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Abstract 

     In this research, a model was taken to explore the relationship between the prey, 

the predator, and the scavenger in the diet to study dynamic behavior. This was 

done by forming a system of ordinary differential equations, and critical points were 

found for the model that match biologically and mathematically to our study.  Their 

existence was proven, and theories were created for the model. By applying local 

and global stability methods, also we were able determine the bifurcation occurring 

at particular sites. After that, we observed the result of cooperation in hunting, 

which greatly affects both prey and predators, playing a vital and influential role. 

Everything we mentioned above was also proven practically, using Mathematica 

13.2 to prove the validity of what we mentioned practically. 
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 نمذجة وتحليل نظام الفريسة والمفترس والزبال  الذي يشمل  الخوف , التعاون في الصيد والحصاد 
 

 لبنى رياض ابراهيم , داليا خالد بهلول * 
 , كلية العلوم, جامعة بغداد, بغداد, العراق قسم الرياضيات 

 

                                                                                                الخلاصة  
النظام           في  والزبال  ،المفترس  الفريسة  من  كل  بين  علاقه  يستكشف  مودل  اخذ  تم  البحث  هذا  في  

لدراسة سلوكية الديناميكية وتم ذلك من خلال تكوين نظام من المعادلات التفاضلية الاعتيادية  وتم   الغذائي 
ايجاد نقاط الحرجة للموديل تطابق بايلوجيا ورياضيا لدراستنا ووجودها ايضا تم التحقق منه  وتم ايضا وضع  
نظريات لكل من الاستقرايه المحلية والشامله  لايجاد التشعب في تلك النقاط وبعد ذلك لحظنا تاثير تعاون في  

والمفترسات وما له من دور مهم وموثر وتم اثبات كل ماذكرناه اعلاه ايضا عمليا    الصيد مايوثر على الفرائس 
 .لاثبات صحه ماذكرنا عمليا  13.2باستخدام ماثماتكا

 
1. Introduction 

      The resilience and stability of ecosystems are greatly influenced by the prey, predator and 

scavenger relationships within intricate ecological web. Goldsmith and Sutherland [1] 

indicated in their article that a lot of focus has been put by ecologists and conservationists in 

grasping these mechanisms to sustain biodiversity; while maintaining the functions of 

ecosystem under human induced stresses and environmental changes. Predators are vital parts 
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of the ecology due to their effective facilitation of energy flow across ecosystems. These 

interactions go beyond mere predation as envisaged by this theory. A few other drivers 

encompass hunting by human beings, methods of hunting and reaction to fear factors. In most 

cases, these types of ecological models oversimplify this complexity and ignore the 

characteristics of real ecosystems. By developing our understanding of stability and resilience 

in predator-prey dynamics, Freedman [2] argues that it is a fundamental element for the 

management and conservation of ecosystems. The survival rates for both predators and prey 

are very high for longer periods as indicated by empirical investigations and mathematical 

simulations. Borofsky and Freedman [3] have revealed that social learning, predator 

cooperation/lack thereof and prey availability can all interact powerfully to determine the 

nature of an ecosystem. Currently, the issue of how animals cooperate when they hunt preys 

versus those who do not is being considered essential in many scientific studies on 

predation/fear in ecology [4 -  6]. There are several studies on the effect of fear, including a 

study of the effect of fear in a model of a food chain consisting of three species that includes 

the Beddington-Deangelis functional response, where the growth rate in the first and second 

levels decreased as a result of the presence of the predator in the upper level [7]. Some 

researchers have studied the effect of fear on the system in the presence of cooperative 

hunting [8]. Besides, predator cooperative hunting is added to a layer of complexity that 

significantly alters the population dynamics and community structure [9]. Nonlinear 

dynamics can lead to shifts in scavenger, prey and predator populations distributions and 

abundances whenever all these predators combine their actions to surpass the aggregate result 

of their individual interactions [10]. Another research showed how prey refuge and hunting 

attempts affected equilibrium density values. In conclusion, the stable prey refuges have been 

found not to be affected by harvesting as far as final densities are concerned. However, when 

more efforts are concentrated on predator species through harvests and as efforts towards 

prey species increase, then there will be a decrease in the density of predator species; which 

is an astonishing finding [11]. The authors shed light on how prey refuge and harvesting 

attempts influence equilibrium density estimates. To determine how hunting cooperation 

impacts fear in preys and predation in predators. Some researchers have studied the effect of 

harvesting on the model of stage structure consisting of juvenile and adult prey population 

and one predator [12]. Other researchers studied the bifurcation of the prey-predator-

scavenger model, with the effects of both harvest and toxicity  as in [13]. One of the 

researchers also studied the prey and predator model, but he used functional response square 

root and noticed the effect of the fear parameter on the system as shown in [14]. [15] 

analyzed a modified Leslie-Gower predator-prey model with non-linear harvesting and fright 

impact  Some researchers tried to study the effect of the disease, and an environmental-

mathematical epidemiological model was formulated and studied, consisting of a system that 

includes fear and disease in the prey community [16]. Through all of these previous studies 

that were reviewed, we tried to know the effect of variables, therefore in this study, we tried 

to know the effect of variables such as fear, cooperative hunting, and harvesting on the 

system theoretically and practically through simulated the model as well as conducted 

quantitative analysis to understand issues within system stability through simulated 

experiments. 

 

2. Mathematical Model Formulation 

     This section presents a food web model that includes three species: prey, predator, and 

scavenger. The mathematical representation of a food web in the real world is constructed 

applying the functional response of the Lotka-Volterra equations to describe the model. The 

mathematical representation of a food web system consists of three non-linear, independent 

ordinary differential equations:  
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𝑑𝒳

𝑑𝒯
=

𝑟𝒳

1+𝑓(𝒴+𝒵)
− 𝑏𝒳2 − (𝑎1 + 𝑏1𝒴)𝒳𝒴 − (𝑎2 + 𝑏2𝒵)𝒳𝒵, 

𝑑𝒴

𝑑𝒯
= 𝑒1(𝑎1 + 𝑏1𝒴)𝒳𝒴 − 𝑑1𝒴 − 𝑞1𝐸1𝒴

2,                               (1) 
𝑑𝒵

𝑑𝒯
= 𝑒2(𝑎2 + 𝑏2𝒵)𝒳𝒵 + 𝑎3𝒴𝒵 − 𝑑2𝒵 − 𝑞2𝐸2𝒵

2. 

 

      Given that 𝒳(0) ≥ 0 ,  𝒴(0) ≥  0,  and  𝒵(0) ≥ 0.The prey population at a given time is 

represented by 𝒳(𝒯). The predator population at time 𝒯 is represented by 𝒴(𝒯), and  𝒵(𝒯)  
denotes the scavenger population at time 𝒯, according to the Lotka-Volterra model of 

functional response, the predator and scavenger feed on the prey. The scavenger survives 

itself by consuming the remains of decaying creatures, either on a permanent or temporary 

basis. Ultimately, it is observed that the population of prey increases in a logistic manner 

when predators and scavengers are absent, whereas the population of predators and 

scavengers decreases exponentially in the absence of prey. The parameters can be described 

in the following table 1. 

 

Table 1: Description of parameters 

Description Parameters 

The natural growth rate 𝑟 

Fear rate of prey 𝑓 

Intraspecific rivalry 𝑏 

The rates at which predator and scavenger attack, subsequently 𝑎1, 𝑎2 

The hunting cooperation level for both predator and scavenger, subsequently 𝑏1, 𝑏2 

The conversion rates of prey biomass into predator and scavenger subsequently 𝑒1, 𝑒2 

The conversion rate of predator’s carcasses biomass to scavengers 𝑎3 

The mortality rates of predators and scavenger subsequently 𝑑1, 𝑑2 

The catchability parameters of predator and scavenger subsequently 𝑞1, 𝑞2 

The harvesting attempts of predator and scavenger subsequently 𝐸1, 𝐸2 

 

     In order to decrease the quantity of parameters, we employed a process of non-

dimensionalized on the model system, utilizing the following scaling technique: 

𝑡 = 𝑟𝒯, 𝑥 =
𝑏

𝑟
𝒳, 𝑦 =

𝑎1
𝑟
𝒴, 𝑧 =

𝑎2
𝑟
𝒵 

𝑤1 = 𝑓
𝑟

𝑎1
, 𝑤2 =

𝑎1
𝑎2
, 𝑤3 =

𝑟𝑏1

𝑎1
2 , 𝑤4 =

𝑟𝑏2

𝑎2
2 , 𝑤5 =

𝑒1𝑎1
𝑏
, 

𝑤6 =
𝑑1
𝑟
, 𝑤7 =

𝑞1𝐸1
𝑎1

, 𝑤8 =
𝑒2𝑎2
𝑏
,𝑤9 =

𝑎3
𝑎1
, 𝑤10 =

𝑑2
𝑟
, 𝑤11 =

𝑞2𝐸2
𝑎2
. 

Next, a dimensionless system is derived: 
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤1(𝑦+𝑤2𝑧)
− 𝑥 − (𝑤3𝑦 + 1)𝑦 − (𝑤4𝑧 + 1)𝑧] = 𝑥𝑓1(𝓍, 𝑦, ᴢ), 

𝑑𝑦

𝑑𝑡
= 𝑦[𝑤5(1 + 𝑤3𝑦)𝑥 − 𝑤6 − 𝑤7𝑦] = 𝑦𝑓2(𝓍, 𝑦, ᴢ),                             (2)  

𝑑𝑧

𝑑𝑡
= ᴢ[𝑤8(1 + 𝑤4𝑧)𝑥 + 𝑤9𝑦 − 𝑤10 − 𝑤11𝑧] = 𝑧𝑓3(𝓍, 𝑦, ᴢ). 

We notice that the parameters of Eq. (1) decreased from what they used to be, as their 

number was sixteen and became eleven in Eq. (2). 

 

 2. Existences, Boundedness 

     The functions 𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3 exhibit continuity and possess continuous partial derivatives on 

𝑅+
3 = {(𝓍, 𝑦, 𝑧) ∈ 𝑅3: 𝑥 ≥ 0, 𝑦 ≥ 0 & 𝑧 ≥ 0}   in Eq. (2). Therefore, they can be classified as 
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Lipschitz functions. Therefore, the Eq. (2) exhibits both the property of having a solution and 

unique solution.  

Theorem 1. Every population in Eq. (2) that initiate within  𝑅+
3   have uniformly bounded 

solutions. 

Proof. Set  (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) to be one of the solutions of Eq. (2), we get uniformly bounded 

from the first equation. 
𝑑𝑥

𝑑𝑡
≤ 𝑥 [

1

1+𝑤1(𝑦+𝑤2𝑧)
− 𝑥] ≤ 𝑥(1 − 𝑥). 

Hence, we get  𝑥(𝑡) ≤ 1 as 𝑡 → ∞. Consider that  𝑁1(𝑡) = 𝑥(𝑡) +
𝑦(𝑡)

𝑤5
, then after time 

derivative along the solutions of Eq. (2) we have: 
𝑑𝑁1

𝑑𝑡
≤ 𝑥 −

𝑤6

𝑤5
𝑦 ≤ (1 + 𝑤6)𝑥 − 𝑤6 (𝑥 +

𝑦

𝑤5
). 

Therefore, it is getting the following 
𝑑𝑁1

𝑑𝑡
+𝑤6𝑁1 ≤ (1 + 𝑤6). 

Then by solving the differential inequality mentioned above, we get that  𝑦 ≤
𝑤5(1+𝑤6)

𝑤6
= 𝛽1 

as 𝑡 → ∞. 

Now, consider that 𝑁2(𝑡) = 𝑥(𝑡) +
𝑦(𝑡)

𝑤5
+
𝑧(𝑡)

𝑤8
, then 

𝑑𝑁2

𝑑𝑡
≤ 2𝑥 − 𝑥 −

𝑤6

𝑤5
𝑦 − 𝑧 (

𝑤10−𝑤9𝛽1

𝑤8
) ≤ 2 − 𝛿 (𝑥 +

𝑦

𝑤5
+

𝑧

𝑤8
), 

Where 𝛿 = min{1, 𝑤6, 𝑤10 − 𝑤9𝛽1}.  Thus, it is observed that 
𝑑𝑁2

𝑑𝑡
+ 𝛿𝑁2 ≤ 2 gives 𝑁2 ≤

2

𝛿
 as 𝑡 → ∞. 

As a result, all solution in Eq. (2) has a uniform boundary. 

 

3. Equilibrium and their existence 

     This section establishes the existing conditions and conducts local stability analyses of 

equilibrium points for Eq. (2). It’s note that there can be a maximum of five non-negative 

equilibrium points for Eq. (2), which are detailed below: 

• The extinction equilibrium points  𝐸0 = (0,0,0) and axial point 𝐸1 = (1,0,0)  always 

exists. 

• The equilibrium in the absence of scavenger  𝐸𝑥𝑦 = (�̌�, �̌�, 0), where 

 

�̌� =
𝑤6+𝑤7�̌�

𝑤5(1+𝑤3�̌�)
,            (3) 

with  �̌�  is a solution that is positive for the fourth-order polynomial equation: 

𝑅1𝑦
4 + 𝑅2𝑦

3 + 𝑅3𝑦
2 + 𝑅4𝑦 + 𝑅5 = 0. 

Where: 

𝑅1 = −𝑤1𝑤3
2𝑤5 < 0, 

𝑅2 = −𝑤3𝑤5(2𝑤1 + 𝑤3) < 0,  

𝑅3 = −𝑤5(𝑤1 + 2𝑤3) − 𝑤1𝑤7 < 0, 

𝑅4 = −𝑤5 + 𝑤3𝑤5 −𝑤1𝑤6 − 𝑤7, 
𝑅5 = 𝑤5 − 𝑤6. 
Clearly,  𝐸𝑥𝑦  exists uniquely within the positive quarter of 𝓍𝑦-plane's interior if and only if 

the following sufficient condition is hold. 

𝑤6 < 𝑤5.            (4) 

• The equilibrium in the absence of predator  𝐸𝑥𝑧 = (�̃�, 0, �̃�), where 

 

�̃� =
𝑤10+𝑤11𝑧

𝑤8(1+𝑤4𝑧)
,            (5) 

where �̃� is a positive root of the polynomial equation of order four: 
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𝑁1𝑧
4 + 𝑁2𝑧

3 + 𝑁3𝑧
2 + 𝑁4𝑧 + 𝑁5 = 0. 

Where  

𝑁1 = −𝑤1𝑤2𝑤4
2𝑤8 < 0, 

𝑁2 = −𝑤4𝑤8(2𝑤1𝑤2 + 𝑤4) < 0, 
𝑁3 = −𝑤1𝑤2(𝑤10 + 𝑤11) − 2𝑤4𝑤8 < 0, 
𝑁4 = 𝑤4𝑤8 − 𝑤1𝑤2𝑤10 − 𝑤11 − 𝑤8, 
𝑁5 = 𝑤8 − 𝑤10. 
Obviously,  𝐸𝑥𝑧  exists uniquely within the positive quarter of 𝓍𝑧-plane's interior if and only 

if the following sufficient condition is satisfied. 

𝑤10 < 𝑤8.                       (6) 

• The cohabitation equilibrium point 𝐸𝑥𝑦𝑧 = (�̅�, �̅�, 𝑧̅), where 

�̅� =
𝑤6+𝑤7�̅�

𝑤5(1+𝑤3�̅�)
                                                                  

 𝑧̅ =
−𝑤10𝑤5+𝑤6𝑤8−𝑤10𝑤3𝑤5�̅�+𝑤7𝑤8�̅�+𝑤5𝑤9�̅�+𝑤3𝑤5𝑤9�̅�

2

𝑤11𝑤5−𝑤4𝑤6𝑤8+𝑤11𝑤3𝑤5�̅�−𝑤4𝑤7𝑤8�̅�

},                            (7a) 

where �̅� is a positive root of the polynomial equation of order seven. 

 

𝜇1𝑦
7 + 𝜇2𝑦

6 + 𝜇3𝑦
5 + 𝜇4𝑦

4 + 𝜇5𝑦
3 + 𝜇6𝑦

2 + 𝜇7𝑦 + 𝜇8 = 0,                             (7b) 

where the coefficients 𝜇𝑖 , 𝑖 = 1,2, … ,8 are determined using Mathematica program. Due to 

their large and intricate forms, they will not be provided here. However, direct computation 

demonstrates that the cohabitation equilibrium point 𝐸𝑥𝑦𝑧 can only be found inside octant’s 

interior, if there is a singular positive root for the Eq. (7b). Consequently, Eq. (7b) has at least 

one positive root provided that one of the following sets of conditions holds. 

 

             

𝜇1 < 0, 𝜇8 > 0
𝑜𝑟

 

𝜇1 > 0, 𝜇8 < 0
}.                     (8a) 

Moreover, for the positivity of 𝑧̅, it is necessary to have one set of the following sets of 

conditions:  

 

−𝑤10𝑤5 + 𝑤6𝑤8 − 𝑤10𝑤3𝑤5�̅� + 𝑤7𝑤8�̅� + 𝑤5𝑤9�̅� + 𝑤3𝑤5𝑤9�̅�
2 > 0

𝑤11𝑤5 − 𝑤4𝑤6𝑤8 +𝑤11𝑤3𝑤5�̅� − 𝑤4𝑤7𝑤8�̅� > 0
or

−𝑤10𝑤5 + 𝑤6𝑤8 − 𝑤10𝑤3𝑤5�̅� + 𝑤7𝑤8�̅� + 𝑤5𝑤9�̅� + 𝑤3𝑤5𝑤9�̅�
2 < 0

𝑤11𝑤5 − 𝑤4𝑤6𝑤8 +𝑤11𝑤3𝑤5�̅� − 𝑤4𝑤7𝑤8�̅� < 0 }
 
 

 
 

.        (8b) 

 

      Accordingly, 𝐸𝑥𝑦𝑧  can only be found uniquely in interior of  𝑅+
3   if and only if the above 

sufficient conditions are hold. 

4. LOCAL STABILITY ANALYSIS   

     The stability of the preceding equilibrium points is examined by calculating the Jacobian 

matrix denoted as 𝐿(𝑥, 𝑦, 𝑧) at the point  (𝑥, 𝑦, 𝑧) Subsequently, the eigenvalues are 

computed. The Jacobian matrix is defined as follows: 

𝐿(𝑥, 𝑦, 𝑧) =

[
 
 
 
 𝑥
𝜕𝑓1

𝜕𝑥
+ 𝑓1 𝑥

𝜕𝑓1

𝜕𝑦
𝑥
𝜕𝑓1

𝜕𝑧

𝑦
𝜕𝑓2

𝜕𝑥
𝑦
𝜕𝑓2

𝜕𝑦
+ 𝑓2 𝑦

𝜕𝑓2

𝜕𝑧

𝑧
𝜕𝑓3

𝜕𝑥
𝑧
𝜕𝑓3

𝜕𝑦
𝑧
𝜕𝑓3

𝜕𝑧
+ 𝑓3]

 
 
 
 

,                         (9) 

where 
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𝜕𝑓1
𝜕𝑥
= −1,   

𝜕𝑓1
𝜕𝑦
= −

𝑤1
(1 + 𝑤1(𝑦 + 𝑤2𝑧))

2
− (1 + 2𝑤3𝑦), 

𝜕𝑓1
𝜕𝑧
= −

𝑤1𝑤2
(1 + 𝑤1(𝑦 + 𝑤2𝑧))2

− (1 + 2𝑤4𝑧),    

𝜕𝑓2
𝜕𝑥
= 𝑤5 + 𝑤3𝑤5𝑦,   

𝜕𝑓2
𝜕𝑦
= 𝑤3𝑤5𝑥 − 𝑤7 ,   

𝜕𝑓2
𝜕𝑧
= 0,    

𝜕𝑓3
𝜕𝑥
= 𝑤8 + 𝑤4𝑤8𝑧,   

𝜕𝑓3
𝜕𝑦
= 𝑤9 ,   

𝜕𝑓3
𝜕𝑧
= 𝑤4𝑤8𝑥 − 𝑤11. 

The extinction equilibrium points 𝐸0, the Jacobian matrix is expressed as follows: 

 

𝐿(𝐸0) = [
1 0 0
0 −𝑤6 0
0 0 −𝑤10

].                                                  (10a)  

Then, the eigenvalues of the matrix  𝐿(𝐸0), are given by: 

𝜆01 = 1 > 0, 𝜆02 = −𝑤6 < 0, and 𝜆03 = −𝑤10 < 0.              

(10b) 

As a result, the extinction equilibrium point  𝐸0 is a saddle point. 

For axial equilibrium  𝐸1, the formula for the Jacobian matrix is: 

𝐿(𝐸1) = [
−1 −(1 + 𝑤1) −(1 + 𝑤1𝑤2)
0 𝑤5 − 𝑤6 0
0 0 𝑤8 − 𝑤10

].              (11a) 

Thus, the eigenvalues of the matrix  𝐿(𝐸1),  are determined by: 

𝜆11 = −1 < 0,   𝜆12 = 𝑤5 − 𝑤6,   and   𝜆13 = 𝑤8 − 𝑤10.             (11b) 

Clearly, all the above eigenvalues are negative if and only if the following conditions are 

satisfied, 𝐸1  is locally asymptotically stable: 

𝑤5 < 𝑤6,                     (11c) 

𝑤8 < 𝑤10.                     (11d) 

For the equilibrium in the absence of scavenger  𝐸𝑥𝑦 = (�̌�, �̌�, 0),  the formula for the Jacobian 

matrix is: 

𝐿(𝐸𝑥𝑦) = [

−�̌� −�̌�(
𝑤1

(1+𝑤1�̌�)2
+ 1 + 2𝑤3�̌�) −�̌�(

𝑤1𝑤2

(1+𝑤1�̌�)2
+ 1)

�̌�(𝑤5 + 𝑤3𝑤5�̌�) �̌�(𝑤3𝑤5�̌� − 𝑤7) 0
0 0 𝑤8�̌� + 𝑤9�̌� − 𝑤10

].          (12a) 

The following can be used to express the characteristic equation of 𝐿(𝐸𝑥𝑦): 

 

Clearly, the characteristic equation of  𝐿(𝐸𝑥𝑦)  can be written as follows: 

[𝜆2 − 𝑇𝑥𝑦𝜆 + 𝐷𝑥𝑦][𝑤8�̌� + 𝑤9�̌� − 𝑤10 − 𝜆] = 0,              (12b) 

𝑇𝑥𝑦 = −�̌� + �̌�(𝑤3𝑤5�̌� − 𝑤7), 

𝐷𝑥𝑦 = −�̌��̌�(𝑤3𝑤5�̌� − 𝑤7) + �̌��̌� (
𝑤1

(1 + 𝑤1�̌�)2
+ 1 + 2𝑤3�̌�) (𝑤5 + 𝑤3𝑤5�̌�). 

Therefore, the eigenvalues of  𝐿(𝐸𝑥𝑦) are obtained as: 

𝜆2𝑖 =
𝑇𝑥𝑦

2
±√𝑇𝑥𝑦2 − 4𝐷𝑥𝑦, for 𝑖 = 1,2 and  𝜆23 = 𝑤8�̌� + 𝑤9�̌� − 𝑤10.  

Obviously, all the eigenvalues have negative real parts and hence  𝐸𝑥𝑦 = (�̌�, �̌�, 0) is locally 

asymptotical provided that the following conditions hold. 

�̌� <
𝑤10−𝑤9�̌�

𝑤8
,                   (12c) 

�̌� <
�̌�

𝑤3𝑤5�̌�−𝑤7
.                   (12d) 

the Jacobian matrix for the equilibrium 𝐸𝑥𝑧 = (�̃�, 0, �̃�), is as follows: 
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𝐿(𝐸𝑥𝑧) = [

−�̃� −�̃�(
𝑤1

(1+𝑤1𝑤2𝑧)2
+ 1) −�̃�(

𝑤1𝑤2

(1+𝑤1𝑤2𝑧)2
+ 1 + 2𝑤4�̃�)

0 𝑤5�̃� − 𝑤6 0
�̃�(𝑤8 + 𝑤4𝑤8�̃�) �̃�𝑤9 �̃�(𝑤4𝑤8�̃� − 𝑤11)

].         (13a) 

The following can be used to express the characteristic equation of  𝐿(𝐸𝑥𝑧) : 
[𝜆2 − 𝑇𝑥𝑧𝜆 + 𝐷𝑥𝑧][𝑤5�̃� − 𝑤6 − 𝜆] = 0,                                                (13b) 

where 

𝑇𝑥𝑧 = −�̃� + �̃�(𝑤4𝑤8�̃� − 𝑤11), 

𝐷𝑥𝑧 = −�̃��̃�(𝑤4𝑤8�̃� − 𝑤11) + �̃��̃� (
𝑤1𝑤2

(1 + 𝑤1𝑤2�̃�)2
+ 1 + 2𝑤4�̃�) (𝑤8 +𝑤4𝑤8�̃�). 

Therefore, the eigenvalues of  𝐿(𝐸𝑥𝑧) are obtained as: 

𝜆3𝑖 =
𝑇𝑥𝑧

2
±√𝑇𝑥𝑧2 − 4𝐷𝑥𝑧, for 𝑖 = 1,3 and  𝜆32 = 𝑤5�̃� − 𝑤6.  

As a consequence, the real components for every eigenvalue are negative, hence  𝐸𝑥𝑧 =
(�̃�, 0, �̃�) is locally asymptotical provided that the following conditions hold. 

�̃� <
𝑤6

𝑤5
,                                                                                                              

(13c) 

�̃� <
�̃�

𝑤4𝑤8�̃�−𝑤11
.                                                                     (13d) 

 

Theorem 2. Assume that the cohabitation equilibrium point 𝐸𝑥𝑦𝑧 = (�̅�, �̅�, 𝑧̅) of Eq. (2) exists, 

if the subsequent sufficient conditions are hold then it is locally asymptotically stable  

�̅� < min {
𝑤7

𝑤3𝑤5
,
𝑤11

𝑤4𝑤8
},                                                                                               

(14a) 

𝑙31(𝑙11 + 𝑙22 + 𝑙33) + (𝑙21𝑙32 − 𝑙22𝑙31) < 0,                            (14b) 

where 𝑙𝑖𝑗; 𝑖, 𝑗 = 1,2,3 are the Jacobian matrix elements at 𝐸𝑥𝑦𝑧. 

 

Proof. At cohabitation equilibrium point  𝐸𝑥𝑦𝑧 = (�̅�, �̅�, 𝑧̅) of Eq. (2), The Jacobian 

can be expressed as: 

𝐿(𝐸𝑥𝑦𝑧) = [𝑙𝑖𝑗]3×3,                  (15a) 

where 

𝑙11 = −�̅�,  𝑙12 = −�̅�(
𝑤1

(1+𝑤1(�̅�+𝑤2�̅�))2
+ 1 + 2𝑤3�̅�),  

𝑙13 = −�̅� (
𝑤1𝑤2

(1+𝑤1(�̅�+𝑤2�̅�))2
+ 1 + 2𝑤4𝑧̅),  

𝑙21 = �̅�(𝑤5 + 𝑤3𝑤5�̅�),  𝑙22 = �̅�(𝑤3𝑤5�̅� − 𝑤7),  𝑙23 = 0,  
𝑙31 = 𝑧̅(𝑤8 + 𝑤4𝑤8𝑧̅),  𝑙32 = 𝑤9𝑧̅,  𝑙33 = 𝑧̅(𝑤4𝑤8�̅� − 𝑤11). 
Then, the characteristic equations of  𝐿(𝐸𝑥𝑦𝑧)  is given by: 

𝜆3 + 𝐴𝜆2 + 𝐵𝜆 + 𝐶 = 0,                            (15b) 

where 

𝐴 = −(𝑙11 + 𝑙22 + 𝑙33),   𝐵 = 𝑙11𝑙22 − 𝑙12𝑙21 + 𝑙11𝑙33 − 𝑙13𝑙31 + 𝑙22𝑙33, 
𝐶 = −(𝑙11𝑙22𝑙33 + 𝑙13𝑙21𝑙32 − 𝑙13𝑙22𝑙31 − 𝑙12𝑙21𝑙33). 
And 

∆= 𝐴𝐵 − 𝐶 = −(𝑙11 + 𝑙22)[𝑙11𝑙22 − 𝑙12𝑙21] 
−(𝑙11 + 𝑙33)[𝑙11𝑙33 − 𝑙13𝑙31] − (𝑙22𝑙33)[𝑙11 + 𝑙22 + 𝑙33] 
−𝑙11𝑙22𝑙33 + 𝑙13𝑙21𝑙32. 

 
∆= 𝐴𝐵 − 𝐶 = −(𝑙11 + 𝑙22)[𝑙11𝑙22 − 𝑙12𝑙21] − 𝑙11𝑙33(𝑙11 + 𝑙33) − 𝑙22𝑙33(𝑙22 + 𝑙33)

−2𝑙11𝑙22𝑙33 + 𝑙13𝑙31(𝑙11 + 𝑙22 + 𝑙33) + 𝑙13(𝑙21𝑙32 − 𝑙22𝑙31).
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Clearly, the conditions (14a)-(14b) verification 𝐴 > 0,   𝐶 > 0,  and  ∆> 0. By using the 

Routh-Hurwitz criterion, all the eigenvalues of Eq. (15b) have negative real parts. Therefore,  

𝐸𝑥𝑦𝑧 is locally asymptotically stable. 

 

5. Persistence 

     The persistence of Eq. (2) is obtained in this section. The Eq. (2) is considered be 

persistent if and only if none of their species become extinct. This means there is no omega 

limit set determined by the bounds of 𝑅+
3  for Eq. (1). The existence of periodic dynamics in 

the border planes must first be confirmed. It appears simply mentioning that the Eq. (2) 

provides two subsystems can be obtained from Eq.(2), which belongs to 𝑥𝑦 −plane and 

𝑥𝑧 −plane consequently. The following is a technique to write these subsystems: 
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤1𝑦
− 𝑥 − (1 + 𝑤3𝑦)𝑦] = ℎ1(𝑥, 𝑦)    

𝑑𝑦

𝑑𝑡
= 𝑦[𝑤5(1 + 𝑤3𝑦)𝑥 − 𝑤6 − 𝑤7𝑦] = ℎ2(𝑥, 𝑦).

                (16) 

And  
𝑑𝑥

𝑑𝑡
= 𝑥 [

1

1+𝑤1𝑤2𝑧
− 𝑥 − (1 + 𝑤4𝑧)𝑧] = 𝑔1(𝑥, 𝑧)     

𝑑𝑧

𝑑𝑡
= 𝑧[𝑤8(1 + 𝑤4𝑧)𝑥 − 𝑤10 − 𝑤11𝑧] = 𝑔2(𝑥, 𝑧).

     (17) 

 

      Obviously, subsystems (16) and (17) lie in the interior of 𝑥𝑦 −plane and 𝑥𝑧 −plane 

respectively. Now, define the Dulac function as 𝑄1(𝑥, 𝑦) =
1

𝑥𝑦
, that satisfies 𝑄1(𝑥, 𝑦) > 0, 

and 𝐶1 function in the 𝑖𝑛𝑡 𝑅+
2  of 𝑥𝑦 −plane. Then 

∆(𝑥, 𝑦) =
𝜕(𝑄1ℎ1)

𝜕𝑥
+
𝜕(𝑄1ℎ2)

𝜕𝑦
= −

1

𝑦
+ 𝑤3𝑤5 −

𝑤7
𝑥
. 

Since, ∆(𝑥, 𝑦) does not identically zero and does not change the sign in the 𝑖𝑛𝑡 𝑅+
2  of the 

𝑥𝑦 −plane provided that the following condition holds: 

𝑤3𝑤5 >
1

𝑦
+
𝑤7

𝑥

𝑜𝑟

𝑤3𝑤5 <
1

𝑦
+
𝑤7

𝑥

} .                                                                                                          (18) 

 

      Thus, by using the Dulic-Bendixon’s criterion, the 𝑖𝑛𝑡 𝑅+
2  has no closed curves of the 

𝑥𝑦 −plane. Therefore, depending on the Poincare-Bendixson theorem states that wherever it 

exists, the unique equilibrium points in the 𝑖𝑛𝑡 𝑅+
2  of the 𝑥𝑦 −plane that given by  (�̌�, �̌�)will 

be both locally and globally asymptotically stable. 

Similarly, by using 𝐶1 function in the 𝑖𝑛𝑡 𝑅+
2  of 𝑥𝑧 −plane, which define by using Dulac 

function as  𝑄2(𝑥, 𝑧) =
1

𝑥𝑧
. It is observed that there is no periodic dynamics in the 𝑖𝑛𝑡 𝑅+

2  of 

the 𝑥𝑧 −plane that given by (�̃�, �̃�) provided that the following condition holds: 

𝑤4𝑤8 >
1

𝑧
+
𝑤11

𝑥
𝑜𝑟

𝑤4𝑤8 <
1

𝑧
+
𝑤11

𝑥

}.                     (19) 

 

         Consequently, the only equilibrium points 𝑖𝑛𝑡 𝑅+
2  of the 𝑥𝑧 −plane shall be both locally 

and globally asymptotically stable whenever it occurs.  

 

Theorem 3. If conditions (4), (6) with the following conditions have been satisfied, Eq. (2) is 

uniformly persistent. 
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�̌� >
𝑤10−𝑤9�̌�

𝑤8
,                   (20a) 

�̃� >
𝑤6

𝑤5
.                   (20b) 

 
Proof. Define the following function 𝜎(𝑥, 𝑦, 𝑧) = 𝑥𝑝1𝑦𝑝2𝑧𝑝3 as an average Lyapunov 

function, where 𝑝1, 𝑝2, 𝑝3 are positive constants. Obviously,  𝜎(𝓍, 𝑦, 𝑧) is a 𝐶1 positive 

function defined in 𝑖𝑛𝑡 𝑅+
3 , and if 𝑥 → 0 or 𝑦 → 0 or 𝑧 → 0, as result 𝜎(𝑥, 𝑦, 𝑧) → 0. 

Accordingly, the following is obtained: 

Ω(𝓍, 𝑦, 𝑧) =
𝜎′(𝓍, 𝑦, 𝑧)

𝜎(𝓍, 𝑦, 𝑧)
=  𝑝1 [

1

𝑤1(𝑦 + 𝑤2𝑧) + 1
− 𝑥 − (𝑤3𝑦 + 1)𝑦 − (1 + 𝑤4𝑧)𝑧] 

+ 𝑝2[𝑤5(1 + 𝑤3𝑦)𝑥 − 𝑤6 − 𝑤7𝑦] + 𝑝3[𝑤8(1 + 𝑤4𝑧)𝑥 + 𝑤9𝑦 − 𝑤10 − 𝑤11𝑧]. 
Therefore, according to technique of the average Lyapunov function that proposed by Gard, 

the proof is complete if Ω(𝑥, 𝑦, 𝑧) for any boundary equilibrium points is positive, for a 

suitable selection of the positive constant 𝑝𝑖, 𝑖 = 1,2,3. Since 

Ω(𝐸0) = 𝑝1 − 𝑝2𝑤6 − 𝑝3𝑤10, 
Ω(𝐸1) = 𝑝2(𝑤5 − 𝑤6) + 𝑝3(𝑤8 − 𝑤10), 

Ω(𝐸𝑥𝑦) = 𝑝1 [
1

1+𝑤1�̌�
− �̌� − (1 + 𝑤3�̌�)�̌�] + 𝑝2[𝑤5(1 + 𝑤3�̌�)�̌� − 𝑤6 − 𝑤7�̌�] + 𝑝3[𝑤8�̌� +

𝑤9�̌� − 𝑤10], 

Ω(𝐸𝑥𝑧) = 𝑝1 [
1

1 + 𝑤1𝑤2�̃�
− �̃� − (1 + 𝑤4�̃�)�̃�] + 𝑝2[𝑤5�̃� − 𝑤6]

+ 𝑝3[𝑤8(1 + 𝑤4�̃�)�̃� − 𝑤10 − 𝑤11�̃�]. 
Consequently, by choosing 𝑝1 to be a significant enough value to get Ω(𝐸0)  greater then zero  

in regards to 𝑝2 and 𝑝3. However, Ω(𝐸1), Ω(𝐸𝑥𝑦) as and Ω(𝐸𝑥𝑧) positive as long as required 

conditions (20a), (20b), (4), and (6) holds subsequently. 

 

6. Global stability nalysis  

     In this section, the global stability for each equilibrium point is determined with help of 

the method of Lyapunov function as shown in the next theorems. 

 

Theorem (4): If we assume that 𝐸1 is locally asymptotically stable, then it can be said to be 

globally-asymptotically stable under the  following conditions: 
𝑤6

𝑤5
> 𝑤1 + 1 + 𝑤3𝑦,                 (21a) 

 
𝑤10

𝑤8
> 𝑤1𝑤2 + 1 + 𝑤4𝑧 +

𝑤9

𝑤8
𝜂.               (21b) 

 

Proof: Consider the real-valued function  𝑈1 = 𝑘1 (𝑥 − �̂� − �̂� 𝑙𝑛
𝑥

�̂�
) + 𝑘2𝑦 + 𝑘3𝑧, where the 

constants 𝑘𝑖 > 0; 𝑖 = 1,2,3, to be determined. Clearly,  the positive define function 𝑈1 shows 

that  𝑈1: 𝑅+
3 → 𝑅, so that 𝑈1(𝐸1) = 0 and 𝑈1(𝓍, 𝑦, 𝑧), greater than zero ∀{(𝑥, 𝑦, 𝑧) ∈ 𝑅+

3 : 𝑥 >

0, 𝑦 and 𝑧 ≥ 0, (𝑥, 𝑦, 𝑧) ≠ 𝐸1}. Then, 
𝑑𝑈1

𝑑𝑡
  is given by: 

𝑑𝑈1
𝑑𝑡

= 𝑘1 (
𝑥 − �̂�

𝑥
)
𝑑𝑥

𝑑𝑡
+ 𝑘2

𝑑𝑦

𝑑𝑡
+ 𝑘3

𝑑𝑧

𝑑𝑡
. 

𝑑𝑈1
𝑑𝑡

≤ −𝑘1(𝑥 − �̂�)
2 − 𝑘1

𝑤1(𝑦 + 𝑤2𝑧)𝑥

1 + 𝑤1(𝑦 + 𝑤2𝑧)
+ 𝑘1

𝑤1(𝑦 + 𝑤2𝑧)�̂�

1 + 𝑤1(𝑦 + 𝑤2𝑧)
 

−(𝑘1 − 𝑘2𝑤5)(1 + 𝑤3𝑦)𝑥𝑦 + 𝑘1(1 + 𝑤3𝑦)�̂�𝑦 − (𝑘1 − 𝑘3𝑤8)(1 + 𝑤4𝑧)𝑥𝑧 
+𝑘1(1 + 𝑤4𝑧)�̂�𝑧 − 𝑘2𝑤6𝑦 + 𝑘3𝑤9𝑦𝑧 − 𝑘3𝑤10𝑧. 
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Choosing the positive constant values as  𝑘1 = 1, 𝑘2 =
1

𝑤5
, and 𝑘3 =

1

𝑤8
, and by using the 

maximize concept with the upper bound constant 𝜂, we obtained that: 
𝑑𝑈1
𝑑𝑡
≤ −(𝑥 − 1)2 − [

𝑤6
𝑤5
− 𝑤1 − (1 + 𝑤3𝑦)] 𝑦 − [

𝑤10
𝑤8
− 𝑤1𝑤2 − (1 + 𝑤4𝑧) −

𝑤9
𝑤8
𝜂] 𝑧. 

Hence, conditions (21a) and (21b) lead to 
𝑑𝑈1

𝑑𝑡
< 0. So that 𝐸1 is globally-asymptotically 

stable. 

 

Theorem 5. If 𝐸𝑥𝑦 is assumed to be locally asymptotically stable, then it can be declared 

globally asymptotically stable as long as the following conditions are hold: 
𝑤10

𝑤8
>
𝑤9

𝑤8
𝜂 + �̌�(𝑏44 + 1),                 (22a) 

�̌� < 𝑚𝑖𝑛{
𝑤7

𝑤3𝑤5
,
𝑤11

𝑤4𝑤8
}.                  (22b)                                                                                                         

 

Proof. Consider the real-valued function  𝑈2 = ɣ1 (−�̌� + 𝑥 − �̌� 𝑙𝑛
𝑥

�̌�
) + ɣ2 (−�̌� + 𝑦 −

�̌� 𝑙𝑛
𝑦

�̌�
) + ɣ3𝑧,  where the constants ɣ1, ɣ2, ɣ3 greater than zero to be selected. Clearly,  the 

positive define function 𝑈2 shows that  𝑈2: 𝑅+
3 → 𝑅, so that 𝑈2(𝐸𝑥𝑦) = 0 and 

𝑈2(𝑥, 𝑦, 𝑧) positive for all {(𝑥, 𝑦, 𝑧) ∈ 𝑅+
3 : 𝑥 > 0, 𝑦 > 0 & 𝑧 ≥ 0, (𝑥, 𝑦, 𝑧) ≠ 𝐸𝑥𝑦}. Then, 

𝑑𝑈2

𝑑𝑡
  

is given by: 
𝑑𝑈2
𝑑𝑡

= ɣ1 (
𝑥 − �̌�

𝑥
)
𝑑𝑥

𝑑𝑡
+ ɣ2 (

𝑦 − �̌�

𝑦
)
𝑑𝑦

𝑑𝑡
+ ɣ3

𝑑𝑧

𝑑𝑡
. 

𝑑𝑈2
𝑑𝑡

≤ −ɣ1(𝑥 − �̌�)
2 − [ɣ2𝑤7 − ɣ2�̌�𝑤3𝑤5](𝑦 − �̌�)

2 

−[
ɣ1𝑤1

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1�̌�)
+ ɣ1 + ɣ1𝑤3�̌� − ɣ2𝑤5] (𝑦 − �̌�)(𝑥 − �̌�) 

−[ɣ1𝑤3 − ɣ2𝑤3𝑤5](𝑦 − �̌�)(𝑥 − �̌�)𝑦 − [ɣ1𝑤4 − ɣ3𝑤4𝑤8]𝑥𝑧
2 

−[
ɣ1𝑤1𝑤2

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1�̌�)
+ ɣ1 − ɣ3𝑤8] 𝑥𝑧 

−[ɣ3𝑤10 − ɣ3𝑤9𝜂 − ɣ1�̌� −
ɣ1�̌� 𝑤1𝑤2

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1�̌�)
] 𝑧 

−[ɣ3𝑤11 − ɣ1𝑤4�̌�]𝑧
2. 

 

      Choosing the positive constant values as   ɣ1 = 1, ɣ2 =
1

𝑤5
, and ɣ3 =

1

𝑤8
,and by using the 

maximize concept with the upper bound constant 𝜂, we obtained that: 
𝑑𝑈2
𝑑𝑡

≤ −(𝑥 − �̌�)2 − [𝑏11 + 𝑤3�̌�](𝑦 − �̌�)(𝑥 − �̌�) − 𝑏22(𝑦 − �̌�)
2 

−𝑏33𝑥𝑧 − [
𝑤10
𝑤8
−
𝑤9
𝑤8
𝜂 − �̌�(𝑏44 + 1)] 𝑧 − [

𝑤11
𝑤8
− 𝑤4�̌�] 𝑧

2. 

Then by using the above conditions (22a) and (22b), we obtain that: 
𝑑𝑈2
𝑑𝑡

≤ −[(𝑥 − �̌�) − √𝑏22(𝑦 − �̌�)]
2 − 𝑏33𝑥𝑧 

−[
𝑤10
𝑤8
−
𝑤9
𝑤8
𝜂 − �̌�(𝑏44 + 1)] 𝑧 − [

𝑤11
𝑤8
− 𝑤4�̌�] 𝑧

2. 
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Where 𝑏11 =
𝑤1

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1�̌�)
,   𝑏22 = [

𝑤7

𝑤5
− �̌�𝑤3], 𝑏33 =

𝑤1𝑤2

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1�̌�)
, and 

𝑏44 =
 𝑤1𝑤2

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1�̌�)
. According to, conditions (22a) and (22b) lead to  

𝑑𝑈2

𝑑𝑡
< 0. So 

that 𝐸𝑥𝑦 is globally-asymptotically stable. 

 

Theorem 6. If 𝐸𝑥𝑧 is assumed to be locally asymptotically stable, then it can be declared 

globally-asymptotically stable as long as the following conditions are hold: 

�̃� < 𝑚𝑖𝑛{
𝑤7

𝑤3𝑤5
,
𝑤11

𝑤4𝑤8
}                 (23a) 

 
𝑤6

𝑤5
> �̃�(𝑐44 + 1) +

𝑤9

𝑤8
(𝑧 − �̃�).                                                                                    (23b) 

 

Proof: Consider the real-valued function 𝑈3 = 𝜌1 (𝑥 − �̃� − �̃� 𝑙𝑛
𝑥

�̃�
) + 𝜌2𝑦 + 𝜌3(𝑧 − �̃� −

�̃� 𝑙𝑛
𝑧

𝑧
). Where the constants 𝜌𝑖 > 0; 𝑖 = 1,2,3, to be determined. Clearly, the positive define 

function 𝑈3 shows that  𝑈3: 𝑅+
3 → 𝑅, so that 𝑈3(𝐸𝑥𝑧) = 0 and 

𝑈3(𝑥, 𝑦, 𝑧) 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∀{(𝑥, 𝑦, 𝑧) ∈ 𝑅+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0, (𝑥, 𝑦, 𝑧) ≠ 𝐸𝑥𝑧}. Then, 

𝑑𝑈3

𝑑𝑡
  is 

given by: 
𝑑𝑈3
𝑑𝑡

= 𝜌1 (
𝑥 − �̃�

𝑥
)
𝑑𝑥

𝑑𝑡
+ 𝜌2

𝑑𝑦

𝑑𝑡
+ 𝜌3 (

𝑧 − �̃�

𝑧
)
𝑑𝑧

𝑑𝑡
. 

𝑑𝑈3
𝑑𝑡

≤ −𝜌1(𝑥 − �̃�)
2 − [𝜌3𝑤11 − 𝜌3�̃� 𝑤4𝑤8](𝑧 − �̃�)

2 

−[
𝜌1 𝑤1𝑤2

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1𝑤2�̃�)
+ 𝜌1 + 𝜌1�̃� 𝑤4 − 𝜌3𝑤8] (𝑥 − �̃�)(𝑧 − �̃�) 

−[𝜌1𝑤4 − 𝜌3𝑤4𝑤8](𝑥 − �̃�)(𝑧 − �̃�)𝑧 − [𝜌1𝑤3 − 𝜌2𝑤3𝑤5]𝑥𝑦
2 

−[
𝜌1 𝑤1

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1𝑤2�̃�)
+ 𝜌1 − 𝜌2𝑤5] 𝑥𝑦 − [𝜌2𝑤7 − 𝜌1�̃� 𝑤3]𝑦

2 

−[𝜌2𝑤6 −
𝜌1�̃� 𝑤1

(1 + 𝑤1(𝑦 + 𝑤2𝑧))(1 + 𝑤1𝑤2�̃�)
− 𝜌1�̃� − 𝜌3(𝑧 − �̃�)𝑤9] 𝑦. 

Choosing the positive constant values as  𝜌1 = 1, 𝜌2 =
1

𝑤5
, and 𝜌3 =

1

𝑤8
, then we obtained 

that: 
𝑑𝑈3
𝑑𝑡

≤ −(𝑥 − �̃�)2 − [𝑐11 + �̃� 𝑤4](𝑧 − �̃�)(𝑥 − �̃�) − 𝑐22(𝑧 − �̃�)
2 

−𝑐33𝑥𝑦 − [
𝑤7
𝑤5
− �̃� 𝑤3] 𝑦

2 − [
𝑤6
𝑤5
− �̃�(𝑐44 + 1) −

𝑤9
𝑤8
(𝑧 − �̃�)] 𝑦. 

Then by using the above conditions (23a) and (23b), we obtain that: 
𝑑𝑈3
𝑑𝑡

≤ −[(𝑥 − �̃�) + √𝑐22(𝑧 − �̃�)]
2 − 𝑐33𝑥𝑦 

−[
𝑤7
𝑤5
− �̃� 𝑤3] 𝑦

2 − [
𝑤6
𝑤5
− �̃�(𝑐44 + 1) −

𝑤9
𝑤8
(𝑧 − �̃�)] 𝑦. 

Where  𝑐11 =
 𝑤1𝑤2

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1𝑤2𝑧)
,  𝑐22 = [

𝑤11

𝑤8
− �̃�𝑤4] , 𝑐33 =

 𝑤1

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1𝑤2𝑧)
, 

and 𝑐44 =
 𝑤1

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1𝑤2𝑧)
.Clearly, the conditions (23a) and (23b) lead to  

𝑑𝑈3

𝑑𝑡
< 0. So 

that 𝐸𝑥𝑧 is globally-asymptotically stable. 

Theorem 7. Assume that 𝐸𝑥𝑦𝑧 is locally asymptotically stable, then it is globally 

asymptotically stable provided that the following conditions hold: 

(𝐵1)
2 < 𝐵2,                                                                          (24a) 
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(𝐵4)
2 < 𝐵3,                   (24b) 

(𝐵5)
2 < 𝐵2𝐵3.                   (24c) 

�̅� < 𝑚𝑖𝑛{
𝑤11

𝑤4𝑤8
  ,  

𝑤7

𝑤3𝑤5
}.                                                                                              (24d) 

 

Proof. Let the real-valued function 𝑈4 = 𝑞1 (𝑥 − �̅� − �̅� 𝑙𝑛
𝑥

�̅�
) + 𝑞2(𝑦 − �̅� − �̅� 𝑙𝑛

𝑦

�̅�
) + 𝑞3(𝑧 −

𝑧̅ − 𝑧̅ 𝑙𝑛
𝑧

�̅�
). Where the constants 𝑞𝑖 > 0; 𝑖 = 1,2,3, to be determined. Clearly,  the positive 

define function 𝑈4: 𝑅+
3 → 𝑅, so that 𝑈4(𝐸𝑥𝑦𝑧) = 0 and 𝑈4(𝑥, 𝑦, 𝑧) > 0, for all {(𝑥, 𝑦, 𝑧) ∈

𝑅+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0, (𝑥, 𝑦, 𝑧) ≠ 𝐸𝑥𝑦𝑧}. Then, 

𝑑𝑈4

𝑑𝑡
  is given by: 

𝑑𝑈4
𝑑𝑡

= 𝑞1 (
𝑥 − �̅�

𝑥
)
𝑑𝑥

𝑑𝑡
+ 𝑞2 (

𝑦 − �̅�

𝑦
)
𝑑𝑦

𝑑𝑡
+ 𝑞3 (

𝑧 − 𝑧̅

𝑧
)
𝑑𝑧

𝑑𝑡
. 

𝑑𝑈4
𝑑𝑡

= −(𝑥 − �̅�)2 − [
𝑤7
𝑤5
− �̅�𝑤3] (𝑦 − �̅�)

2 − [
𝑤11
𝑤8
− �̅�𝑤4] (𝑧 − 𝑧̅)

2 

−[
 𝑤1

𝑇�̅�
+ �̅� 𝑤3] (𝑦 − �̅�)(𝑥 − �̅�) 

−[
 𝑤1𝑤2

𝑇�̅�
+ 𝑧̅ 𝑤4] (𝑧 − 𝑧̅)(𝑥 − �̅�) 

+
𝑤9
𝑤8
(𝑧 − 𝑧̅)(𝑦 − �̅�). 

 

     Where 𝑇 = (1 + 𝑤1(𝑦 + 𝑤2𝑧)), and  �̅� = (1 + 𝑤1(�̅� + 𝑤2𝑧̅)). Therefore, by choosing 

the positive constant values as  𝑞1 = 1, 𝑞2 =
1

𝑤5
, and 𝑞3 =

1

𝑤8
,  then after some algebraic 

computation, we obtained: 
𝑑𝑈4
𝑑𝑡

= −
1

2
(𝑥 − �̅�)2 − 𝐵1(𝑦 − �̅�)(𝑥 − �̅�) −

𝐵2
2
(𝑦 − �̅�)2 

−
1

2
(𝑥 − �̅�)2 − 𝐵4(𝑧 − 𝑧̅)(𝑥 − �̅�) −

𝐵3
2
(𝑧 − 𝑧̅)2 

−
𝐵2
2
(𝑦 − �̅�)2 − 𝐵5(𝑧 − 𝑧̅)(𝑦 − �̅�) −

𝐵3
2
(𝑧 − 𝑧̅)2. 

Then by using the above conditions (24a), (24b), and (24c), we obtain that: 
𝑑𝑈4
𝑑𝑡

≤ −
1

2
[(𝑥 − �̅�) + √𝐵2(𝑦 − �̅�)]

2 −
1

2
[(𝑥 − �̅�) + √𝐵3(𝑧 − 𝑧̅)]

2 

−
1

2
[√𝐵2(𝑦 − �̅�) + √𝐵3(𝑧 − 𝑧̅)]

2. 

Where 𝐵1 =
 𝑤1

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1(�̅�+𝑤2�̅�))
+ �̅� 𝑤3, 𝐵2 =

𝑤7

𝑤5
− �̅�𝑤3,  𝐵3 =

𝑤11

𝑤8
− �̅�𝑤4, 𝐵4 =

 𝑤1𝑤2

(1+𝑤1(𝑦+𝑤2𝑧))(1+𝑤1(�̅�+𝑤2�̅�))
+ 𝑧̅ 𝑤4 and 𝐵5 =

𝑤9

𝑤8
. Clearly, the conditions (24a), (24b), and 

(24c) lead to  
𝑑𝑈4

𝑑𝑡
< 0. So that 𝐸𝑥𝑦𝑧 is globally asymptotically stable. 

 

7. Local bifurcation analysis  

     In this section, the occurrence of local bifurcation is determined utilizing Sotomayor's 

theorem. In a dynamical system the possible bifurcation parameter is specified, such that, for 

a given value of that parameter, the equilibrium point is not hyperbolic, because the presence 

of a non-hyperbolic equilibrium point represents a necessary but not sufficient condition for 

local bifurcation to occur. Hence, Eq. (2) can be rewritten in the vector form: 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋),                     (25)  

Where  𝑋 = (𝑥, 𝑦, 𝑧)𝑇 , and 𝐹(𝑥) = (𝑥𝑓1, 𝑦𝑓2, 𝑧𝑓3)
𝑇 . 
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Now, for any vector 𝑉 = (𝑣1, 𝑣2, 𝑣3)
𝑇 , the second directional derivative of Eq. (25) with 

concerning 𝑋 can be obtained as: 

𝐷2𝐹(𝑋)(𝑉, 𝑉) = [𝛬𝑖𝑗]3×1.        (26)  

Where 

𝛬11 = −2𝑣1
2 − 2 [1 + 2𝑤3𝑦 +

𝑤1
(1 + 𝑤1(𝑦 + 𝑤2𝑧))2

] 𝑣1𝑣2 

−2 [1 + 2𝑤4𝑧 +
𝑤1𝑤2

(1+𝑤1(𝑦+𝑤2𝑧))2
] 𝑣1𝑣3 + 2 [−𝑤3𝑥 +

𝑤1
2𝑥

(1+𝑤1(𝑦+𝑤2𝑧))3
] 𝑣2
2  

+4 [
𝑤1
2𝑤2𝑥

(1 + 𝑤1(𝑦 + 𝑤2𝑧))3
] 𝑣2𝑣3 + 2 [−𝑤4𝑥 +

𝑤1
2𝑤2

2𝑥

(1 + 𝑤1(𝑦 + 𝑤2𝑧))3
] 𝑣3
2. 

𝛬21 = 2[𝑤5 + 2𝑤3𝑤5𝑦]𝑣1𝑣2 + 2[−𝑤7 + 𝑤3𝑤5𝑥]𝑣2
2. 

𝛬31 = 2[𝑤8 + 2𝑤4𝑤8𝑧]𝑣1𝑣3 + 2𝑤9𝑣2𝑣3 + 2[−𝑤11 + 𝑤4𝑤8𝑥]𝑣3
2. 

 

Theorem 8. Suppose that condition (11c) holds, then the Eq.(2) around the equilibrium in the 

absence of predation 𝐸1 undergoes Transcritical bifurcation at 𝑤8  is equal to  𝑤10 = 𝑤10
∗  

with the following condition  

        𝑤11 > 𝑤8(𝛼1 + 1).                                                                                            ( 27) 

 

Proof. It is easy to verify that the Jacobian matrix that is given by (11a), with 𝑤10 = 𝑤10
∗  can 

be written as the following form: 

𝐿(𝐸1, 𝑤10
∗ ) = (

−1 −𝑤1 − 1 −𝑤1𝑤2 − 1
0       𝑤5 − 𝑤6 0
0 0 0

) . 

 

     Where 𝜆11 = −1, 𝜆12 = 𝑤5 − 𝑤6 < 0 are eigenvalues of  𝐿(𝐸1, 𝑤10
∗ ) under conditions 

(11c) and 𝜆13
∗ = 0. So that, the equilibrium in the absence of predation 𝐸1 becomes a non-

hyperbolic point. 

Let the vector  𝑉1 = (𝑣11, 𝑣12, 𝑣13)
𝑇 be the eigenvector of  𝐿(𝐸1, 𝑤10

∗ ) associated with 

eigenvalue 𝜆13
∗ = 0. Therefore, the straightforward calculation obtained that 𝑉1 =

(𝛼1𝑣13, 0, 𝑣13)
𝑇 , where  𝑣13 be any real number not equal zero, and 𝛼1 = −(𝑤1𝑤2 + 1) < 0. 

Let the vector  𝛹1 = (𝛹11, 𝛹12, 𝛹13)
𝑇 be the eigenvector of 𝐿(𝐸1, 𝑤10

∗ )𝑇 associated with the 

zero eigenvalue 𝜆13
∗ = 0. Therefore, the direct computation obtained that 𝛹1 = (0,0, 𝛹13)

𝑇 , 
where 𝛹13 be any real number not equal zero. 

Accordingly, 
𝜕𝐹

𝜕𝑤10
= 𝐹𝑤10 = (0,0, −𝑧)

𝑇 , hence it gives that 𝐹𝑤10(𝐸1, 𝑤10
∗ ) = (0,0,0)𝑇, that 

leads to  𝛹1
𝑇[𝐹𝑤10(𝐸1, 𝑤10

∗ )] = 0. 

Therefore, when 𝑤10 = 𝑤10
∗ , thus there is no saddle-node bifurcation in Eq. (2) at 𝐸1. 

Moreover, the direct calculation  

 gives that: 

𝐷𝐹𝑤10(𝐸1, 𝑤10
∗ ) = (

0 0 0
0 0 0
0 0 −1

)
         
⇒    𝐷𝐹𝑤10(𝐸1, 𝑤10

∗ )𝑉1 = (0,0, −𝑣13)
𝑇 . 

Then, 𝛹1
𝑇[𝐷𝐹𝑤10(𝐸1, 𝑤10

∗ )𝑉1] = −𝛹13𝑣13 ≠ 0. Now, by using Eq. (26) with 𝑉1 at (𝐸1, 𝑤10
∗ ), 

then it gives that: 

𝐷2[𝐹(𝐸1, 𝑤10
∗ )(𝑉1, 𝑉1)] =

(
−2𝛼1

2𝑣13
2 + 2𝑣13

2 𝑤1
2𝑤2

2 + 𝛼1𝑣13(−2𝑣13 − 2𝑣13𝑤1𝑤2) − 2𝑣13
2 𝑤4

0
−2𝑣13

2 𝑤11 + 2𝛼1𝑣13
2 𝑤8 + 2𝑣13

2 𝑤4𝑤8

) . 

Then 

𝛹1
𝑇[𝐷2𝐹(𝐸1, 𝑤10

∗ )(𝑉1, 𝑉1)] = −2𝑣13
2 𝛹13(𝑤11 − 𝑤8(𝛼1 + 𝑤4) ≠ 0. 
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Thus, the Eq. (2) experiences a bifurcation  that is Transcritical in Concept of Sotomayor’s 

theorem at 𝐸1 due to (27). 

 

Theorem 9. Suppose that condition (12d) holds, then the Eq.(2) around the equilibrium in the 

absence of scavenger 𝐸𝑥𝑦 = (�̌�, �̌�, 0), undergoes Transcritical bifurcation when the parameter  

𝑤10  is equal to  𝑤10
∗ = 𝑤8�̌� + 𝑤9�̌�with satisfying condition: 

 2𝛹23(𝑣21)
2[(−𝑤11 + 𝑤4𝑤8�̌�)(𝛼3)

2 + 𝑤8𝛼3 + 𝑤9𝛼2𝛼3] ≠ 0.                              (28) 

 

Proof. It is straight to establish that the Jacobian matrix gave by condition (12a), with 𝑤10
∗ =

𝑤8�̌� + 𝑤9�̌�. Can be written as the following form: 

𝐿(𝐸𝑥𝑦, 𝑤10
∗ ) = (

−�̌� −�̌�(
𝑤1

(1+𝑤1�̌�)2
+ 1 + 2𝑤3�̌�) −�̌�(

𝑤1𝑤2

(1+𝑤1�̌�)2
+ 1)

�̌�(𝑤5 + 𝑤3𝑤5�̌�) �̌�(𝑤3𝑤5�̌� − 𝑤7) 0
0 0 0

)   

= (𝑚𝑖𝑗). 

 

Obviously, the Jacobian matrix 𝐿(𝐸𝑥𝑦, 𝑤10
∗ ) under condition(12d) with 𝑤10

∗ = 𝑤8�̌� + 𝑤9�̌� 

has two negative real part, whilst 𝜆23
∗ = 0. So, the equilibrium in the absence of scavenger 

𝐸𝑥𝑦(�̌�, �̌�, 0) becomes a non-hyperbolic point. 

Let the vector 𝑉2 = (𝑣21, 𝑣22, 𝑣23)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑦, 𝑤10

∗ ) associated with 

eigenvalue 𝜆23
∗ = 0. Therefore, Simple calculations obtained 𝑉2 = (𝑣21, 𝛼2𝑣21, 𝛼3𝑣21)

𝑇 , 

where  𝑣21 be any real number not equal zero, and 𝛼2 = −
𝑚21

𝑚22
< 0,   𝛼3 =

𝑚21𝑚12−𝑚11𝑚22

𝑚22𝑚13
. 

Let the vector  𝛹2 = (𝛹21, 𝛹22, 𝛹23)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑦, 𝑤10

∗ )𝑇 associated with 

eigenvalue 𝜆23
∗ = 0. Therefore, the direct computation obtained that 𝛹2 = (0,0, 𝛹23)

𝑇 , where 

𝛹23 be any real number not equal zero. 

Furthermore, 
𝜕𝐹

𝜕𝑤10
= 𝐹𝑤10 = (0,0, −𝑧)

𝑇 , hence it gives that 𝐹𝑤10(𝐸𝑥𝑦, 𝑤10
∗ ) = (0,0,0)𝑇 , that 

leads to 𝛹2
𝑇[𝐹𝑤10(𝐸𝑥𝑦, 𝑤10

∗ )] = 0. 

Therefore, when 𝑤10 = 𝑤10
∗ , thus, there no saddle-node bifurcation at 𝐸𝑥𝑦. 

Moreover, the direct computation gives that: 

𝐷𝐹𝑤10(𝐸𝑥𝑦, 𝑤10
∗ ) = (

0 0 0
0 0 0
0 0 −1

)
         
⇒  𝐷𝐹𝑤10(𝐸𝑥𝑦, 𝑤10

∗ )𝑉2 = (0,0, −𝛼3𝑣21)
𝑇 . 

Then, 𝛹2
𝑇[𝐷𝐹𝑤10(𝐸𝑥𝑦, 𝑤10

∗ )𝑉2] = −𝛹23𝛼3𝑣21 ≠ 0. Now, by using eq.(26) with 𝑉2 at 

(𝐸𝑥𝑦, 𝑤10
∗ ), then it gives that: 

𝐷2[𝐹(𝐸𝑥𝑦, 𝑤10
∗ )(𝑉2, 𝑉2)] = [𝛬̿𝑖1]3×1. 

Where 

𝛬1̿1 = −2𝑣21
2 + 2 [−𝑤3�̌� +

𝑤1
2�̌�

(1 + 𝑤1�̌�)
3
] (𝛼2𝑣21)

2 + 4 [
𝑤1
2𝑤2�̌�

(1 + 𝑤1�̌�)
3
] 𝛼2𝛼3(𝑣21)

2 

+2 [−𝑤4�̌� +
𝑤1
2𝑤2

2�̌�

(1 + 𝑤1�̌�)3
] (𝛼3𝑣21)

2 − 2 [1 + 2𝑤3�̌� +
𝑤1

(1 + 𝑤1�̌�)2
] 𝛼2(𝑣21)

2 

−2 [1 +
𝑤1𝑤2

(1 + 𝑤1�̌�)2
] 𝛼3(𝑣21)

2. 

𝛬̿21 = 2[−𝑤7 + 𝑤3𝑤5�̌�](𝛼2𝑣21)
2 + 2[𝑤5 + 2𝑤3𝑤5�̌�]𝛼2(𝑣21)

2 

𝛬̿31 = 2[−𝑤11 + 𝑤4𝑤8�̌�](𝛼3𝑣21)
2 + 2𝑤8𝛼3(𝑣21)

2 + 2𝑤9𝛼2𝛼3(𝑣21)
2. 

Then  𝛹2
𝑇[𝐷2𝐹(𝐸𝑥𝑦, 𝑤10

∗ )(𝑉2, 𝑉2)] = 2𝛹23(𝑣21)
2[(−𝑤11 + 𝑤4𝑤8�̌�)(𝛼3)

2 + 𝑤8𝛼3 + 

 𝑤9𝛼2𝛼3]. 
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     It is clear that 𝛹2
𝑇[𝐷2𝐹(𝐸𝑥𝑦, 𝑤10

∗ )(𝑉2, 𝑉2)] ≠ 0, consequently, the Eq. (2) experiences 

 a Transcritical bifurcation in the concept of Sotomayor’s theorem at 𝐸𝑥𝑦 due to (28). 

Theorem 10.  Suppose that condition(13d) holds, then the Eq. (2) around the equilibrium in 

the absence of predator 𝐸𝑥𝑧 = (�̃�, 0, �̃�), undergoes Transcritical bifurcation when the 

parameter 𝑤6  is equal to  𝑤6
∗ = 𝑤5�̃� with the following condition 

 2𝛹32(𝑣32)
2[(−𝑤7 + 𝑤3𝑤5�̃�) + 𝑤5𝛼5] ≠ 0.                                                           (29) 

 

Proof.  It is simple to establish that the Jacobian matrix that is given by condition (13a), with 

𝑤6 = 𝑤6
∗ can be written as the following form: 

𝐿(𝐸𝑥𝑧 , 𝑤6
∗) = (

−�̃� −�̃�(
𝑤1

(1+𝑤1𝑤2𝑧)2
+ 1) −�̃�(

𝑤1𝑤2

(1+𝑤1𝑤2𝑧)2
+ 1 + 2𝑤4�̃�)

0 0 0
�̃�(𝑤8 + 𝑤4𝑤8�̃�) �̃�𝑤9 �̃�(𝑤4𝑤8�̃� − 𝑤11)

)  

                   = (𝑟𝑖𝑗). 

 

      Obviously, the Jacobian matrix 𝐿(𝐸𝑥𝑧, 𝑤6
∗) under condition (13d) with 𝑤6

∗ = 𝑤5�̃� has two 

negative real part, whilst 𝜆32
∗ = 0. So, the equilibrium in the absence of predator 𝐸𝑥𝑧 =

(�̃�, 0, �̃�) becomes a non-hyperbolic point. 

Let the vector 𝑉3 = (𝑣31, 𝑣32, 𝑣33)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑧 , 𝑤6

∗) associated with  𝜆32
∗ =

0. Therefore, the direct computation obtained that 𝑉3 = (𝛼5𝑣32, 𝑣32, 𝛼4𝑣32)
𝑇 , where  𝑣32 be 

any real number not equal zero, and 𝛼4 = −
𝑟11𝑟32−𝑟31𝑟21

𝑟11𝑟33−𝑟31𝑟13
> 0,   𝛼5 = −

(𝑟12+𝛼4𝑟13)

𝑟11
< 0. 

 

       Let the vector  𝛹3 = (𝛹31, 𝛹32, 𝛹33)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑧, 𝑤6

∗)𝑇 associated with 

the zero eigenvalue 𝜆32
∗ = 0.Therefore, the straightforward calculation acquired that  

𝛹3 = (0,𝛹32, 0)
𝑇 , where 𝛹32 be any real number not equal zero. 

Furthermore, 
𝜕𝐹

𝜕𝑤6
= 𝐹𝑤6 = (0,−𝑦, 0)

𝑇 , hence it gives that 𝐹𝑤6(𝐸𝑥𝑧 , 𝑤6
∗) = (0,0,0)𝑇 , that leads 

to 𝛹3
𝑇[𝐹𝑤6(𝐸𝑥𝑧 , 𝑤6

∗)] = 0. 

Therefore, when 𝑤6 = 𝑤6
∗, Thus, there is no saddle-node bifurcation at 𝐸𝑥𝑧in Eq. (2). 

Moreover, the direct computation gives that: 

𝐷𝐹𝑤6(𝐸𝑥𝑧, 𝑤6
∗) = (

0 0 0
0 −1 0
0 0 0

)
         
⇒    𝐷𝐹𝑤6(𝐸𝑥𝑧 , 𝑤6

∗)𝑉3 = (0,−𝑣32, 0)
𝑇 . 

Then, 𝛹3
𝑇[𝐷𝐹𝑤6(𝐸𝑥𝑧, 𝑤6

∗)𝑉3] = −𝛹32𝑣32 ≠ 0. Now, by using eq. (26) with 𝑉3 at (𝐸𝑥𝑧 , 𝑤6
∗), 

then it gives that: 

𝐷2[𝐹(𝐸𝑥𝑧 , 𝑤6
∗)(𝑉3, 𝑉3)] = [�̃�𝑖1]3×1. 

Where 

�̃�11 = 2 [−𝑤3�̃� +
𝑤1
2�̃�

(1 + 𝑤1𝑤2�̃�)3
] (𝑣32)

2 + 2 [−𝑤4�̃� +
𝑤1
2𝑤2

2�̃�

(1 + 𝑤1𝑤2�̃�)3
] (𝛼4𝑣32)

2 

−2(𝛼5𝑣32)
2 + 4 [

𝑤1
2𝑤2�̃�

(1 + 𝑤1𝑤2�̃�)3
] 𝛼4(𝑣32)

2 − 2 [1 +
𝑤1

(1 + 𝑤1𝑤2�̃�)2
] 𝛼5(𝑣32)

2 

−2 [1 + 2𝑤4�̃� +
𝑤1𝑤2

(1 + 𝑤1𝑤2�̃�)2
] 𝛼4𝛼5(𝑣32)

2. 

�̃�21 = 2[−𝑤7 + 𝑤3𝑤5�̃�](𝑣32)
2 + 2𝑤5𝛼5(𝑣32)

2. 
�̃�31 = 2[−𝑤11 + 𝑤4𝑤8�̃�](𝛼4𝑣32)

2 + 2𝑤9𝛼4(𝑣32)
2 + 2[𝑤8 + 2𝑤4𝑤8�̃�]𝛼4𝛼5(𝑣32)

2. 

Then       𝛹3
𝑇[𝐷2𝐹𝑤6(𝐸𝑥𝑧 , 𝑤6

∗)(𝑉3, 𝑉3)] = 2𝛹32(𝑣32)
2[(−𝑤7 + 𝑤3𝑤5�̃�) + 𝑤5𝛼5]. 

It is clear that 𝛹3
𝑇[𝐷2𝐹𝑤6(𝐸𝑥𝑧, 𝑤6

∗)(𝑉3, 𝑉3)] ≠ 0, thus, the Eq. (2) goes through a Transcritical 

bifurcation in the sense of Sotomayor’s theorem at 𝐸𝑥𝑧 due to  (29). 
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       Theorem 11. The Eq. (2) around the coexistence equilibrium point 𝐸𝑥𝑦𝑧 = (�̅�, �̅�, 𝑧̅) 

undergoes a saddle-node bifurcation when the parameter 𝑤7  is equal to positive value 𝑤7
∗ 

provided that the following conditions hold:  

 𝑙11𝑙33 − 𝑙13𝑙31 ≠ 0.                               (30a) 

 𝑙11𝑙22
∗ − 𝑙12𝑙21 ≠ 0.                   (30b) 

𝛼8𝛬11
    ∗ + 𝛼9𝛬21

    ∗ + 𝛬31
    ∗ ≠ 0.                   (30c) 

 

      Where 𝑙𝑖𝑗 , ∀ 𝑖, 𝑗 = 1,2,3 with 𝑙22
∗ = 𝑙22(𝑤7

∗) are the elements of 𝐿(𝐸𝑥𝑦𝑧), with the value 

of 𝑤7
∗ that given by  𝑤7

∗ =
(𝑙11𝑙33−𝑙13𝑙31)𝑤3𝑤5�̅��̅�+𝑙13𝑙21𝑙32−𝑙12𝑙21𝑙33

(𝑙11𝑙33−𝑙13𝑙31)�̅�
. 

 

Proof.  The Jacobian matrix that is given by condition (15a), with 𝑤7 = 𝑤7
∗ can be written in 

the following form: 

𝐿(𝐸𝑥𝑦𝑧 , 𝑤7
∗) = [

𝑙11 𝑙12 𝑙13
𝑙21 𝑙22

∗ 0
𝑙31 𝑙32 𝑙33

]. 

 

Substituting the value directly shows that 𝑤7 = 𝑤7
∗ makes 𝐶 in Eq. (15b) has the value 𝐶 =

0. As a result, the characteristic equation can be calculated as follows, 𝐿(𝐸𝑥𝑦𝑧 , 𝑤7
∗) has a zero 

eigenvalue that is represented by 𝜆∗ = 0, which means 𝐸𝑥𝑦𝑧 is a non-hyperbolic point when 

𝑤7 = 𝑤7
∗. 

Let the vector 𝑉4 = (𝑣41, 𝑣42, 𝑣43)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑦𝑧, 𝑤7

∗)  with eigenvalue 𝜆∗ =

0. Consequently, the basic calculation obtained that 𝑉4 = (𝛼6𝑣43, 𝛼7𝑣43, 𝑣43)
𝑇 , where  𝑣41 be 

any real number, not equal zero, and 𝛼6 = −
𝑙13𝑙22

∗

𝑙11𝑙22
∗ −𝑙12𝑙21

 and 𝛼7 =
𝑙13𝑙21

𝑙11𝑙22
∗ −𝑙12𝑙21

. 

Let's consider the vector 𝛹4 = (𝛹41, 𝛹42, 𝛹43)
𝑇 be the eigenvector of 𝐿(𝐸𝑥𝑦𝑧, 𝑤7

∗)𝑇 

associated with the zero eigenvalue 𝜆∗ = 0. Therefore, the basic calculation gives that 𝛹4 =

(𝛼8𝛹43, 𝛼9𝛹43, 𝛹43)
𝑇, where 𝛹43 be any real number, not equal zero, and 𝛼8 =

𝑙21𝑙32−𝑙22
∗ 𝑙31

𝑙11𝑙22
∗ −𝑙12𝑙21

, 

𝛼9 =
𝑙12𝑙31−𝑙11𝑙32

𝑙11𝑙22
∗ −𝑙12𝑙21

. 

Furthermore, 
𝜕𝐹

𝜕𝑤7
= 𝐹𝑤7 = (0,−𝑦

2, 0)𝑇 , hence it gives that 𝐹𝑤7(𝐸𝑥𝑦𝑧 , 𝑤7
∗) = (0,−�̅�2, 0)𝑇 , 

that leads to 𝛹4
𝑇[𝐹𝑤7(𝐸𝑥𝑦𝑧, 𝑤7

∗)] = −𝛼9𝛹43�̅� ≠ 0. So, the first condition of saddle-node 

bifurcation holds according to Sotomayor's theorem. Now, by using Eq. (26) with 𝑉4 at 

(𝐸𝑥𝑦𝑧 , 𝑤7
∗), it gives that: 

           𝐷2𝐹(𝐸𝑥𝑦𝑧 , 𝑤7
∗)(𝑉4, 𝑉4) = [𝛬𝑖𝑗

  ∗]3×1. 

Where 

𝛬11
    ∗ = −2(𝛼6𝑣43)

2 − 2 [1 + 2𝑤3�̅� +
𝑤1

(1 + 𝑤1(�̅� + 𝑤2𝑧̅))2
] 𝛼6𝛼7𝑣43

2

                              

−2 [1 + 2𝑤4𝑧̅ +
𝑤1𝑤2

(1 + 𝑤1(�̅� + 𝑤2𝑧̅))2
] 𝛼6𝑣43

2

+2 [−𝑤3�̅� +
𝑤1
2�̅�

(1 + 𝑤1(�̅� + 𝑤2𝑧̅))3
] (𝛼7𝑣43)

2

             +4 [
𝑤1
2𝑤2�̅�

(1 + 𝑤1(�̅� + 𝑤2𝑧̅))3
] 𝛼7𝑣43

2 + 2 [−𝑤4�̅� +
𝑤1
2𝑤2

2�̅�

(1 + 𝑤1(�̅� + 𝑤2𝑧̅))3
] 𝑣43

2.

 

𝛬21
    ∗ = 2[𝑤5 + 2𝑤3𝑤5�̅�]𝛼6𝛼7𝑣43

2 + 2[−𝑤7 + 𝑤3𝑤5�̅�](𝛼7𝑣43)
2. 

𝛬31
    ∗ = 2[𝑤8 + 2𝑤4𝑤8𝑧̅]𝛼6𝑣43

2 + 2𝑤9𝛼7𝑣43
2 + 2[−𝑤11 + 𝑤4𝑤8�̅�]𝑣43

2. 
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Then, using condition (30c), it is obtained that: 

𝛹4
𝑇[𝐷2𝐹𝑤7(𝐸𝑥𝑦𝑧 , 𝑤7

∗)(𝑉4, 𝑉4)] = (𝛼8𝛬11
    ∗ + 𝛼9𝛬21

    ∗ + 𝛬31
    ∗)𝛹43 ≠ 0. 

Thus, Eq. (2) experiences a bifurcation of saddle nodes in the sense of Sotomayor's theorem 

at 𝐸𝑥𝑦𝑧 when 𝑤7 = 𝑤7
∗. 

 

8. Numerical Simulation  

     In the previous explanation and theories of existence, we will now try to represent them 

using numerical application and through drawings, where the effect of each of the 11 

parameters present in Eq. (2) was studied. This is through use Mathematica-13.2. This was 

done by imposing data for each of the eleven parameters that were carefully selected to 

obtain the required results and are recorded in the table 2: 

 

Table 2: Data of parameter values. 

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 

0.5 0.6 0.6 0.6 0.5 0.2 0.3 0.4 0.4 0.2 0.3 

 

By substituting parameters into the system, a positive point 𝐸𝑥𝑦𝑧  =

 (0.451  , 0. 156  , 0. 223 ) was obtained, and the drawing was illustrated in  figure 1. Later, 

several drawings were drawn once for the prey, the predator, and then the scavenger, but 

from more than one starting point. We chose 5 points and then combined them into one 

drawing. All these drawings are placed in the figure 2. 
 

                
Figure 1: (a) 3𝒟 -Phase portrait of the Eq. (2), (b)The time series of the Eq. (2) by utilizing 

table (2), the trajectories of three species demonstrate an asymptotic positive convergence 

towards 𝐸𝑥𝑦𝑧  =  (0.451  , 0. 156  , 0. 223 ).  
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Figure 2: (a) The prey population starting from different initial points. (b) The depredator 

population starting from different initial points. (c) The scavenger population starting from 

different initial points. (d) The time series exhibits the trajectories of the Eq. (2), for 

population from five different initial start. (e) 3𝒟-Phase portrait of the Eq. (2), for five 

different initial convergence towards 𝐸𝑥𝑦𝑧  =  (0.451  , 0. 156  , 0. 223 ).  

 

In figure 3, we observe the following: if the parameter 𝑤1𝜖(0,14.5), it converges towards 

𝐸𝑥𝑦𝑧, but it converges towards 𝐸𝑥𝑦 when 𝑤1𝜖[14.5,20)  
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Figure 3: (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b). Time series of the 

Eq. (2) converge asymptotically to  𝐸𝑥𝑦𝑧 = (0.457, 0.174 ,0.274) for 𝑤1 = 0.1. (c). 

Trajectories of system converge asymptotically to  𝐸𝑥𝑦, (d). Time series of the Eq. (2), 

converge asymptotically to 𝐸𝑥𝑦 = (0.424, 0.07 ,0) for 𝑤1 = 14.5.   

     The effect of parameters 𝑤2, 𝑤3, 𝑤4, 𝑤7,𝑤11 is quantitative impact, so we will discuss only 

the parameters that effect the system as we noted parameter  𝑤5  approaches positive point in 

the period (0.326,1), while in interval (0,0.326] impact of 𝑤5 happened on the predator. Thus 

approach happen to  𝐸𝑥𝑧 as in figure 4. 

 
 

 
Figure 4: (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b). Time series of the 

Eq. (2) converge asymptotically to  𝐸𝑥𝑦𝑧 = (0.276, 0.318 ,0.16) for 𝑤5 = 0.9. (c). 
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Trajectories of system converge asymptotically to  𝐸𝑥𝑧, (d). Time series of the Eq. (2), 

converge asymptotically to 𝐸𝑥𝑧 = (0.606, 0 ,0.274) for 𝑤5 = 0.3.   
 

     When we put the value of 𝑤6 in specific intervals, we get the following results: As 𝑤6 
increases from 0 to 0.305, it approaches to 𝐸𝑥𝑦𝑧. Nevertheless, as 𝑤6continues to rise within 

the range of 0.305 to 1, the trajectories gradually converge toward 𝐸𝑥𝑧, as in Figure 5. 

 

        

        
  

Figure. 5 (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b) Time series of the 

Eq. (2) converge asymptotically to  𝐸𝑥𝑦𝑧 = (0.509, 0.099 ,0.242) for 𝑤6 = 0.24. (c) 

Trajectories of system converge asymptotically to  𝐸𝑥𝑧, (d) Time series of the Eq. (2), 

approach asymptotically to 𝐸𝑥𝑧 = (0.606, 0 ,0.274) for 𝑤6 = 0.4.  

 

      When plotting the outcome of changing the  𝑤8, three cases appear during certain periods. 

The first case is approaching the point 𝐸𝑥𝑦𝑧 during the period 0.147 < 𝑤8 < 0.654, the 

second case is approaching 𝐸𝑥𝑧during the period 0.654 ≤ 𝑤8 < 1, and final case is 

approaching the point 𝐸𝑥𝑦 from the period 0 < 𝑤8 ≤ 0.147 as shown in Figure 6. 
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Figure 6: (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b) Time series of the 

Eq. (2) converge asymptotically to  𝐸𝑥𝑦𝑧 = (0.433, 0.097, 0.293) for 𝑤8 = 0.49. (c) 

Trajectories of system approach asymptotically to  𝐸𝑥𝑧, (d). Time series of the Eq. (2), 

approach asymptotically to  𝐸𝑥𝑧 = (0.371, 0 , 0.415) for 𝑤8 = 0.7. (e) Trajectories of system 

converge asymptotically to  𝐸𝑥𝑦, (f) Time series of the Eq.(2) approach asymptotically to  

𝐸𝑥𝑦 = (0.495, 0.312, 0) for 𝑤8 = 0.142.    

 

       Next, the outcome of changing  𝑤9 within the interval period 0.007 < 𝑤9 < 1, also its 

movement towards the point 𝐸𝑥𝑦 within the range of 0 < 𝑤9 ≤ 0.007, we observe that in 

Figure 7. 
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Figure 7: (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b) Time series of the 

Eq. (2) approach asymptotically to  𝐸𝑥𝑦𝑧 = (0.436, 0.105 ,0.283) for 𝑤9 = 0.77. (c) 

Trajectories of system converge asymptotically to  𝐸𝑥𝑦, (d) Time series of the Eq. (2), 

converge asymptotically to 𝐸𝑥𝑦 = (0.495, 0.312 , 0) for 𝑤9 = 0.007.   

 

Finally, changing  in 𝑤10 approached  happen in three cases once to  𝐸𝑥𝑦𝑧 during the period   

0.079 < 𝑤10 < 0.323, second approaches to 𝐸𝑥𝑧during the period  0 < 𝑤10 ≤ 0.079, and 

third case  approaches to 𝐸𝑥𝑦 appeared during the period 0.323 ≤ 𝑤10 < 1 as in figure (8). 
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Figure 8: (a) Trajectories of system converge asymptotically to  𝐸𝑥𝑦𝑧, (b) Time series of the  

Eq. (2) approach asymptotically to  𝐸𝑥𝑦𝑧 = (0.487, 0.284, 0.045) for 𝑤8 = 0.3. (c) 

Trajectories of system converge asymptotically to  𝐸𝑥𝑧, (d) Time series of the Eq. (2), 

approach asymptotically to  𝐸𝑥𝑧 = (0.37, 0 , 0.416) for 𝑤8 = 0.06 (e) Trajectories of system 

converge asymptotically to  𝐸𝑥𝑦, (f) Time series of the Eq.(2) converge asymptotically to  

𝐸𝑥𝑦 = (0.495, 0.312, 0) for 𝑤8 = 0.4 .  
  
9. Conclusion 

     Understanding the dynamics of ecological systems involves delving into the intriguing 

foraging behaviors of animals. Both predators and prey employ various strategies to bolster 

their populations. Predators collaborate in hunting endeavors to efficiently capture prey, 

enabling them to tackle larger or swifter animals, subsequently enhancing their success rates. 

In response, prey species develop anti-predator defenses to counteract the intensified 

predation pressure. This constitutes our area of study a focus on exploring this behavior that 

often involves coordinated efforts among predators. These efforts highlight strategic hunting 

techniques and the division of tasks, all directed towards maximizing hunting success. So, 

this research delved into a model describing interactions between prey and predators, with the 

prey population showing fear reactions. The predators comprised two different categories: 

active predators and scavengers, both dependent on the prey as their primary food source. 

The model also incorporated a parameter that defined the cooperative behavior among 

predators while hunting. The main aim is to assess the influence of collaborative hunting on 

the food web system dynamics, alongside studying the repercussions of harvesting within 

predator populations. The study initiated by scrutinizing solution constraints and verifying 

them, then proceeded to analyze stability points, encompassing both local and global stability 

assessments. Our research commenced by defining the variables for the prey, predator, and 

scavenger. Through five initial conditions, we reached the positive point in our study.  So, we 

started with the first parameter 𝑤1, and we obtained two drawings that were explained above, 

approaching two different points, 𝐸𝑥𝑦𝑧 and 𝐸𝑥𝑦. However, some parameters had a 

quantitative effect, remaining points within the positive point, but increasing them directly or 

inversely affects the variables of the system, and they were explained in detail Like all of the 
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parameters 𝑤𝑖, 𝑖 = 2,3,4,7,11. Regarding the remaining parameters, they demonstrated a 

tangible impact, yielding outcomes consistent with our study and findings. This alignment 

between the theoretical and numerical solutions was achieved through the mathematica 13.   
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