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Figure 1 : a. Iraq’s map with study region scene, and b. The natural color of Landsat-9 OLI 

for the selected study area from the original scene with path 167/row 038. 

2.3. Methods   

     This study applied a pan-sharpening process to Landsat-9 satellite data to improve its 

spatial resolution to 10 m, based on four bands from the Sentinel-2A satellite (2, 3, 4, and 8), 

with a spatial resolution of 10 m. Since Sentinel-2A lacks a Panchromatic (Pan) band, several 

methods were used to simulate a Panchromatic (Pan) band, as listed in Table 2. These 

methods included using (1) applying dimension reduction algorithms, (2) using each of the 

four bands individually as PAN bands, (3) averaging the four bands eq. 1, and (4) calculating 

a weighted average based on the correlation coefficients (r)s and the standard deviation (s) of 

the four Sentinel 2 bands eqs. (2 [71], 3 [72],4, and 5). 

 

PAN9 =  
(𝑆𝐵2+𝑆𝐵3+𝑆𝐵4+𝑆𝐵8)

4
                (1) 

𝑟 =
∑ (𝑥𝑖−�̄�)(𝑦𝑖−�̄�

𝑛

𝑖=1
)

√∑ (𝑥𝑖−�̄�)2𝑛

𝑖=1
∑ (𝑦𝑖−�̄�)2𝑛

𝑖=1

                                   (2)    

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

1                                                 (3)                               

𝑤𝑛 =
∑ 𝑟𝑢

1

𝑢
× 𝜎                           (4)                                                      

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐵𝑎𝑛𝑑 𝑊𝑒𝑖𝑔ℎ𝑡 =
𝑤𝑛

∑ 𝑤𝑛
𝑛
1

   (5) 

𝑤𝑛 is the absolute weight for each of the four bands, (r) is the correlation coefficient between each 

band of the four Sentinel 2 bands (SB) and Landsat 9 bands (LSB), s is the standard deviation of each 

of the four Sentinel 2 bands (SB), u: is the number of Landsat bands, and n: is the number of Sentinel 

2 bands.  

Various software and programs were utilized in this study, including SNAP 6.00, 

ENVI 5.6, and Python 3.11. The overall processes are demonstrated by the flowchart Fig.2. 
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Figure 2 :Work procedures workflow 

 

Table 2 : The synthesized Panchromatic (PAN) 
PAN 

No. 
method References  

PAN 1 Landsat 9 PAN band (15 m) original landsat9 PAN band   

PAN 2 1st Independent component analysis (ICA) novelly synthesis [73]  

PAN 3 Non-negative matrix factorization (NMF) novelly synthesis [34, 35]  

PAN 4 Gram-Schmidt transformation (GST) novelly synthesis [36, 74]  

PAN 5 B2 of Sent 2 (blue) selected 

[15] 

 

PAN 6 B3 of Sent 2 (green) selected  

PAN 7 B4 of Sent 2 (red) selected  

PAN 8 B8 of Sent 2 (NIR) selected  

PAN 9 Average of (B2, B3, B4, and B8) synthesis [75]  

PAN 10 
Weight average of (B2, B3, B4, and B8) based on (r)’s &s of sen2 

bands novelty synthesis 
Equation 2&3  

       

      Three pan-sharpening algorithms were utilized: Gram-Schmidt (GS), Principal 

Components Analysis (PC), and the Nearest Neighbor Diffusion (NN) method. To evaluate 

the sharpening process, the original Landsat-9 image was resampled from 30 to 10 m due to 

the absence of a reference image. The characteristics of the sharpened images were then 

measured using seven fidelity criteria listed in Table 3. 
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Table 3: Fused images evaluation criteria 

Criteria Equations Ref. 

Root Mean Square Error (RMSE) 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

− 𝑦�̂�)
2 [37] 

Error Relative Globale 

Adimensionnelle de Synthèse 

(ERGAS) 
𝐸𝑅𝐺𝐴𝑆 =

100

𝑟
× √

1

𝑛
∑ (

𝑅𝑀𝑆𝐸𝑖

�̂�𝑖

)
2𝑛

𝑖=1

 [76] 

Peak signal-to-noise ratio (PSNR) 𝑃𝑆𝑁𝑅 = 20 × log (
𝑀𝐴𝑋

√𝑀𝑆𝐸
)

10

 [41, 42] 

Correlation coefficient (r) 𝑒𝑞. (2) [71] 

Structural Similarity Index (SSIM) 

 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

[44]. 

Spectral Angle Mapper (SAM) 𝑆𝐴𝑀 = arccos (
⟨𝑉, 𝑉′⟩

∥ 𝑉 ∥⋅∥ 𝑉′ ∥
) [77] 

Universal image Quality Index 

(UIQI) 
𝑄 =

4𝜎𝑥𝑦𝑥mean𝑦mean

(𝜎𝑥
2 + 𝜎𝑦

2)(𝑥mean
2 + 𝑦mean

2 )
⋅

2𝜎𝑥𝑦

𝜎𝑥
2 + 𝜎𝑦

2
⋅

2𝑥mean𝑦mean

𝑥mean
2 + 𝑦mean

2
 [45, 78] 

     

     A classification process was conducted on the resulting images using supervised 

classification algorithms, the support vector machine (SVM) with three kernels: linear (LIN), 

radial basis functions (RBF), polynomial (POL), and maximum likelihood (ML). This 

involved identifying classes, selecting training sets through a field survey, studying the 

satellite scenes, and utilizing high-resolution images available for the study area. 

 

 

3. Results and discussions 

     To increase the spatial resolution of Landsat 9 from 30 to 10 m, the procedures outlined in 

Table 2 were implemented. Dimensionality reduction techniques were employed successfully 

to derive bands PAN2, PAN3, and PAN4, while bands PAN5, PAN6, PAN7, and PAN8 were 

directly obtained from the four Sentinel-2A bands. Additionally, eq.1 was utilized to generate 

PAN9. To compute PAN10, the Correlation Coefficient (r) between the Landsat bands and the 

four Sentinel bands was calculated, as detailed in Table 4. The results show that band 4 

correlates highest with the Landsat 9 bands. 

 

Table 4 : The (r) values of LSBs and SB 

LS9 bands SB_2 SB_3 SB_4 SB_8 

LSB_1 0.824234 0.84186 0.88247 0.37102 

LSB_2 0.84998 0.86327 0.88915 0.35166 

LSB_3 0.85622 0.87853 0.88698 0.35886 

LSB_4 0.82714 0.8522 0.90232 0.37936 

LSB_5 0.25726 0.29547 0.36012 0.88036 

LSB_6 0.68926 0.71595 0.80495 0.626463 

LSB_7 0.77124 0.784214 0.84939 0.44034 

AVERAGE (r) 0.725048 0.747356 0.796483 0.486866 
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Table 5 the, standard deviation (s) values for the four Sentinel bands, as presented in Table 5, 

were utilized to determine weights for each band according to equations 3 and 4 and those 

specified in Table 6.  

Table 5 : The s values of 10 Sentinel 2 bands 

Band No. B2 B3 B4 B8 

s value 0.02599227 0.03046747 0.03923006 0.0374608 

 

Table 6: Bands weight values of PAN 10 
Band No. B2 B3 B4 B8 

Normalized band 

weight 

0.2018199 0.24717545 0.33562403 0.21538063 

 

     Table 7 displays the correlation coefficient (r) values between the synthesized 

panchromatic (PAN) bands and Landsat 9 bands (LSBs), highlighting the correlation 

strengths. The PAN10, PAN2, and PAN9 panchromatic bands (10 m) exhibit the highest 

correlation coefficients with LSB bands, suggesting their reliability. Conversely, PAN8, 

which represents the IR band (842 nm), demonstrates the lowest (r) value, indicating a 

weaker correlation, and this result is expected because this wavelength registers information 

that differs from most of the Landsat-9 bands (except LSB_5). These findings serve as 

valuable indicators of the efficacy of the synthesized panchromatic bands. 

 

Table 7: (r) values of synthesized PAN bands and landsat9 bands (LSBs) 
PAN Bands 

No. 
LSB_1 LSB_2 LSB_3 LSB_4 LSB_5 LSB_6 LSB_7 Average 

PAN1 (15m) 0.93019 0.94520 0.94977 0.9469 0.34621 0.8222 0.88734 0.83255 

PAN2 0.84552 0.851425 0.85682 0.86028 0.544162 0.838005 0.83011 0.803761 

PAN3 0.77232 0.771829 0.778751 0.785924 0.687766 0.84118 0.780263 0.774006 

PAN4 0.77214 0.77157 0.778317 0.78572 0.687018 0.840875 0.78011 0.773679 

PAN5 0.82423 0.84998 0.85622 0.827149 0.257267 0.689267 0.77124 0.725051 

PAN6 0.84186 0.86327 0.878534 0.8522 0.29547 0.715956 0.78421 0.747357 

PAN7 0.88247 0.88915 0.886987 0.902321 0.36012 0.804951 0.84939 0.796484 

PAN8 0.37102 0.35166 0.35886 0.37936 0.88036 0.62646 0.44034 0.486866 

PAN9 0.83155 0.83777 0.84458 0.84486 0.56938 0.83473 0.81883 0.797386 

PAN10 0.84875 0.854902 0.860096 0.863658 0.53504 0.837015 0.832125 0.804513 

         

      In assessing the fused images using the Gram-Schmidt (GS) method, the results listed in 

Table 8 align consistently with previous results in Table 7. Notably, the fused images that rely 

on PAN10, PAN2, and PAN9 exhibit superior values across various evaluation criteria. This 

underscores the significance of these panchromatic bands in the fusion process. 
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Table 8 :The GS evaluation results 

Fused images RMSE SAM ERGAS PSNR SSIM UIQI (r) 

ideal values 0 NAN 0 INF 1 1 1 

GS PAN1 0.0974 15.9057 7.7036 20.2267 0.7248 0.8322 0.7928 

GS PAN2 0.0379 6.7273 3.3229 28.4371 0.9565 0.9787 0.9614 

GS PAN3 0.0414 7.4946 3.6379 27.6506 0.9520 0.9744 0.9537 

GS PAN4 0.0402 7.1493 3.5347 27.9002 0.9531 0.9758 0.9563 

GS PAN5 0.0524 9.3769 4.5970 25.6179 0.9391 0.9592 0.9262 

GS PAN6 0.0490 8.7718 4.3045 26.1891 0.9413 0.9642 0.9353 

GS PAN7 0.0409 7.2269 3.5875 27.7716 0.9514 0.9750 0.9551 

GS PAN8 0.0735 13.3143 6.4482 22.6787 0.9040 0.9200 0.8544 

GS PAN9 0.0387 6.9139 3.3989 28.2408 0.9558 0.9780 0.9596 

GS PAN10 0.0378 6.7174 3.3197 28.4455 0.9564 0.9788 0.9615 

 
Figure 3:  a) PAN1 (15m), b) GS PAN1, c) PC PAN1, and d) NN PAN1. 

     The evaluation of fused images by principal component sharpening (PC) values reflects 

the outcomes obtained from the GS method, albeit with a slight enhancement. This 

improvement can be attributed to the inherent common principles of both methods, 

particularly their reliance on component substitution (CS). The pivotal role played by the 

panchromatic band in influencing outcomes is evident in the closely aligned results of both 

approaches. As can be seen in both subjective (Figures 3, 4, 5, and 6 in the sub-figures a, b, 

and c) and objective evaluation (Tables 8 and 9), both GS and PC are highly affected by the 

PAN bands’ qualities. Figures (3-6) show a sub-image of the study area (Figure 1b), which 

was selected to present the results of the work methods. 
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Table 9: PC evaluation results 

Fused images RMSE SAM ERGAS PSNR SSIM UIQI (r) 

ideal values 0 NAN 0 INF 1 1 1 

PC PAN1 0.098943 16.1924 7.8238 20.0922 0.71403 0.8260 0.78479 

PC PAN2 0.037403 6.65463 3.2831 28.5417 0.95668 0.9791 0.96237 

PC PAN3 0.041527 7.51446 3.6450 27.6333 0.951116 0.9743 0.95362 

PC PAN4 0.039684 7.04414 3.4833 28.0275 0.95354 0.9765 0.95764 

PC PAN5 0.051622 9.23403 4.53124 25.7431 0.939621 0.96033 0.928329 

PC PAN6 0.048241 8.6229 4.23437 26.3317 0.941848 0.96535 0.937412 

PC PAN7 0.039642 7.0026 3.47966 28.0367 0.95244 0.97660 0.957735 

PC PAN8 0.074026 13.4146 6.49775 22.6122 0.901595 0.9184 0.852621 

PC PAN9 0.038423 6.8733 3.37269 28.3079 0.955714 0.97802 0.960294 

PC PAN10 0.037328 6.63459 3.27655 28.5591 0.956694 0.97925 0.962525 

 
Figure 4: a)PAN2, b) GS PAN2, c) PC PAN2, and d) NN PAN2. 

However, the objective assessment of fused images using the nearest neighbor 

diffusion (NN) method (Table 10) yields noticeably different results than previous 

methodologies. The fused image based on the original Landsat panchromatic band 

PAN1(15m) gives higher evaluation values in comparison with the images that were fused 

using the GS and PC methods in all assessment criteria results, except the results of the SSIM 

and UIQI were both indices contain information that measures the luminance, contrast, and 

structure which gives lower values and this consists with the finding in [66]. Furthermore, 

PAN8 is the preferred choice for achieving optimal fused image quality (objectively) despite 

its lower (r) value than the original Landsat 9, as shown in Figure 5. It can be seen in the 

results of NN methods that there is less consistency between the subjective and objective 

evaluations; most of the fused images show very good visual but give lower values in the 

results of objective evaluations (Figures 3, 4, 5, and 6 in the subfigures a and d). The other 

important note is that the results of this method are less affected by the PAN band quality 

from the previous methods (GS and PC). One possible explanation for why the NN method 
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exhibits less sensitivity to the quality of the PAN bands is that the NN method can learn the 

optimal weights for combining the source images. In contrast, the GS and PC methods rely 

on fixed mathematical transformations that may not capture the salient features of the images 

[79]. This discrepancy in results underscores the importance of considering diverse 

evaluation metrics and the nuanced impact of individual bands on overall image quality. 

 

 
Figure 5: a) PAN8, b) GS PAN8, c) PC PAN8, and d) NN PAN8.  

 

Table 10: The NN evaluation results 

Fused image RMSE SAM ERGAS PSNR SSIM UIQI (r) 

ideal values 0 NAN 0 INF 1 1 1 

NN PAN1 0.08306 12.8215 6.56831 21.6115 0.69556 0.7965 0.838107 

NN PAN2 0.062959 7.8332 5.52636 24.0187 0.91493 0.958229 0.953399 

NN PAN3 0.05412 6.82690 4.75047 25.3327 0.93196 0.968627 0.963367 

NN PAN4 0.071548 8.72892 6.28022 22.9080 0.89775 0.94705 0.945029 

NN PAN5 0.052037 8.98150 4.56766 25.6736 0.93824 0.963134 0.93757 

NN PAN6 0.086952 10.6973 7.63235 21.2143 0.86039 0.922088 0.922281 

NN PAN7 0.075604 11.5279 6.63624 22.4290 0.87465 0.934446 0.909568 

NN PAN8 0.039160 6.61411 3.43737 28.1429 0.94971 0.979148 0.964738 

NN PAN9 0.062618 7.59075 5.49641 24.0659 0.91700 0.959102 0.955926 

NN PAN10 0.063498 7.92711 5.57363 23.9447 0.91363 0.957477 0.952435 
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Figure 6: a) PAN10 (10M), b) GS PAN10, c) PC PAN10, and d) NN PAN10. 

       Upon comparing the classification results (Table 11 and Figure 7) of Landsat-9 (30 m) 

with those sharpened based on the panchromatic band PAN1 of the Landsat satellite (15m), 

slightly close overall accuracy (OA) values were found. Notably, there is a slight increase in 

(OA) when employing the Support Vector Machine (RBF) classifier with images sharpened 

using the Gram-Schmidt method. These (OA) results align with the results of Komeil Rokni 

[80], which shows a minor increase with images fused using PC and classified with a 

Maximum likelihood (ML) classifier. Conversely, other results indicate a slight decrease in 

Overall Accuracy (OA) results. The results generally do not exhibit statistically significant 

changes due to the increase in spatial resolution from 30 to 15 m [81]. This could be 

attributed to the positive effect of increasing the spatial resolution, which is counterbalanced 

by a parallel negative effect resulting from the deterioration in the spectral properties of the 

sharpened images [79], mainly since broad features characterize the study area. Changes in 

accuracy will have a positive impact limited to small areas, especially on the boundaries 

separating features and small residential clusters scattered between agricultural areas. 

However, the negative effect of spectral degradation may extend over more expansive areas, 

which results in some incorrect classifications of these features in other places. 

     These results are expected for several reasons, the most significant of which is that the 

spectral range of the panchromatic PAN1 band does not cover all wavelengths of the fused 

images [82, 83]. Hence, this increases the possibility of spectral degradation of the bands 

located within the near IR spectrum as well as SWIR, as the Panchromatic band PAN1 of the 

Landsat 9 satellite extends within part of the visible spectrum only (503-675) nm [68]. In 

addition to that, there is generally spectral deterioration due to sharpening operations. The 

initial evaluation (visually) of the classification results of Landsat-9 images (30 m) shows 

that the identifications of classes have been done well (except for the regions in the borders 

between the classes). This is due to two factors, the first of which is the high radiometric 

resolution of the satellite, and the second is the high separation ability of the support vector 

machine algorithm, which gave better results compared to the maximum likelihood classifier. 

In statistical evaluation, a clear superiority in the classification of fused image results is 



Hameed and Naji                                    Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2153-2174 

 

2167 

found, especially with the two-component substitution algorithms. By comparing the 

outcomes of supervised classification for fused images derived from the synthesis and 

selected panchromatic bands (PAN) of the Sentinel-2 satellite's four 10 m bands, it is evident 

that classification accuracy notably increases when employing component substitution 

algorithms across most PAN bands. However, an exception is observed with PAN 8, which 

corresponds to the near-infrared (NIR) band (842 nm) of Sentinel-2. 

     Interestingly, the classification results for PAN 8 images yielded Overall Accuracy (OA) 

values lower than those obtained from classifying the original images at a spatial resolution 

of 30 meters. These results align with the objective evaluations outlined in Tables 8 and 9. 

Despite the lower (OA), PAN 8 images demonstrated advantages in separating specific 

classes. They were particularly helpful in distinguishing between natural vegetation, crops, 

trees, and palm classes[84]. This suggests that PAN 8 might contain valuable information for 

specific classification tasks, even if it does not necessarily improve overall accuracy. The 

infrared band (PAN 8) registers information about vegetation health, water content, and 

thermal properties. This information might be highly relevant for specific classes like crops 

and trees [85] and give lower misclassification between the built-up and bare lands, but it 

might not be well-integrated with other bands during fusion, leading to lower overall 

accuracy. 

     Conversely, other fused images demonstrated varying increases in accuracy, with some 

reaching up to 9.6%, as in SVM with RBF kernel coupled with PC PAN10 image. These 

results are consistent with previous research reported by Mateen, S. et al. [86], who observed 

improved land cover classification OA by fusing Sentinel-2 and Landsat-8 images using a 

Gram-Schmidt algorithm. Mansourmoghaddam, M. et al. [57] also found that fusing Landsat-

8 data with the 10 m Sentinel-2 bands can increase land cover classification accuracy by up to 

10% compared to using the original Landsat-8 dataset. The enhanced spatial resolution 

enables the classifiers to capture the spectral signatures of these fine-grained features more 

effectively. This observation is consistent with Sigurdsson J. et al. [58], who mentioned 

enhanced accuracy in classifying small features by fusing Landsat-8 and Sentinel-2 images. 

This was mainly observed in images sharpened using the panchromatic bands PAN2, PAN3, 

PAN4, PAN9, and PAN10. These findings agree with the image quality assessments 

provided in Table 8&9. 

    Furthermore, the superiority of Support Vector Machine (SVM) classifiers, particularly 

those employing the (RBF) kernel, is evident across all fused images RBF kernel, which is 

consistent with the results of [56]. On the other hand, using the Maximum Likelihood 

classifier resulted in slight accuracy increases for most images within the component 

substitution category. The low values of the (OA) when using the ML classifiers result from 

the false separation between closely spectral classes, especially the bare lands and built-up 

[87], and between the green classes [88]. 

The (OA) results of the SVM classifier were better than the ML classifier, which is 

compatible with the results of [60], [65], [89], and [90]. 

     When employing the Nearest Neighbor Diffusion (NN) algorithm for image fusion, 

noticed marginal improvements in overall accuracy (OA) when coupled with SVM classifiers 

across various images, particularly those fused with PAN5, PAN9, and PAN10. However, 

integration with the Maximum Likelihood classifier results in slight decreases in OA across 

all fused images via the NN method. Although these images generally exhibit more 

aesthetically pleasing characteristics than those produced by alternative fusion algorithms, 
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they are less conducive to classification processes. This disparity may stem from the NN 

method's fundamental principle, which involves estimating the pixel value in the pan-

sharpened image by aggregating information from its nearest neighbors in the PAN image. 

These neighbors contribute to the final pixel value based on assigned weights, reflecting the 

spectral influence of each neighbor [91, 92], which may affect the actual spectral signature of 

the pixels depending on their neighbors' pixels. The classification results of (NN) need 

further investigation to overcome the cones of this algorithm results. 

     Overall, the results highlight the effectiveness of used approaches like dimension 

reduction and weight ratio methods in extracting simulated panchromatic bands (PANs), 

especially PAN10 (weighted average), PAN2 (ICA), and PAN9 (average) bands. Leveraging 

these bands to sharpen Landsat-9 satellite images via component substitution algorithms 

proves efficient.  

    In classification, PAN10 stands out in GS SVM LIN, achieving the highest OA at 86.08%, 

closely followed by PAN2 at 85%. In PC SVM RBF, PAN9 and PAN10 exhibit the highest 

OA at 87.8% and 88.04%, respectively. GS SVM RBF identifies PAN10 as the top 

performer, with an OA of 87.75%. Meanwhile, in PC MAXLIK, PAN2 and PAN6 tie for the 

highest OA at 82.5%. These findings underscore the critical role of specific panchromatic 

bands in improving classification accuracy and the superiority of the SVM across diverse 

fusion methods. Component substitution algorithms prove effective, particularly considering 

the computational efficiency of these methods. Additionally, the results suggest the feasibility 

of utilizing Band 3 (PAN6) of the Sentinel-2 satellite to sharpen Landsat-9 data for land 

cover classification. 

Table 11 :Overall accuracy (OA) of the original and fused image classification %. 

Classifiers 
LS30 

m 

PAN

1 

PAN

2 

PAN

3 

PAN

4 

PAN

5 

PAN

6 

PAN

7 

PAN

8 

PAN

9 

PAN1

0 

GS SVM LIN  79.73 85 83.5 83.5 82.4 85.7 82.8 76.25 82.6 86.08 

PC SVM LIN 80.65 78.77 85 84.8 84.5 81.9 85.8 83.6 76.74 85.5 85.04 

NN SVM LIN  79.74 81.2 81.3 81.5 82.4 81.2 79.5 78.59 82.3 80.77 

GS SVM RBF 

78.44 

79.51 87.9 86.9 85.9 83 86.5 83.9 75.74 83.5 87.75 

PC SVM RBF 78.79 87.8 86.9 85.6 82.9 86.3 84.4 75.96 87.8 88.04 

NNSVM RBF 78.68 80.8 81.4 80.8 81.9 80.4 79.7 80.18 82 81.02 

GS SVM PO 

80.25 

79.85 87 84.7 84.6 82.5 86.5 83 75.7 83.4 87.06 

PC SVM PO 78.82 86.9 86 84.9 82.8 86.4 83.8 76.22 87.4 87.04 

NNSVM PO 79.62 81.1 81.8 81.9 82.3 80.7 79.8 79.62 82 80.72 

GS MAXLIK 

79.9 

75.24 81.5 81.2 81.8 81.6 82.5 81.5 77.41 80 81.58 

PC MAXLIK 80.7 81.5 81.1 81.35 81.8 82.5 81.5 77.29 81.6 81.59 

NN MAXLIK 78.32 79.7 79.8 79.1 77.4 78.9 78.4 78.28 79.6 79.59 
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Figure 7: a) false color RGB (543) (GS PAN2), b) SVM LIN (LS 30 M), c) SVM POLY 

(GSPAN1), d) SVM RBF (GSPAN2), e) SVM RBF (GSPAN9), f) SVM RBF (PC PAN2), g) 

SVM RBF(PCPAN10), h) SVM LIN (NNPAN5),  i) SVM LIN (NNDPAN9), and j) 

MAXLIK (PCPAN6). 

 

4. Conclusions 

      The novelty adopted methods that employed the data reduction algorithms and the 

weighted averages successfully extracted the synthesized panchromatic (PAN) bands from 

the four 10 m bands of the sentinel-2 MSI satellite to sharpen the Landsat 9 OLI 2 bands. The 

evaluation results of the fused images and their classification accuracy results show that the 
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components substitutions (GS and PC) fusion algorithms outperform the (NN) algorithm in 

both objective assessments of the fused images and the classification (OA) results. Some 

results of the synthetic PAN bands (PAN10, PAN2, PAN9, and PAN 6) showed superior 

image fusion and classification process performance. In contrast, the visual assessment shows 

better results. The lowest classification (OA) has resulted from the selected PAN8 band in all 

classifiers, although it has some advantages in separation between vegetation classes and 

between the built-up and bare lands, making it essential in some classification applications. 

That suggests it might contain valuable information for specific classification tasks, even if it 

does not necessarily improve overall accuracy.  The results also highlight the importance of 

choosing the right panchromatic band and fusion algorithm for specific applications. Through 

the classification results presented in Table 11, the SVM classifiers were shown to be more 

robust to the variations introduced by different fusion methods. The NN fusion results were 

reasonably acceptable, but further investigation is needed to understand its limitations and 

potential improvements in the method. This study provides a strategy for improving spatial 

resolution and land cover classification using all available remote sensing data. 

References   

[1] X. Liu et al., "Classifying urban land use by integrating remote sensing and social media data," 

International Journal of Geographical Information Science, vol. 31, no. 8, pp. 1675-1696, 2017. 

[2] A. S. Mahdi, "The Land Use and Land Cover Classification on the Urban Area," Iraqi Journal of 

Science, vol. 63, pp. 4609-4619, 2022  

[3] E. F. Lambin, M. D. A. Rounsevell, and H. J. Geist, "Are agricultural land-use models able to 

predict changes in land-use intensity?," Agriculture, Ecosystems & Environment, vol. 82, no. 1, 

pp. 321-331, 2000/12/01/ 2000. 

[4] L. K. Abbas, "Mapping Land Cover/Land Use for Change Derivation Using Remote Sensing and 

GIS Technique," Iraqi Journal of Science, pp. 3772-3778, 2021. 

[5] F. Waldner, S. Fritz, A. Di Gregorio, and P. Defourny, "Mapping priorities to focus cropland 

mapping activities: Fitness assessment of existing global, regional and national cropland maps," 

Remote Sensing, vol. 7, no. 6, pp. 7959-7986, 2015. 

[6] Z. R. Ali and A. S. Muhaimeed, "The study of temporal changes on land cover/land use 

prevailing in Baghdad governorate using RS & GIS," The Iraqi Journal of Agricultural Sciences, 

vol. 47, no. 3, pp. 846-855, 2016. 

[7] J. W. Chipman, T. M. Lillesand, J. E. Schmaltz, J. E. Leale, and M. J. Nordheim, "Mapping lake 

water clarity with Landsat images in Wisconsin, USA," Canadian Journal of remote sensing, vol. 

30, no. 1, pp. 1-7, 2004. 

[8] M. Niroumand-Jadidi, F. Bovolo, M. Bresciani, P. Gege, and C. Giardino, "Water Quality 

Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2," Remote Sensing, vol. 

14, no. 18, p. 4596, 2022. 

[9] E. Micijevic et al., Radiometric performance of the Landsat 9 Operational Land Imager over the 

first 8 months on orbit (SPIE Optical Engineering + Applications). SPIE, 2022. 

[10] M. J. Choate, R. Rengarajan, J. C. Storey, and M. Lubke, "Landsat 9 Geometric Characteristics 

Using Underfly Data," Remote Sensing, vol. 14, no. 15, p. 3781, 2022. 

[11] M. A. Wulder et al., "Fifty years of Landsat science and impacts," Remote Sensing of 

Environment, vol. 280, p. 113195, 2022. 

[12] Q. Wang et al., "Fusion of Landsat 8 OLI and Sentinel-2 MSI Data," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3885-3899, 2017. 

[13] D. Phiri, M. Simwanda, S. Salekin, V. R. Nyirenda, Y. Murayama, and M. Ranagalage, "Sentinel-

2 data for land cover/use mapping: A review," Remote Sensing, vol. 12, no. 14, p. 2291, 2020. 

[14] V. B. ESA, Z. Szantoi, and F. Gascon, "Copernicus Sentinel-2 Mission: Calibration and 

Validation activities," GSICS Q, vol. 14, no. 1, 2020. 

[15] Q. Wang, W. Shi, Z. Li, and P. M. Atkinson, "Fusion of Sentinel-2 images," Remote Sensing of 

Environment, vol. 187, pp. 241-252, 2016/12/15/ 2016. 



Hameed and Naji                                    Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2153-2174 

 

2171 

[16] K. Siok, I. Ewiak, and A. Jenerowicz, "Multi-Sensor Fusion: A Simulation Approach to 

Pansharpening Aerial and Satellite Images," Sensors (Basel), vol. 20, no. 24, p. 7100, Dec 11 

2020. 

[17] V. P. Shah, N. H. Younan, and R. L. King, "An efficient pan-sharpening method via a combined 

adaptive PCA approach and contourlets," IEEE Transactions on geoscience and remote sensing, 

vol. 46, no. 5, pp. 1323-1335, 2008. 

[18] P. Ghamisi et al., "Multisource and multitemporal data fusion in remote sensing: A 

comprehensive review of the state of the art," IEEE Geoscience and Remote Sensing Magazine, 

vol. 7, no. 1, pp. 6-39, 2019. 

[19] J. R. Townshend, C. O. Justice, C. Gurney, and J. McManus, "The impact of misregistration on 

change detection," IEEE Transactions on Geoscience and remote sensing, vol. 30, no. 5, pp. 

1054-1060, 1992. 

[20] H. M. Abduljabbar, "Satellite Images Fusion Using Modified PCA Substitution Method," Ibn AL-

Haitham Journal For Pure and Applied Sciences, vol. 30, no. 1, pp. 29-37, 2017. 

[21] L. Wald, T. Ranchin, and M. Mangolini, "Fusion of satellite images of different spatial 

resolutions: Assessing the quality of resulting images," Photogrammetric engineering and remote 

sensing, vol. 63, no. 6, pp. 691-699, 1997. 

[22] F. A. Hadi and R. A. Abdulwahab, "Hyperspectral Image Sharpening Using Fusion Techniques-A 

Case Study at Salah Al-Din Province/Iraq," Iraqi Journal of Science, 2024. 

[23] C. Thomas, T. Ranchin, L. Wald, and J. Chanussot, "Synthesis of Multispectral Images to High 

Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing Physics," 

IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, pp. 1301-1312, 2008. 

[24] G. Vivone et al., "A critical comparison among pansharpening algorithms," IEEE Transactions 

on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2565-2586, 2014. 

[25] I. J. Muhsin and K. H. Salih, "Enhancement and Quality Assessment of Multi-Spectral Image 

Using Different Fusion Methods," Iraqi Journal of Science, vol. 56, no. 1A, pp. 257-264, 2015. 

[26] R. A. Abdulwahab, L. A. Al-Ani, and A. H. Shaban, "Fused images based on division of 

hyperspectral images into spectral groups," in AIP Conference Proceedings, 2023, vol. 3018, no. 

1: AIP Publishing. 

[27] V. K. Shettigara, "A generalized component substitution technique for spatial enhancement of 

multispectral images using," 1992. 

[28] T. Maurer, "How to pan-sharpen images using the gram-schmidt pan-sharpen method–A recipe," 

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2013. 

[29] H. R. Shahdoosti and H. Ghassemian, "Combining the spectral PCA and spatial PCA fusion 

methods by an optimal filter," Information Fusion, vol. 27, pp. 150-160, 2016. 

[30] V. Karathanassi, P. Kolokousis, and S. Ioannidou, "A comparison study on fusion methods using 

evaluation indicators," International Journal of Remote Sensing, vol. 28, no. 10, pp. 2309-2341, 

2007. 

[31] W. Sun, B. Chen, and D. Messinger, "Nearest-neighbor diffusion-based pan-sharpening algorithm 

for spectral images," Optical Engineering, vol. 53, no. 1, p. 013107, 2014. 

[32] Snehmani, A. Gore, A. Ganju, S. Kumar, P. Srivastava, and H. R. RP, "A comparative analysis of 

pansharpening techniques on QuickBird and WorldView-3 images," Geocarto International, vol. 

32, no. 11, pp. 1268-1284, 2017. 

[33] G. Ortaç and G. Özcan, "A Comparative Study for Hyperspectral Data Classification with Deep 

Learning and Dimensionality Reduction Techniques," Uludağ University Journal of The Faculty 

of Engineering, vol. 23, no. 3, pp. 73-90, 2018. 

[34] D. E. Holmes and L. C. Jain, Data Mining: Foundations and Intelligent Paradigms: Volume 1: 

Clustering, Association and Classification. Springer Science & Business Media, 2011. 

[35] N. Lopes and B. Ribeiro, "Non-Negative Matrix Factorization (NMF)," in Machine Learning for 

Adaptive Many-Core Machines - A Practical Approach, N. Lopes and B. Ribeiro, Eds. Cham: 

Springer International Publishing, 2015, pp. 127-154. 

[36] Y. Bian, "A Gram–Schmidt process based approach for improving DEA discrimination in the 

presence of large dimensionality of data set," Expert Systems with Applications, vol. 39, no. 3, 

pp. 3793-3799, 2012/02/15/ 2012. 



Hameed and Naji                                    Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2153-2174 

 

2172 

[37] P. Jagalingam and A. V. Hegde, "A Review of Quality Metrics for Fused Image," Aquatic 

Procedia, vol. 4, pp. 133-142, 2015/01/01/ 2015. 

[38] M. Q. Kaittan, "Improve the Spatial Resolution of Multispectral Satellite Image using Different 

Image Sharpening Techniques," Iraqi Journal of Science, pp. 227-232, 2018. 

[39] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M. Bruce, "Comparison of 

pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest," IEEE Transactions 

on Geoscience Remote Sensing, vol. 45, no. 10, pp. 3012-3021, 2007. 

[40] T. Ranchin and L. Wald, "Fusion of high spatial and spectral resolution images: The ARSIS 

concept and its implementation," Photogrammetric engineering and remote sensing, vol. 66, no. 

1, pp. 49-61, 2000. 

[41] V. Naidu, "Discrete cosine transform based image fusion techniques," Journal of 

Communication, Navigation and Signal Processing, vol. 1, no. 1, pp. 35-45, 2012. 

[42] D. Poobathy and R. M. Chezian, "Edge detection operators: Peak signal to noise ratio based 

comparison," I.J. Image, Graphics and Signal Processing, vol. 10, pp. 55-61, 2014. 

[43] A. A. N. Al-Jasim, T. A. Naji, and A. H. Shaban, "The Effect of Using the Different Satellite 

Spatial Resolution on the Fusion Technique," Iraqi Journal of Science, pp. 4131-4141, 2022. 

[44] C. Pohl and J. Van Genderen, Remote sensing image fusion: A practical guide. Crc Press, 2016. 

[45] W. Zhou and A. C. Bovik, "A universal image quality index," IEEE Signal Processing Letters, 

vol. 9, no. 3, pp. 81-84, 2002. 

[46] C. Pohl and J. Van Genderen, "Review article multisensor image fusion in remote sensing: 

concepts, methods and applications," International Journal of Remote Sensing, vol. 19, no. 5, pp. 

823-854, 1998. 

[47] T. A. Naji and A. J. Hatem, "New adaptive satellite image classification technique for al 

Habbinya region west of Iraq," Ibn AL-Haitham Journal For Pure and Applied Sciences, vol. 26, 

no. 2, pp. 143-149, 2017. 

[48] M. Romaszewski, P. Głomb, and M. Cholewa, "Semi-supervised hyperspectral classification 

from a small number of training samples using a co-training approach," ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 121, pp. 60-76, 2016. 

[49] H. Abduljabbar and T. Naji, "SEPARATING THE TERRAIN COVER OF IRAQI MARSHES 

REGION USING NEW SATELLITE BAND COMBINATION," Iraqi Journal of Agricultural 

Sciences, vol. 51, no. 6, 2020. 

[50] S. M. De Jong and F. D. Van der Meer, Remote sensing image analysis: including the spatial 

domain. Springer Science & Business Media, 2007. 

[51] M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," 

IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, pp. 2297-2307, 2010. 

[52] J. Su, D. Yi, C. Liu, L. Guo, and W.-H. Chen, "Dimension Reduction Aided Hyperspectral Image 

Classification with a Small-sized Training Dataset: Experimental Comparisons," Sensors, vol. 17, 

no. 12, p. 2726, 2017. 

[53] T. Zhang, J. Su, C. Liu, W. H. Chen, H. Liu, and G. Liu, "Band selection in sentinel-2 satellite for 

agriculture applications," in 23rd International Conference on Automation Computing, 2017, pp. 

1-6. 

[54] T. D. Pham, J. Xia, N. T. Ha, D. T. Bui, N. N. Le, and W. Takeuchi, "A review of remote sensing 

approaches for monitoring blue carbon ecosystems: Mangroves, seagrasses and salt marshes 

during 2010–2018," Sensors, vol. 19, no. 8, p. 1933, 2019. 

[55] J. Hogland, N. Billor, and N. Anderson, "Comparison of standard maximum likelihood 

classification and polytomous logistic regression used in remote sensing," European Journal of 

Remote Sensing, vol. 46, no. 1, pp. 623-640, 2013. 

[56] Y. Bouslihim, M. H. Kharrou, A. Miftah, T. Attou, L. Bouchaou, and A. Chehbouni, "Comparing 

pan-sharpened Landsat-9 and sentinel-2 for land-use classification using machine learning 

classifiers," Journal of Geovisualization and Spatial Analysis, vol. 6, no. 2, p. 35, 2022. 

[57] M. Mansourmoghaddam, I. Rousta, H. Ghaffarian, and M. H. Mokhtari, "Evaluating the 

capability of spatial and spectral fusion in land-cover mapping enhancement," Earth Observation 

and Geomatics Engineering, vol. 6, no. 1, pp. -, 2022. 



Hameed and Naji                                    Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2153-2174 

 

2173 

[58] J. Sigurdsson, S. E. Armannsson, M. O. Ulfarsson, and J. R. Sveinsson, "Fusing sentinel-2 and 

Landsat 8 satellite images using a model-based method," Remote Sensing, vol. 14, no. 13, p. 

3224, 2022. 

[59] P. Thanh Noi and M. Kappas, "Comparison of Random Forest, k-Nearest Neighbor, and Support 

Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery," Sensors, 

vol. 18, no. 1, p. 18, 2018. 

[60] R. H. Topaloğlu, E. Sertel, and N. Musaoğlu, "Assessment of classification accuracies of 

Sentinel-2 and Landsat-8 data for land cover/use mapping," The International archives of the 

photogrammetry, remote sensing and spatial information sciences, vol. 41, pp. 1055-1059, 2016. 

[61] M. A. Raheem and A. J. Hatem, "Calculation of Salinity and Soil Moisture indices in south of 

Iraq-Using Satellite Image Data," Energy Procedia, vol. 157, pp. 228-233, 2019. 

[62] I. J. Al-Rubiey, "Increase the intelligibility of multispectral image using pan-sharpening 

techniques for many remotely sensed images," Ibn AL-Haitham Journal For Pure and Applied 

Sciences, vol. 28, no. 3, 2017. 

[63] A. J. Hatem, A. A. N. Al-Jasim, and H. M. Abduljabbar, "A study of the climate and human 

impact on the future survival of the Al-Sannya marsh in Iraq," Journal of Water and Land 

Development, pp. 168-173-168-173, 2021. 

[64] M. Majed, H. M. AbdulJabbar, and A. Sciences, "The Change in the Land Cover of Mahmudiyah 

City in Iraq for the Last Three Decades," Ibn Al-Haitham Journal for Pure and Applied Sciences, 

vol. 35, no. 3, pp. 44-55, 2022. 

[65] B. Rimal, S. Rijal, and R. Kunwar, "Comparing support vector machines and maximum 

likelihood classifiers for mapping of urbanization," Journal of the Indian Society of Remote 

Sensing, vol. 48, pp. 71-79, 2020. 

[66] R. A. Abdulwahab, L. A. Al-Ani, and A. H. Shaban, "Hyperspectral pansharpening improvement 

using MNF transformation," in AIP Conference Proceedings, 2023, vol. 3018, no. 1: AIP 

Publishing. 

[67] D. A. Maciel et al., "Validity of the Landsat surface reflectance archive for aquatic science: 

Implications for cloud-based analysis," Limnology and Oceanography Letters, vol. 8, no. 6, pp. 

850-858, 2023. 

[68] J. G. Masek et al., "Landsat 9: Empowering open science and applications through continuity," 

Remote Sensing of Environment, vol. 248, p. 111968, 2020/10/01/ 2020. 

[69] E. ESA, "Sentinel-2 user handbook," Sentinel-2 User Handbook, p. 64, 2015. 

[70] M. A. Z. Aguilera, "Classification Of Land-Cover Through Machine Learning Algorithms For 

Fusion Of Sentinel-2a And Planetscope Imagery," in 2020 IEEE Latin American GRSS & ISPRS 

Remote Sensing Conference (LAGIRS), 2020, pp. 246-253: IEEE. 

[71] S. Li, J. T. Kwok, and Y. Wang, "Using the discrete wavelet frame transform to merge Landsat 

TM and SPOT panchromatic images," Information Fusion, vol. 3, no. 1, pp. 17-23, 2002. 

[72] Y. Zhou, A. Mayyas, and M. A. Omar, "Principal Component Analysis-Based Image Fusion 

Routine with Application to Automotive Stamping Split Detection," Research in Nondestructive 

Evaluation, vol. 22, no. 2, pp. 76-91, 2011/03/31 2011. 

[73] L. Liu, C.-f. Li, Y.-m. Lei, J.-y. Yin, and J.-j. Zhao, "Feature extraction for hyperspectral remote 

sensing image using weighted PCA-ICA," Arabian Journal of Geosciences, vol. 10, pp. 1-10, 

2017. 

[74] H. Wang, B. Yi, and M. Ye, "Variable selection based on principal basis analysis," Journal of 

Beijing University of Aeronautics Astronautics, vol. 34, no. 11, p. 1288, 2008. 

[75] M. Selva, B. Aiazzi, F. Butera, L. Chiarantini, and S. Baronti, "Hyper-sharpening: A first 

approach on SIM-GA data," IEEE Journal of selected topics in applied earth observations and 

remote sensing, vol. 8, no. 6, pp. 3008-3024, 2015. 

[76] L. Wald, Data fusion: definitions and architectures: fusion of images of different spatial 

resolutions. Presses des MINES, 2002. 

[77] H. Li, L. Jing, and Y. Tang, "Assessment of pansharpening methods applied to WorldView-2 

imagery fusion," Sensors, vol. 17, no. 1, p. 89, 2017. 

[78] Z. Shao, J. Cai, P. Fu, L. Hu, and T. Liu, "Deep learning-based fusion of Landsat-8 and Sentinel-

2 images for a harmonized surface reflectance product," Remote Sensing of Environment, vol. 

235, p. 111425, 2019/12/15/ 2019. 



Hameed and Naji                                    Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2153-2174 

 

2174 

[79] R. Ducay and D. Messinger, Hyperspectral-multispectral image fusion using nearest-neighbor 

diffusion-based sharpening algorithm (SPIE Defense + Commercial Sensing). SPIE, 2022. 

[80] K. Rokni, "Investigating the impact of Pan Sharpening on the accuracy of land cover mapping in 

Landsat OLI imagery," Geodesy and Cartography, vol. 49, no. 1, pp. 12–18-12–18, 2023. 

[81] H. Pi-Fuei, L. C. Lee, and C. Nai-Yu, "Effect of spatial resolution on classification errors of pure 

and mixed pixels in remote sensing," IEEE Transactions on Geoscience and Remote Sensing, 

vol. 39, no. 12, pp. 2657-2663, 2001. 

[82] G. He, S. Xing, Z. Xia, Q. Huang, and J. Fan, "Panchromatic and multi-spectral image fusion for 

new satellites based on multi-channel deep model," Machine Vision Applications, vol. 29, pp. 

933-946, 2018. 

[83] T. Ngigi, E. Nduati, W. Xianhu, and M. Götza, "Perspective Chapter: Mix-Unmix Pan-

Sharpener–Novel Pan-Sharpening Method Based on Mixing Constituent Multispectral Bands and 

Unmixing Panchromatic Band," in Digital Image Processing - Latest Advances and Applications, 

C. Dr. Francisco Javier, Ed. Rijeka: IntechOpen, 2024. 

[84] T. A. Naji, "Implementation of remote sensing for vegetation studying using vegetation indices 

and automatic feature space plot," Journal of Natural Sciences Research, vol. 5, no. 10, pp. 94-

108, 2015. 

[85] Y. Liu, W. Gong, X. Hu, and J. Gong, "Forest Type Identification with Random Forest Using 

Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data," Remote Sensing, vol. 10, 

no. 6, p. 946, 2018. 

[86] S. Mateen, N. Nuthammachot, K. Techato, and N. Ullah, "Billion Tree Tsunami Forests 

Classification Using Image Fusion Technique and Random Forest Classifier Applied to Sentinel-

2 and Landsat-8 Images: A Case Study of Garhi Chandan Pakistan," ISPRS International Journal 

of Geo-Information, vol. 12, no. 1, p. 9, 2023. 

[87] V. S. Bramhe, S. K. Ghosh, and P. K. Garg, "EXTRACTION OF BUILT-UP AREA BY 

COMBINING TEXTURAL FEATURES AND SPECTRAL INDICES FROM LANDSAT-8 

MULTISPECTRAL IMAGE," Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. XLII-

5, pp. 727-733, 2018. 

[88] B. R. Shivakumar and S. V. Rajashekararadhya, "Spectral similarity for evaluating classification 

performance of traditional classifiers," in 2017 International Conference on Wireless 

Communications, Signal Processing and Networking (WiSPNET), 2017, pp. 1999-2004. 

[89] S. John and A. O. Varghese, "Analysis of support vector machine and maximum likelihood 

classifiers in land cover classification using Sentinel-2 images," Proceedings of the Indian 

National Science Academy, vol. 88, no. 2, pp. 213-227, 2022/06/01 2022. 

[90] M. H. Kesikoglu, U. H. Atasever, F. Dadaser-Celik, and C. Ozkan, "Performance of ANN, SVM 

and MLH techniques for land use/cover change detection at Sultan Marshes wetland, Turkey," 

Water Science and Technology, vol. 80, no. 3, pp. 466-477, 2019. 

[91] W. Sun, B. Chen, and D. Messinger, "Nearest-neighbor diffusion-based pan-sharpening algorithm 

for spectral images," Optical Engineering, vol. 53 no. 1, p. 013107, 2014. 

[92] J. Zhao, L. Huang, H. Yang, D. Zhang, Z. Wu, and J. Guo, "Fusion and assessment of high-

resolution WorldView-3 satellite imagery using NNDiffuse and Brovey algorithms," in 2016 

IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2016, pp. 2606-2609. 

 


