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Abstract

In this research, a model was taken to explore the relationship between the prey,
the predator, and the scavenger in the diet to study dynamic behavior. This was
done by forming a system of ordinary differential equations, and critical points were
found for the model that match biologically and mathematically to our study. Their
existence was proven, and theories were created for the model. By applying local
and global stability methods, also we were able determine the bifurcation occurring
at particular sites. After that, we observed the result of cooperation in hunting,
which greatly affects both prey and predators, playing a vital and influential role.
Everything we mentioned above was also proven practically, using Mathematica
13.2 to prove the validity of what we mentioned practically.
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1. Introduction

The resilience and stability of ecosystems are greatly influenced by the prey, predator and
scavenger relationships within intricate ecological web. Goldsmith and Sutherland [1]
indicated in their article that a lot of focus has been put by ecologists and conservationists in
grasping these mechanisms to sustain biodiversity; while maintaining the functions of
ecosystem under human induced stresses and environmental changes. Predators are vital parts
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of the ecology due to their effective facilitation of energy flow across ecosystems. These
interactions go beyond mere predation as envisaged by this theory. A few other drivers
encompass hunting by human beings, methods of hunting and reaction to fear factors. In most
cases, these types of ecological models oversimplify this complexity and ignore the
characteristics of real ecosystems. By developing our understanding of stability and resilience
in predator-prey dynamics, Freedman [2] argues that it is a fundamental element for the
management and conservation of ecosystems. The survival rates for both predators and prey
are very high for longer periods as indicated by empirical investigations and mathematical
simulations. Borofsky and Freedman [3] have revealed that social learning, predator
cooperation/lack thereof and prey availability can all interact powerfully to determine the
nature of an ecosystem. Currently, the issue of how animals cooperate when they hunt preys
versus those who do not is being considered essential in many scientific studies on
predation/fear in ecology [4 - 6]. There are several studies on the effect of fear, including a
study of the effect of fear in a model of a food chain consisting of three species that includes
the Beddington-Deangelis functional response, where the growth rate in the first and second
levels decreased as a result of the presence of the predator in the upper level [7]. Some
researchers have studied the effect of fear on the system in the presence of cooperative
hunting [8]. Besides, predator cooperative hunting is added to a layer of complexity that
significantly alters the population dynamics and community structure [9]. Nonlinear
dynamics can lead to shifts in scavenger, prey and predator populations distributions and
abundances whenever all these predators combine their actions to surpass the aggregate result
of their individual interactions [10]. Another research showed how prey refuge and hunting
attempts affected equilibrium density values. In conclusion, the stable prey refuges have been
found not to be affected by harvesting as far as final densities are concerned. However, when
more efforts are concentrated on predator species through harvests and as efforts towards
prey species increase, then there will be a decrease in the density of predator species; which
is an astonishing finding [11]. The authors shed light on how prey refuge and harvesting
attempts influence equilibrium density estimates. To determine how hunting cooperation
impacts fear in preys and predation in predators. Some researchers have studied the effect of
harvesting on the model of stage structure consisting of juvenile and adult prey population
and one predator [12]. Other researchers studied the bifurcation of the prey-predator-
scavenger model, with the effects of both harvest and toxicity as in [13]. One of the
researchers also studied the prey and predator model, but he used functional response square
root and noticed the effect of the fear parameter on the system as shown in [14]. [15]
analyzed a modified Leslie-Gower predator-prey model with non-linear harvesting and fright
impact Some researchers tried to study the effect of the disease, and an environmental-
mathematical epidemiological model was formulated and studied, consisting of a system that
includes fear and disease in the prey community [16]. Through all of these previous studies
that were reviewed, we tried to know the effect of variables, therefore in this study, we tried
to know the effect of variables such as fear, cooperative hunting, and harvesting on the
system theoretically and practically through simulated the model as well as conducted
quantitative analysis to understand issues within system stability through simulated
experiments.

2. Mathematical Model Formulation

This section presents a food web model that includes three species: prey, predator, and
scavenger. The mathematical representation of a food web in the real world is constructed
applying the functional response of the Lotka-Volterra equations to describe the model. The
mathematical representation of a food web system consists of three non-linear, independent
ordinary differential equations:
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ax X
E = m - bxz - (al + bly)xy - (az + sz)xZ,

S =ey(a + b DXY - Y — G E Y, (1)
dz

—=e(a + b, 2)XZ + a3YZ — d,Z q,E,Z2.

Given that X(0) >0, Y(0) = 0, and Z(0) = 0.The prey population at a given time is
represented by X (7). The predator population at time 7 is represented by Y(7), and Z(T)
denotes the scavenger population at time 77, according to the Lotka-Volterra model of
functional response, the predator and scavenger feed on the prey. The scavenger survives
itself by consuming the remains of decaying creatures, either on a permanent or temporary
basis. Ultimately, it is observed that the population of prey increases in a logistic manner
when predators and scavengers are absent, whereas the population of predators and
scavengers decreases exponentially in the absence of prey. The parameters can be described
in the following table 1.

Table 1: Description of parameters

Parameters Description
r The natural growth rate
f Fear rate of prey
b Intraspecific rivalry
a,,a, The rates at which predator and scavenger attack, subsequently
by, b, The hunting cooperation level for both predator and scavenger, subsequently
e, e, The conversion rates of prey biomass into predator and scavenger subsequently
as The conversion rate of predator’s carcasses biomass to scavengers
dy,d, The mortality rates of predators and scavenger subsequently
91,92 The catchability parameters of predator and scavenger subsequently
Ey, E, The harvesting attempts of predator and scavenger subsequently

In order to decrease the quantity of parameters, we employed a process of non-
dimensionalized on the model system, utilizing the following scaling technique:

(=rx=lx ! 2
= )x - ’ = ) =
r T Y Yz r
f r a1 Tbl sz 61a1
wy = a1»W2—a2:W3— %,W4 a%'WS h
w _ﬁ w _ 1k w _ e w _ a3 w _% w _ ©E;
6 r » W7z al » W8 b y W9 all 10 r » W11 az
Next, a dimensionless system is derived:
dx 1
E =X [m — X — (W3y + 1)y — (W4_Z + 1)Z] = xfl(x,y, Z),
d
d_)t/ = y[ws(1 + w3y)x —wg —wyy] = yfo(x,y,2), (2)
dz

== z[wg(1 + wyz)x + woy — wyy — wy,2] = zf5(x,y,2).
We notice that the parameters of Eq. (1) decreased from what they used to be, as their
number was sixteen and became eleven in Eq. (2).

2. Existences, Boundedness

The functions xf;, yf», zfz exhibit continuity and possess continuous partial derivatives on
R3 ={(x,y,z) ER%:x =0,y = 0&z >0} inEq. (2). Therefore, they can be classified as
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Lipschitz functions. Therefore, the Eq. (2) exhibits both the property of having a solution and
unique solution.

Theorem 1. Every population in Eg. (2) that initiate within R3 have uniformly bounded
solutions.

Proof. Set (x(t), y(t),z(t)) to be one of the solutions of Eq. (2), we get uniformly bounded
from the first equation.

dx
< * g~ X < x1-20,

Hence, we get x(t) <1 as t —» co. Consider that N,(t) = x(t) +—

derivative along the solutions of Eq. (2) we have:
%Sx—ﬁys (1+w6)x—wﬁ(x+l).
dt Wsg Wsg
Therefore, it is getting the following

24+ ey < (14 wp).

y” _ then after time

Wsg (1+W6)

Then by solving the differential inequality mentioned above, we get that y <

= p1

We
ast — oo,

Now, consider that N, (t) = x(t) + — y(t) Z(t), then
Wg
dNy W19—Wofy y Z
<2x—x——y (—)S2—6(X+W—5+W—8),

dt Wg
Where § = mm{l We, w10 wof31}. Thus, it is observed that

dN2+6N2 < 2gives N, <2 5ast - oo,
As a result, all solution in Eq (2) has a uniform boundary.

3. Equilibrium and their existence

This section establishes the existing conditions and conducts local stability analyses of
equilibrium points for Eq. (2). It’s note that there can be a maximum of five non-negative
equilibrium points for Eq. (2), which are detailed below:
e The extinction equilibrium points E, = (0,0,0) and axial point E; = (1,0,0) always
exists.
e The equilibrium in the absence of scavenger E,, = (X,¥,0), where

W6+W7j7
= Ty 3
ws(1+w3¥) 3
with ¥ is a solution that is positive for the fourth-order polynomial equation:
Riy* +R,y3+ R3y? + R,y + Rs = 0.

=

Where:

R, = —wywiws < 0,

R, = —wsw:(2w; + w3) < 0,

Ry = —ws(wy + 2w3) —wyw, < 0,
Ry = —Ws + W3wg — wywg — Wy,

Rs = wg — wg.
Clearly, E,, exists uniquely within the positive quarter of xy-plane's interior if and only if
the following sufficient condition is hold.

We < Ws. 4
e The equilibrium in the absence of predator E,, = (%, 0, Z), where

W10+W112
W8(1+W4Z)’ (5)
where Z is a positive root of the polynomial equation of order four:

X =
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N1Z4 + N223 + N3Zz + N4Z + NS == O.

Where

N; = —wywowiwg < 0,

N, = —w,wg(2wyw, +w,) <0,

N3 = —wyw,y(Wyg + wy1) — 2wuwg < 0,

Ny = Wywg — WiWWig — Wip — W,
N5:_W8_W10' _ ) o - ) o
Obviously, E,, exists uniquely within the positive quarter of xz-plane's interior if and only
if the following sufficient condition is satisfied.
Wi < Wg. (6)

o The cohabitation equilibrium point E,,, = (X, y, Z), where

— W6+W7J_/

X =——————
ws(1+w3y)

: (72)

= = = =2
—W1oW5+WeWg—W1oW3W5Y+W7WgY+WsWoy+W3WsWgy

7 =
) _ L WaWs _W4W6W8+W11W3W:537_W4-W7}’V837
where ¥ is a positive root of the polynomial equation of order seven.

y” + oy + uzy® + pay* + usy® + pey® + pry + g = 0, (7b)

where the coefficients u;,i = 1,2, ...,8 are determined using Mathematica program. Due to
their large and intricate forms, they will not be provided here. However, direct computation
demonstrates that the cohabitation equilibrium point E,,, can only be found inside octant’s
interior, if there is a singular positive root for the Eq. (7b). Consequently, Eq. (7b) has at least
one positive root provided that one of the following sets of conditions holds.

p <0,ug>0
or . (8a)
p1>0,ug <0
Moreover, for the positivity of z, it is necessary to have one set of the following sets of
conditions:
—W1oWs5 + WgWg — W1gW3W5Y + W,Wgy + WsWey + W3W5W9372 >0
W11 W5 — WyWeWg + W11 WsWsy — WyWywgy > 0
or : (8b)
—W1oWs5 + WgWg — W1gW3W5Y + W,Wgy + WgWey + W3W5W9372 <0
W11 W5 — WyWeWg + W11 WaWsy — WyWwywgy < 0

Accordingly, E,,, can only be found uniquely in interior of R3 if and only if the above
sufficient conditions are hold.

4. LOCAL STABILITY ANALYSIS

The stability of the preceding equilibrium points is examined by calculating the Jacobian
matrix denoted as L(x,y,z) at the point (x,y,z) Subsequently, the eigenvalues are
computed. The Jacobian matrix is defined as follows:

afl afl afl
x ox + fl x ay 0z
af. af: af;
Lay.z)=| vy5, Y5, v ) (9)
df3 ofs ofs
z dx z ay z 0z + f3

where
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0f1 0f1 W1
ax b dy  (1+w(y+wyz2))2 A+ 2wsy),
df1 WiW
9z (1 +wy(y+w,2))? (1 +2ws2),
ofy _ of, . Ry,
o Ws + w3zwsy, T WsWsX — w7, ——=0,
Ox = Wg WyWg?Z, ay = Wy, EP = WyWgX W11-
The extinction equilibrium points E, the Jacobian matrix is expressed as follows:
1 0 0
L(Ey) =0 —wg 0 (10a)
0 0 —Wio
Then, the eigenvalues of the matrix L(E,), are given by:
Ao1 =1>0, g = —we < 0,and Ag3 = —wy, < 0.
(10b)
As a result, the extinction equilibrium point E, is a saddle point.
For axial equilibrium E;, the formula for the Jacobian matrix is:
-1 —(Q+w) —(1+wiwy)
L(E;) = [ 0 Ws — W 0 . (11a)
0 0 Wg — Wy
Thus, the eigenvalues of the matrix L(E;), are determined by:
A1 =-1<0, A1, =ws—wg, and A3 = wg — Wy, (11b)

Clearly, all the above eigenvalues are negative if and only if the following conditions are
satisfied, E; is locally asymptotically stable:
ws < W, (11c)
wg < Wy. (11d)
For the equilibrium in the absence of scavenger E,, = (¥,y,0), the formula for the Jacobian
matrix is:

N~ ~ Wi ~ v WiWp
—X _x(—(1+w1y)2 + 1+ 2wyy) —x(—(Hle)2 +1)
L(Exy) = |YV(ws + wawsy) V(WswsX — wy) 0 (12a)
O O ng + Wg_’)\; - W10
The following can be used to express the characteristic equation of L(E,, ):
Clearly, the characteristic equation of L(Exy) can be written as follows:
[AZ - TxyA + ny] [ng + ng; — Wqg9 — A] = O, (12b)
Txy = —X + Yy(wzwsX — wy),
" . " Wy -« -«
ny = —Xy(W3W5X - W7) + Xy (m +1+ 2W3y) (W5 + W3W5y).

Therefore, the eigenvalues of L(E,, ) are obtained as:

Aoy =2+ [TZ = 4D, fori = 12and Ay = we¥ + we¥ — wyg.

Obviously, all the eigenvalues have negative real parts and hence E,, = (¥,y,0) is locally
asymptotical provided that the following conditions hold.

¥ < W10—W937, (12¢)
s
y<—=—— (12d)

WawsX—w,
the Jacobian matrix for the equilibrium E,, = (%, 0, Z), is as follows:
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—% —i(dﬁ +1) —f(# + 14 2w,2)
L(Ey,) = 0 WsX — wg 0 . (13a)
Z(wg + wyawg?) Zwg Z(WywgX — Wqq)

The following can be used to express the characteristic equation of L(E,,) :

[A%2 — TyyA + Dyyl[wsX — wg — 1] = 0, (13b)
where
Ty = —X + Z(WyaWgX — Wyqq),

o - o WiWw; . -

Dy, = —XZ(WyWgX — wyq) + X2 (m +1+ 2W4Z> (wg + wywg2).

Therefore, the eigenvalues of L(E,,) are obtained as:

A = =2+ [T — 4D,y fori = 13and Az, = wsX — ws.

As a consequence, the real components for every eigenvalue are negative, hence E,, =
(%,0,2) is locally asymptotical provided that the following conditions hold.

X
Theorem 2. Assume that the cohabitation equilibrium point E,,, = (%,y, z) of Eq. (2) exists,
if the subsequent sufficient conditions are hold then it is locally asymptotically stable
X < min {ﬂ,&},

W3Ws WjyWg
(14a)

l31(lll + 122 + l33) + (l21132 - 122131) < 0’ (14b)
where [;;; i, j = 1,2,3 are the Jacobian matrix elements at E,,,.

Proof. At cohabitation equilibrium point E,,, = (%,y, z) of Eq. (2), The Jacobian
can be expressed as:

L(Exyz) = [lij]3><3: (1561)
where
— _ i — = 4 —
ha = =% b = =X Gy T 1 2wsd),
— _x WiWws —
liz =—x (—(1+w1(37+w2z‘))2 +1+ 2W4Z),

Ly = y(ws + wawsy), Ly = J(wWawsX —wy), L3 =0,
l3y = Z(wg + wuwg2), lg; = woz, l33 = Z(WawgX — wyy).
Then, the characteristic equations of L(E,,,) is given by:

A3 +A12+BA+C =0, (15b)
where
A=—(ly; + 1l +133), B =111l —liplyy + ligls3 — li3lzg + 155133,
C = —(li1laalzs + lizlyrlzy — Lizlonlsy — lialpl33).
And

A= AB — C = —(l41 + 132)[lialzz — Liolaq]
—(li1 + I33) [l lss — Lislag] — (Upalz3) [l + Loz + 1335]
—li1ly5l33 + Li3loq 13,
A= AB — C = —(l11 + lz2)[lialaz — Lizlor] = Lilss(lig + 133) — Lyolas(lon + U33)
—2ly1lp5l533 + sl (Iyg + L + I33) + Liz(Loq sz — Lp2l30).
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Clearly, the conditions (14a)-(14b) verification A >0, € >0, and A> 0. By using the
Routh-Hurwitz criterion, all the eigenvalues of Eq. (15b) have negative real parts. Therefore,
E,, is locally asymptotically stable.

5. Persistence

The persistence of Eq. (2) is obtained in this section. The Eq. (2) is considered be
persistent if and only if none of their species become extinct. This means there is no omega
limit set determined by the bounds of R3 for Eq. (1). The existence of periodic dynamics in
the border planes must first be confirmed. It appears simply mentioning that the Eq. (2)
provides two subsystems can be obtained from Eq.(2), which belongs to xy —plane and
xz —plane consequently. The following is a technique to write these subsystems:

d
= [y~ A we)y] = () 15)
d
d_)t] = y[W5(1 + Wgy)x — Wg — W7J’] = hZ(x’y)'
And
dx _ VR —

d
d—i = z[wg(1 + wu2)x — wyg — wy12] = g5(%, 2).

Obviously, subsystems (16) and (17) lie in the interior of xy —plane and xz —plane
respectively. Now, define the Dulac function as Q;(x,y) = % that satisfies Q;(x,y) > 0,

and C* function in the int R2 of xy —plane. Then
d(Q1h d(Q1h 1 w
ACx,y) = (Q1h1) " (Q1h2) 7

=——+ wzws ——.
0x dy y X

Since, A(x,y) does not identically zero and does not change the sign in the int R? of the

xy —plane provided that the following condition holds:

1
WaWe > = 4 —
3Ws y+x

or . (18)

1
WaWe < = 4 —
3Ws y+x

Thus, by using the Dulic-Bendixon’s criterion, the int RZ has no closed curves of the
xy —plane. Therefore, depending on the Poincare-Bendixson theorem states that wherever it
exists, the unique equilibrium points in the int RZ of the xy —plane that given by (X, y)will
be both locally and globally asymptotically stable.

Similarly, by using C! function in the int R? of xz —plane, which define by using Dulac

function as Q,(x,z) = é It is observed that there is no periodic dynamics in the int RZ of
the xz —plane that given by (%, 2) provided that the following condition holds:

1
wawg > -+ %
or : (19)
1
W4W8 < Z + %

Consequently, the only equilibrium points int R2 of the xz —plane shall be both locally
and globally asymptotically stable whenever it occurs.

Theorem 3. If conditions (4), (6) with the following conditions have been satisfied, Eq. (2) is
uniformly persistent.
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x> —W“’V;W"y, (20a)
8

~ Weg

%> (20b)

Proof. Define the following function o(x,y,z) = xP1yP2zP3 as an average Lyapunov
function, where p,, p,,p; are positive constants. Obviously, o(x,y,z) is a C! positive
function defined in intR3, and if x >0 or y >0 or z— 0, as result a(x,y,z) - 0.
Accordingly, the following is obtained:

o'(x,y,2) 1

o(x,y,2) P1 wi(y+wyz)+1
+ p2[ws(1 + wsy)x —wg — wry] + p3[wg(1 + waz)x + woy — wyg — wyy2].

Therefore, according to technique of the average Lyapunov function that proposed by Gard,
the proof is complete if Q(x,y,z) for any boundary equilibrium points is positive, for a
suitable selection of the positive constant p;, i = 1,2,3. Since

Q(Eq) = p1 — P2We — P3W1o)

Q(E;) = po(ws — we) + p3(wg — wyp),

Q(Exy) = 1 [ —X¥—-(1+ W3y)y] + p2[ws (1 + w3 Y)X — we — w7 ¥] + pa[weX +
woY — wyo],

-Q(Exz) =

Qx,y,z) = x—(wsy+1)y—(1+w,2)z

1+W15’/

1
P1 [m -¥-(1+ W4Z)Z] + pa[WsX — wg]

+ 3w (1 + wy2)X — wyg — wy4Z].
Consequently, by choosing p, to be a significant enough value to get Q(E,) greater then zero
in regards to p, and p5. However, Q(El),Q(Exy) as and Q(E,,) positive as long as required
conditions (20a), (20b), (4), and (6) holds subsequently.

6. Global stability nalysis
In this section, the global stability for each equilibrium point is determined with help of
the method of Lyapunov function as shown in the next theorems.

Theorem (4): If we assume that E; is locally asymptotically stable, then it can be said to be
globally-asymptotically stable under the following conditions:

% >w; +1+wyy, (21a)
5

20 s waw, 4+ 14wz + 2. (21b)
Wg Wg

Proof: Consider the real-valued function U; = k; (x —X—XIn %) + k,y + ksz, where the

constants k; > 0;i = 1,2,3, to be determined. Clearly, the positive define function U; shows

that U;:R3 — R, so that U,(E;) = 0 and U, (x, y, z), greater than zero V{(x,y,z) € R3:x >
0,yandz = 0,(x,y,z) # E;}. Then, % is given by:
dUl_k (x—a?)dx_l_ dy+ dz
ddt o dt = *dt  Cdt
U wq(y + wyz)x wi(y + wyz)X
—1£—k1(x—f)2—k1 1y 27) ) 1y 27)
dt 1+w,(y+wy2) 1+w(y+wy2)
—(ky — kows) (1 + wsy)xy + ki (1 + wsy)Xy — (ky — kawg) (1 + wyz)xz
+k (1 +wy2)Xz — kywey + k3woyz — kswyoz.
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Choosing the positive constant values as k; = 1,k, = —, and k3 = — and by using the
maximize concept with the upper bound constant n, we obtalned that:
dUu W
=)y [—-W1W2-<1+W4z>-—n]
dt Wrg

Hence, conditions (21a) and (21b) lead to ? < 0. So that E; is globally-asymptotically
stable.

Theorem 5. If E,,, is assumed to be locally asymptotically stable, then it can be declared
globally asymptotically stable as long as the following conditions are hold:

_":}10 ET] + f(b44 + 1), (223.)
8
X< mm{ Ly (22b)

W3Wsg W4, Wg

Proof. Consider the real-valued function U, =y, (—% +x—XIn E) + Yy, (—37 +y -

ylin %) + y3z, Wwhere the constants y;,y», y3 greater than zero to be selected. Clearly, the
positive define function U, shows that U,:R} —> R, so that U,(E,,)=0 and
U,(x,y,z) positive for all {(x ¥,Z) ER3:x>0,y>0&2=>0,(x,y,2) # Exy} Then, dUz

IS given by:
dU, x — X\ dx y —y\dy dz
—5 = Y1 ( ) +Y2 ( )

dt X dt y dt HAEPP dt’
dU ~N\2 N~ M\ 2
s < —vi(x — %)% — [yaw; — Yo Xwsws](y — ¥)

YiWi . 5 5
- T Y1t Viwsy — Yo w —MNx —%
T+ wi(y + waz)) (L +wyy) oL sy 5] =P —%

—[}(1W3 — Y2wsws](y — ) (x — )y — [y1wy — yzwawg]xz?
Y1WiW;

— <~ T Y1~ ¥Y3Wg|XZ
:(1 +wy (¥ + wy2)) (1 + wy¥)

Y1X wiw, 2
(1 +w,(y + sz))(l + w;y)

— |¥3W10 — Y3Wol) — Y1 X —

—[yswi1 — Y1W4%]ZZ-

Choosing the positive constant values as y; = 1,y, = Wi and y; = Wi,and by using the
5 8
maximize concept with the upper bound constant n, we obtained that:

dU . . . .
dtz < -—(x- x)z [b11 + w3¥](y — ¥)(x — %) — b (y — 3’)2
Wio Wo W11
e e e
33XZ Ve W817 X(bga + )|z Ve Wy X|z
Then by using the above conditions (22a) and (22b), we obtain that:
dU
dtz —[(x —X%) — \ b2z (y— )’) — bs3xz
w w
_ﬁ__gn_%(bzyl_"'l):lz—li_— 4_\/:|Z2
Wg  Wg 8

2023



Ibrahim and Bahlool Iragi Journal of Science, 2025, Vol. 66, No. 5, pp: 2014-2037

_ w1 wr WiWs
Where bll - (1+W1(y+wzz))(1+w137)' b 2z — [ XW3] b33 (1+W1(}’+W22))(1+W1Y) and
bas = i (y:‘:;vg)(ﬁw - According to, conditions (22a) and (22b) lead to dd—t < 0. So
1 2 1

that E,,, is globally-asymptotically stable.

Theorem 6. If E,, is assumed to be locally asymptotically stable, then it can be declared

globally-asymptotically stable as long as the following conditions are hold:
% < min{—, 213 (23a)

W3Ws WyaWg

We ~ Wg ~
e > X(cqq + 1) + e (z—-2). (23b)

Proof: Consider the real-valued function U; = p; (x —X—xIn E) +py+p3(z—27—

Zln g). Where the constants p; > 0;i = 1,2,3, to be determined. Clearly, the positive define
function Uz  shows  that U;:R3 >R, so that Us(E,)=0 and
Us(x,y,z) positive V{(x,y,z) E R3:x >0,y =20,z > 0,(x,y,z) # E,,}. Then, % is

given by:
dU; x —X\dx dy z—2\dz
— = P1( ) P3( )_

dt x Jat T P2ar z Jdt

dUs; 5 5 2

dt < —pi(x— x) — [p3wi1 — p3X wawg](z — 2)
P1 WiW;

— +p1+pZwy—pswg|l(x —X)(z—2Z
(1+W1(y+W2Z))(1+W1WZZ) P1 T P1Z Wy — P3 8]( )( )

~[p1ws — pswawg](x — %) (z — 2)z — [p1w3 — pwsws]xy?
pP1 Wy
(1 +wy (¥ + wy2))(1 + W1WZZ)
p1X Wy
(1+wi(y + wy2))(1 + wyw,2)
Choosing the positive constant values as p; = 1,p, = Wis and p; = Wia then we obtained

that:
U,

— paws | xy — [paw; — p1 X w3]y?

—|P2We — —p1 X —ps3(z - Z)W9ly

S —(x =% —[c11 +Zwy](z = D) (x — %) — c25(z — 2)°

—C33Xy — [& —X W3] y? = [ﬁ —X(c4a+ 1) — @(Z - Z)] Y-
Wsg Ws Wg

Then by using the above conditions (23a) and (23b), we obtain that:

dU3
It —[(x — %) + /ca2(z — 2)]* — c33xy
We
[W—S—fw3]y2 - [W—S—f(c44+ 1 ——(z—Z) .
_ WiW3 — W11 W1
Where c;; = (14w (+w22)) 1 +wyw, 2)’ [ XW4] €33 = (1+w1(y+wzz))(1+w1wzz)
w1 dau:
and ¢y, = (oG rwon) ) (i Clearly the conditions (23a) and (23b) lead to — — 2 < 0.S0

that E,., is globally- asymptotlcally stable.
Theorem 7. Assume that Ey,, is locally asymptotically stable, then it is globally
asymptotically stable provided that the following conditions hold:

(B1)* < By, (242)
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(B4)* < B, (24b)
(Bs)* < BzBs (24c)
x < mln{ L}. (24d)

WaWg ' W3Ws

Proof. Let the real-valued function U, = g, (x —¥—xn ;—‘) +q:(y —F —F In3) +qs(z -
zZ—ZlIn g). Where the constants g; > 0;i = 1,2,3, to be determined. Clearly, the positive
define function U,:R3 - R, so that U,(E,,,) = 0 and U,(x,y,z) > 0, for all {(x,y,2) €
R3:x>0,y>0,z>0,(x,y,2) # Eyy,}. Then, % is given by:

dU4 X — X\ dx y —y\dy z—2z\dz

dt ql( X )E+q2< y )E_Hh( z )E

=2 = [ s - 977 - [ - ] o - 27

dt
~[F+ws| 0 -DE-D
[W1W2
WTT
+W—Z(z—z-)(y—y).

+ z-w4] (z—2)(x — %)

Where T = (1 +w,(y + w,2)), and T = (1 + w, (¥ + w,2)). Therefore, by choosing
e 1 1 -
the positive constant values as q; =1,q, = - and gq; = = then after some algebraic
5 8

computation, we obtained:
O - DB - -D - (7Y
5 - &%) 1 =& -2 -—0 -y

1 _ _ . Bs _
—E(x—x)z—B4(z—z)(x—x)—7(z—z)2

B B
~S =9 =Bz~ Dy ~) —~ (2~ D™
Then by using the above conditions (24a), (24b), and (24c), we obtain that:
du,

1 1
@< [ = ) + By = PP = 5[ = D) + B3 (z = D

——\/_(y y)+\/_(Z—Z)

Where B, =

— Wy = W11
+yws, B =W_5_XW3, B3 =W_8_XW4; B, =

(1+W1 (y+wzz))(1+w1 F+w, 7))

WiWs _ W s
(Crmwi O rwon)) Lt wa o rwad) +ZzZw, and Bg = e Clearly, the conditions (24a), (24b), and

(24c) lead to % < 0. So that E,,, is globally asymptotically stable.

7. Local bifurcation analysis

In this section, the occurrence of local bifurcation is determined utilizing Sotomayor's
theorem. In a dynamical system the possible bifurcation parameter is specified, such that, for
a given value of that parameter, the equilibrium point is not hyperbolic, because the presence
of a non-hyperbolic equilibrium point represents a necessary but not sufficient condition for

local bifurcation to occur. Hence, Eq. (2) can be rewritten in the vector form:
X =F), (25)
Where X = (x,y,2)T,and F(x) = (xf1, V2, 2f3)T.
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Now, for any vector V = (v, v,,v3)7, the second directional derivative of Eq. (25) with
concerning X can be obtained as:

DZF(X)(V' V)= [Aij]3><1- (26)
Where

Wy
A = =2v? =2 [1 2 ]
11 Uy + 2w3y + (1 +wi(y + wy2))? V1V,

] +2[— +W1—2"] 2
V1Vs WX T rwiyrwan)sl V2

wiw,x wlwix 5
H [(1 Wi+ wp2))? A+ +w2) ]
Ay = 2[ws + 2wawsy]v, v, + 2[—wy + wawsx]va.
Azq = 2[wg + 2wwgz]v, V5 + 2Wov,v3 + 2[—Wy; + wawgx| V2.

wiwy

_2 [1 F2wyz

VUyVU3 + 2 I_W4x +

Theorem 8. Suppose that condition (11c) holds, then the Eq.(2) around the equilibrium in the
absence of predation E; undergoes Transcritical bifurcation at wg is equal to w;q = wy,
with the following condition

wy1 > wg(ag + 1). (27)

Proof. It is easy to verify that the Jacobian matrix that is given by (11a), with w;, = wy, can
be written as the following form:

-1 —Wi — 1 —WiWy — 1
L(E;,wig) =| 0 Ws — Weg 0
0 0 0

Where A;; = —1,41, = wg —wg < 0 are eigenvalues of L(E;,w;,) under conditions
(11c) and Aj; = 0. So that, the equilibrium in the absence of predation E; becomes a non-
hyperbolic point.

Let the vector V; = (vy1,v12, v13)T be the eigenvector of L(E;,wj,) associated with
eigenvalue Aj; = 0. Therefore, the straightforward calculation obtained that V; =
(a1v13,0,v13)T, where v,5 be any real number not equal zero, and a; = —(wyw, + 1) < 0.
Let the vector ¥; = (W11, W12, ¥P13)7T be the eigenvector of L(E;, w;,)T associated with the
zero eigenvalue 155 = 0. Therefore, the direct computation obtained that ¥; = (0,0, %;3)7,

where ¥, 5 be any real number not equal zero.

Accordingly, OF _ Fy,, = (0,0,—2)7, hence it gives that F,  (E;,wi,) = (0,0,0)7, that

owqg -
leads to ¥] [E,, (E1,wip)] = 0.
Therefore, when w,, = wy,, thus there is no saddle-node bifurcation in Eq. (2) at E;.
Moreover, the direct calculation

gives that:
0 0 O

DEF, (E;,wi)) =(0 0 0 |= DE, (E;,wip))Vs = (0,0,—v3)".
0 0 -1

Then, ¥7[DF,,, (E;,wio)Vi] = —Wi3v13 # 0. Now, by using Eq. (26) with V; at (Ey, wip),
then it gives that:
DZ[F(EL wio) (V1,V1)] =

—2afv123 + 217123W12W22 + a1 v13(—2v13 — 2v3Wy W) — 2V123W4

0
—2v2wy + 2a, 3w + 2vZw,wy

Then
WI[D?F(Ey, wio)(Vy, V)] = —2073W13(wyq — wg(ay + wy) # 0.
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Thus, the Eq. (2) experiences a bifurcation that is Transcritical in Concept of Sotomayor’s
theorem at E; due to (27).

Theorem 9. Suppose that condition (12d) holds, then the Eq.(2) around the equilibrium in the
absence of scavenger E,, = (X,¥,0), undergoes Transcritical bifurcation when the parameter
wo IS equal to wy, = wgX + woywith satisfying condition:

2W53(V21)*[(—w11 + wawgX)(a3)* + wgaz + weasa3] # 0. (28)

Proof. It is straight to establish that the Jacobian matrix gave by condition (12a), with w;, =
wgX + wgy. Can be written as the following form:

_~ _x wq ~ _x wiw;
* X x((1+w137)2 + 1+ 2wsy) x(—(1+w137)2 +1)
L(Exy Wio) =\ ji(ws + wswsy)  F(waws¥ — wy) 0
0 0 0

= (my).

Obviously, the Jacobian matrix L(E,,,w;,) under condition(12d) with wj, = wg¥ + woy

has two negative real part, whilst 455 = 0. So, the equilibrium in the absence of scavenger

E,, (%, y,0) becomes a non-hyperbolic point.

Let the vector V, = (v,1, V55, 7,3)7 be the eigenvector of L(Exy,wfo) associated with

eigenvalue 25; = 0. Therefore, Simple calculations obtained V, = (v,1, @yv21, a3v21)7,
mazq m21m12—m11m22.

where v,, be any real number not equal zero, and a, = ———< 0, az = —
22 2271t13

Let the vector ¥, = (W21, W22, W23)" be the eigenvector of L(E,,, wi,)" associated with
eigenvalue 135 = 0. Therefore, the direct computation obtained that ¥, = (0,0, ¥,3)7, where
¥, be any real number not equal zero.

Furthermore, ai}% = F,,, = (0,0,—2)7, hence it gives that F,  (Ey,, wio) = (0,0,0)7, that

leads to Y7 [F,, (Exy, wio)] = 0.
Therefore, when wy, = wy, thus, there no saddle-node bifurcation at E,,,.
Moreover, the direct computation gives that:

0 0 O
Dleo(Exy'WikO) = <O 0 0 >:> DFW10 (Exy'WIO)VZ = (O,O,_a3U21)T-
0O 0 -1

Then, Y7 [DE,,,(Exy, wio)Va] = —Wasasvy; # 0. Now, by using eq.(26) with V, at
(Exy, wio), then it gives that:
DZ[F(Exy: Wfo)(Vz;Vz)] = [/Til]3><1-

Where
- , . w2¥ X wiw, X ,
Ay = —2v5 +2 [—ng + Wl (aav1)° + 4 Wl aza3(V21)
. wiwix 5 . Wy 2
w2 et =2t 2wy e
-2 [1 + &] a3(v21)2_
(14w, )2

Az1 = 2[—wy + wawsX](ayv21)? + 2[ws + 2wawsFla, (v1)?

A3y = 2[—wyq + wawgX](a3121)? + 2Wea3(V21)? + 2Woap a3 (V1)

Then ¥7 [DZF(Exy; Wfo)(Vz» Vz)] = 2W,3 (V1) [(—w1g + wawgX) (a3)* + wgas +
Woll,Q3].
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Itis clear that W] [D?F (E,,, wio ) (V, V2)] # 0, consequently, the Eq. (2) experiences
a Transcritical bifurcation in the concept of Sotomayor’s theorem at E,, due to (28).
Theorem 10. Suppose that condition(13d) holds, then the Eq. (2) around the equilibrium in
the absence of predator E,, = (%,0,Z), undergoes Transcritical bifurcation when the
parameter wg is equal to w¢ = wgX with the following condition
2¥3, (v32)? [(—w7 + wawsX) + wsas] # 0. (29)

Proof. It is simple to establish that the Jacobian matrix that is given by condition (13a), with
We = W can be written as the following form:

= = wq = wWiw; ~
* X x(—(1+w1W22)2 +1) x(—(1+w1w22)2 + 1+ 2w,2)
L(Ey,, w¢) = 0 0 0
Z(wg + wawg?) Zwg Z(WywgX — Wqq)

= (rij)-

Obviously, the Jacobian matrix L(E,,, w¢) under condition (13d) with w; = wsX has two
negative real part, whilst 13, = 0. So, the equilibrium in the absence of predator E,, =
(%,0,2) becomes a non-hyperbolic point.

Let the vector V3 = (v, V32, V33)7 be the eigenvector of L(E,,, w}) associated with 13, =
0. Therefore, the direct computation obtained that V; = (asvs,, V32, @4v32)T, Where v, be
any real number not equal zero, and @, = — 212 5 o o 2tdania) g

711733~ 731713 T11

Let the vector W5 = (W34, W35, W33)T be the eigenvector of L(E,,, w;)T associated with
the zero eigenvalue A5, = 0.Therefore, the straightforward calculation acquired that
Y, = (0,¥5,,0)7, where ¥5, be any real number not equal zero.

Furthermore, ;TFG = F,, = (0,—y,0)", hence it gives that F,_(Ey,, wg) = (0,0,0)", that leads
to W1 [Fy, (Ex,wé)] = 0.

Therefore, when wg = w¢, Thus, there is no saddle-node bifurcation at E,,in Eq. (2).
Moreover, the direct computation gives that:

0 0 O
DFWE,(EXZI Wg) = (0 -1 O) = DFWG(EXZI W;)V3 = (Or_UBZ'O)T-
0 0 0

Then, WI[DE,, (Ex,, we)Vs| = —¥s,vs, # 0. Now, by using eq. (26) with Vs at (Ey,, we),
then it gives that:
DZ[F(Exz’Wg)(V3:V3)] = [Ai1]ax1-

Where
2 2,2
Ay =2 |—waf + ——2% | 3,)? + 2 |—wa % + — 228 | (4,05,)?
1 3 (1 +wyw,2)3| "~ 32 * (1+wyw,2)3| " *732

W2w, % w

-2 2 44| —22" 2—2[1+—1] 2

(asvs2) l(l n W1W22~)3l a4(V32) (1 + wyw,Z)? as(Vs2)

WiW;

-2 [1 + 2W4Z + m] a4a5(v32)2.

Azy = 2[~wy; + wawsX](v32)* + 2wsas(vs2).

A3y = 2[~wyg + wawgX](@4v32)% + 2Woeay (V32)? + 2[wg + 2wawgZ]asas (v3;)?.

Then q]_?,T[DZFw6(Exz'W2)(V3: V3)] = 2W¥3,(v32)*[(—w7 + wawsX) + wsas].

It is clear that W1 [D2F,, (Ey,, we)(Vs, Vs)] # 0, thus, the Eq. (2) goes through a Transcritical
bifurcation in the sense of Sotomayor’s theorem at E,, due to (29).
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Theorem 11. The Eq. (2) around the coexistence equilibrium point E,,, = (x,y,2)

undergoes a saddle-node bifurcation when the parameter w, is equal to positive value w;
provided that the following conditions hold:

l11l33 - l13l31 :,t O (308.)
liglz = lialyr # 0. (30b)

Where [,
of w; that given by w; =

Vi,j =123 with I3, = [,,(w3) are the elements of L(E,,,), with the value
(l11133—1l13l31)W3wsXy+l13lp1l32—l12121133
(L11l33—113131)Y '

Proof. The Jacobian matrix that is given by condition (15a), with w, = w7 can be written in
the following form:
l11 l12 l13
Evyz W7) [121 132 ]
l31 l32

Substituting the value directly shows that w, = w; makes C in Eg. (15b) has the value C =
0. As a result, the characteristic equation can be calculated as follows, L(E,,,, w3 ) has a zero
eigenvalue that is represented by A* = 0, which means E,,,, is a non-hyperbolic point when
Wy = Wy,

Let the vector V, = (41, U4y, va3)” be the eigenvector of L(E,,,, w;) with eigenvalue 1* =
0. Consequently, the basic calculation obtained that V, = (agVs3, @743, Va3)T, Where v, be

11305 113l
any real number, not equal zero, and ag = — —=-2 1321

and a; =

111122_112121 111132_112121.

Let's consider the vector ¥, = (¥, %2, Was)” be the eigenvector of L(Eyy,w;)"
associated with the zero eigenvalue A* = 0. Therefore, the basic calculation gives that ¥, =

ly1l32—15,1
(g3, AoWs3, Wa3)T, Where ¥ 5 be any real number, not equal zero, and ag = %
11t227 12621
L1131 —1111
ag — 12 il 11 32.
l11155-l12021

Furthermore, :TF = F, = (0,—y20)7, hence it gives that F, (E,y, w;) = (0,—¥20)7,

that leads to ¥J| W7(Exyz, w3 )] = —agWu3¥ # 0. So, the first condition of saddle-node
bifurcation holds according to Sotomayor's theorem. Now, by using Eg. (26) with V, at
(Exyz ws), it gives that:

D F(Exyer7)(V4' Vy) = [4; ]3><1
Where

Wq

(1 +wi(y +w;2))?

W1W3
1+ W1(37 +w,Z2))?

l (a 71743)

l wilw,x wilwix

Al = —2(aguez)? — 2 [1 + 2w3y + ] Qg7 V43°

-2 [1 + 2W4Z_+ ] 0(617432

w, %X
(1 + w1 (¥ +w2))?

+2 l—wgf +

A+ wi (¥ +wy2))3 A+ w (¥ +wy2))3
Ayy = 2[ws + 2wawsyagarvy3® + 2[—wy + wawsX](a;v43)%.
A3y = 2[wg + 2wawgZlaguas? + 2w, V432 + 2[—wqq + WawgX|v,s32.

CZ7U432 + 2 l_W4f +
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Then, using condition (30c), it is obtained that:

WL [D?Ey, (Exyz w7 ) (Va, Va)| = (@gly + @odys + A37) Wy # 0.
Thus, Eq. (2) experiences a bifurcation of saddle nodes in the sense of Sotomayor's theorem
at Ey,, when w; = wy.

8. Numerical Simulation

In the previous explanation and theories of existence, we will now try to represent them
using numerical application and through drawings, where the effect of each of the 11
parameters present in Eq. (2) was studied. This is through use Mathematica-13.2. This was
done by imposing data for each of the eleven parameters that were carefully selected to
obtain the required results and are recorded in the table 2:

Table 2: Data of parameter values.

Wy W W3 Wy Ws We W7 Wg Wq Wio Wi1

0.5 0.6 0.6 0.6 0.5 0.2 0.3 0.4 0.4 0.2 0.3

By substituting parameters into the system, a positive point E,,, =
(0.451 ,0.156 ,0.223 ) was obtained, and the drawing was illustrated in figure 1. Later,
several drawings were drawn once for the prey, the predator, and then the scavenger, but
from more than one starting point. We chose 5 points and then combined them into one
drawing. All these drawings are placed in the figure 2.

(a) (b)
Predator U 0.8 T T T T T
0.6  x[t]=prey: 0.451

+0.9,0.7} [ y[t]=predator: 0.156
1 Z[t]=scavenger: 0.22]

0.4

0.2, 06k

0.6 04F :

Population

Scavenger
0.4

0.2
0.2
0.451, 0.156, 0.223}}

0.0 ool | | | | )
0 200 400 600 800 1000
0.6 Time

Figure 1: (a) 3D -Phase portrait of the Eq. (2), (b)The time series of the Eq. (2) by utilizing
table (2), the trajectories of three species demonstrate an asymptotic positive convergence

towards E,,, = (0.451,0.156 ,0.223).

02

0.4
Prey
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(b)

0.8F
s
c 1.=
5 =
= 2 o6t
2 18 #y01=: 0.156
g e 5 y02=: 0.156
> % 0.4F 03 0.156]
T i @ 5 y04=:0.156
o uy05=: 0.156
0.2 g
|
0 10 20 30 40 50
Time
(©)
T
0.7¢
ftj=prey: 0451
0156
c F 2ftj=scavenger. 0.223
506
2
5
3 05 ]
& w 20110223 §
% 04 202=:0.223]
> 5203=:0223] §
3 u204=: 0223
> L 10223
8 03 1205210223
»
0.2
|
0 10 20 30 40 50
. 0 10 20 30 40 50
Time Time

0.2

0.6

Scavenger
o

1C={0.5, 0.9, 0.7}

0.2 1C={0.1, 0.2, 0.3}

® [i1c={0.2. 0.3, 0.4}

0.0 ® |1C={0.3,0.4, 0.5)

o|ic={0.4.05.0.6)

Figure 2: (a) The prey population starting from different initial points. (b) The depredator
population starting from different initial points. (c) The scavenger population starting from
different initial points. (d) The time series exhibits the trajectories of the Eq. (2), for
population from five different initial start. (¢) 3D-Phase portrait of the Eqg. (2), for five

different initial convergence towards E,,, = (0.451 ,0.156 ,0.223).

In figure 3, we observe the following: if the parameter w;€(0,14.5), it converges towards
E,, ., but it converges towards E,, when w,€[14.5,20)
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@ 0.8 ©

0.8

"
Predatey M x([t]=prey: 0.457
, M y[t]=predator: 0.174
9.9, 0.7} ™ zjt]=scavenger: 0.274

0.2

Population
o
S

0.6
Scavenger
0.4
0.2 ‘
0.z 0.457, 0.174, 0.274})
0.0
0.2 0.0kt L L L L L
0.4 0 200 400 600 800 1000
Prey | i
0.6 b Time
(c) d
Predator 98] 0.8 @
. 8T T T T
¢ B x[t]=prey: 0.424
0.9, 0.7} M y[t]=predator: 0.07

0.0

0.6

B z[t]=scavenger: 0.
0.6 4

Population
o
S

Scavenger0.4

0.2

o
)

0.0

0.0 {0.424, 0.07, 0.}}

s L " L s
200 400 600 800 1000

Time

0.0
Prey 0.6 0
os

Figure 3: (a) Trajectories of system converge asymptotically to E,,,,, (b). Time series of the
Eg. (2) converge asymptotically to E,,, = (0.457,0.174,0.274) for w; =0.1. (c).
Trajectories of system converge asymptotically to E,,, (d). Time series of the Eq. (2),
converge asymptotically to E,, = (0.424,0.07,0) for w; = 14.5.

The effect of parameters w,, w, wy, w; wy4 is quantitative impact, so we will discuss only
the parameters that effect the system as we noted parameter ws approaches positive point in
the period (0.326,1), while in interval (0,0.326] impact of w happened on the predator. Thus

approach happen to E,, as in figure 4.
(b)

() 0.8 T T T T T
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Figure 4: (a) Trajectories of systerh converge asymptotically to Ey.,,,, (b). Time series of the
Eq. (2) converge asymptotically to E,,, = (0.276,0.318,0.16) for ws=0.9. (c).
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Trajectories of system converge asymptotically to E,,, (d). Time series of the Eq. (2),
converge asymptotically to E,, = (0.606,0,0.274) for ws = 0.3.

When we put the value of wg in specific intervals, we get the following results: As wy
increases from 0 to 0.305, it approaches to E,,,. Nevertheless, as wecontinues to rise within
the range of 0.305 to 1, the trajectories gradually converge toward E,,, as in Figure 5.
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Figure. 5 (a) Trajectories of system converge asymptotically to E,,,,, (b) Time series of the
Eq. (2) converge asymptotically to E,,, = (0.509,0.099,0.242) for we = 0.24. (c)
Trajectories of system converge asymptotically to E,,, (d) Time series of the Eqg. (2),
approach asymptotically to E,, = (0.606,0,0.274) for wy = 0.4.

When plotting the outcome of changing the wyg, three cases appear during certain periods.
The first case is approaching the point E,,, during the period 0.147 < wg < 0.654, the

second case is approaching E,,during the period 0.654 <wg < 1, and final case is
approaching the point E,,, from the period 0 < wg < 0.147 as shown in Figure 6.
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Figure 6: (a) Trajectories of system converge asymptotically to E,,,, (b) Time series of the
Eg. (2) converge asymptotically to E,,, = (0.433,0.097,0.293) for wg =0.49. (c)
Trajectories of system approach asymptotically to E,,, (d). Time series of the Eq. (2),
approach asymptotically to E,, = (0.371,0,0.415) for wg = 0.7. (€) Trajectories of system
converge asymptotically to E,,, (f) Time series of the Eq.(2) approach asymptotically to

E,, = (0.495,0.312,0) for wg = 0.142.
Next, the outcome of changing wy within the interval period 0.007 < wg < 1, also its

movement towards the point E,, within the range of 0 < wg < 0.007, we observe that in
Figure 7.
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(b) Time series of the

Eq. (2) approach asymptotically to E,,, = (0.436,0.105,0.283) for we =0.77. (c)
Trajectories of system converge asymptotically to Ey,, (d) Time series of the Eqg. (2),
converge asymptotically to E,, = (0.495,0.312,0) for wy = 0.007.

Finally, changing in w,, approached happen in three cases once to E,,,, during the period
0.079 < w,, < 0.323, second approaches to E,,during the period 0 < w;, < 0.079, and
third case approaches to E,, appeared during the period 0.323 < wy, < 1 as in figure (8).
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Figure 8: (a) Trajectories of system converge asymptotically to E,,,,, (b) Time series of the
Eq. (2) approach asymptotically to E,,, = (0.487,0.284,0.045) for wg=0.3. (c)
Trajectories of system converge asymptotically to E,,, (d) Time series of the Eq. (2),
approach asymptotically to E,, = (0.37,0,0.416) for wg = 0.06 (e) Trajectories of system
converge asymptotically to E,,, (f) Time series of the Eq.(2) converge asymptotically to
E,y = (0.495,0.312,0) for wg = 0.4
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9. Conclusion

Understanding the dynamics of ecological systems involves delving into the intriguing
foraging behaviors of animals. Both predators and prey employ various strategies to bolster
their populations. Predators collaborate in hunting endeavors to efficiently capture prey,
enabling them to tackle larger or swifter animals, subsequently enhancing their success rates.
In response, prey species develop anti-predator defenses to counteract the intensified
predation pressure. This constitutes our area of study a focus on exploring this behavior that
often involves coordinated efforts among predators. These efforts highlight strategic hunting
techniques and the division of tasks, all directed towards maximizing hunting success. So,
this research delved into a model describing interactions between prey and predators, with the
prey population showing fear reactions. The predators comprised two different categories:
active predators and scavengers, both dependent on the prey as their primary food source.
The model also incorporated a parameter that defined the cooperative behavior among
predators while hunting. The main aim is to assess the influence of collaborative hunting on
the food web system dynamics, alongside studying the repercussions of harvesting within
predator populations. The study initiated by scrutinizing solution constraints and verifying
them, then proceeded to analyze stability points, encompassing both local and global stability
assessments. Our research commenced by defining the variables for the prey, predator, and
scavenger. Through five initial conditions, we reached the positive point in our study. So, we
started with the first parameter wy, and we obtained two drawings that were explained above,
approaching two different points, E,,,and E,,. However, some parameters had a
quantitative effect, remaining points within the positive point, but increasing them directly or
inversely affects the variables of the system, and they were explained in detail Like all of the
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parameters w;,i = 2,3,4,7,11. Regarding the remaining parameters, they demonstrated a
tangible impact, yielding outcomes consistent with our study and findings. This alignment
between the theoretical and numerical solutions was achieved through the mathematica 13.
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