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Abstract  

     The present study considers to confirming the applicability of flow with double-

sided square lid driven cavity flow by using the lattice Boltzmann equation with 

moment-based boundary conditions for no slip boundaries.  The boundary conditions 

are applied over the hydrodynamic moments of the lattice Boltzmann equations 

locally at each node. The investigation is carried out numerically for both single and 

multiple relaxation time models. To simulate two-sided lid driven-cavity flow, the 

top and bottom walls are moving with constant velocity while other walls are 

stationary. Various Reynolds numbers are used in a range of 100 and up to 5000. The 

present method shows the effect of the moving boundaries on the two symmetrical 

cavities that is separated by one center line. An expected behavior is achieved here. 

For validation, a comparison between our method and benchmark data is inserted. 

The comparison is found in a very good agreement with the literature. 

 

Keywords: Lattice Boltzmann, moment-based boundary conditions, Two-sided 

cavity flow, MRT model 

 

لطريقة    يةشروط الزخم الحدودباستخدام بوجهين ويتم ذلك المحاكاة العددية لتدفق التجويف المتحرك  
 بولتزمان الشعرية 

 

 سيماء عبد الستار محمد
 قسم الرياضيات ,كليه العلوم, جامعة بغداد, بغداد, العراق 

 
 الخلاصة 
تهدف الدراسة الحالية إلى تأكيد قابلية تطبيق التدفق مع تدفق تجويفي مدفوع بغطاء مربع مزدوج الجوانب         

يتم إجراء هذا  .  من خلال تطبيق شروط الحدود القائمة على السرعة الثابتهباستخدام معادلة بولتزمان الشبكية  
. لمحاكاة تدفق التجويف المدفوع بالغطاء على الوجهين،  الشعريةالتأكيد باستخدام نموذجين من معادلة بولتزمان  

تتحرك الجدران العلوية والسفلية بسرعة ثابتة بينما تكون الجدران الأخرى ثابتة. تم استخدام أرقام رينولدز المختلفة  
. الطريقة الحالية توضح تأثير الحدود المتحركة على التجويفين المتماثلين  5000وحتى    100في نطاق من  

، يتم  الحل . للتحقق من  سلوك متوقع للمائع تم تحقيقه في هذا البحثيفصل بينهما خط مركزي واحد.  اللذين  
 لوحظ وجود توافق ممتاز مع البيانات المعيارية. .  الاخرى إدراج مقارنة بين طريقتنا والبيانات 
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1. Introduction 

     In recent years the lattice Boltzmann method (LBM) has proved to be a reliable method to 

simulate simple and complex flows [1-4]. This method has been developed to be an alternative 

to other conventional computational fluid dynamics (CFD), like in [5-7]. In the LBM the 

system develops by updating certain numbers of particle distribution functions at each site by 

streaming and collision steps. These functions propagate to the nearest nodes according to their 

lattice velocity then update their values at each time step in the local collision phase [8],[9]. By 

using the probability distribution functions, one can calculate easily the hydrodynamic 

moments and the pressure of the Navier-Stokes equations which is the main feature of the 

LBM. The first key to simulating any flow using the LBM is the numerical stability of the 

collision operator. Considerable and many collision models of the LBM are introduced during 

the development of this method. The simplest model is Bhatnagar-Gross-Krook (BGK) 

operator with one relaxation time [10-12]. The main generalization of the BGK model is 

obtained through d’Humi𝑒́res [13]. D’Humi𝑒́res introduced the multiple relaxation time (MRT) 

collision operator which provides higher numerical stability to the LBM especially when we 

simulate complex flows [14-16]. Together with the collision operator, the boundary conditions 

method is the main source of the stability of the LBM. The most commonly utilized is the 

bounce back method for no slip boundaries. In this method the distribution functions collide 

with the wall and reflect its direction to the fluid domain [17], [18]. A generalization has been 

carried out to the bounce-back method to overcome the lack of numerical stability also to apply 

it to slip regime, like in [19-22]. Similar to the work of  Noble et al. [23], Bennett [24] extended 

this work from hexagonal model to a model of 9 lattice velocities. The method is called’’ 

Moment based boundary conditions’’. On the contrary to the bounce-back, the moment method 

is imposed directly on the lattice site. This method has proved its accuracy in the investigation 

of various flows for slip and no slip boundaries, like in [25-29]. 

 

     Studies of one-sided lid-driven cavity flow were the subject of enormous methods to assess 

the efficiency of various numerical methods. Some of authors used the LBM to simulate this 

flow with accurate and successful simulations [27] [30-32]. Whereas other researchers 

employed the traditional (CFD), like in [33-35]. Recently, the two-sided lid-driven cavity flow 

has attracted some attention. An earlier experiment was done by Kuhlman et al. [36] to simulate 

double sided cavity flow with diverse aspect ratio which is considered as an extended to the 

one side of this flow. In the same matter of various aspect ratios, [37], [38] used the LBM to 

simulate this flow. In the meantime, Blohm and Kuhlmann [39] investigated experimentally 

this flow in a rectangular domain. Parallel and anti-parallel motion of the two-sided cavity flow 

were studied by Perumal and Dass in [40] and [41]. In this article an investigation of two-sided 

lid-driven cavity flow by using lattice Boltzmann method with moment method is achieved. 

 

     This article is organized as follows: In Section 2 we explain the methodology of finding the 

BGK-LBE. Section 3 gives the algorithm of the MRT model. In Section 4, the moment-based 

boundary conditions are presented whilst in Section 5 numerical simulations are given. Finally, 

a conclusion to this work is given in Section 6.  

 

  2. 2D incompressible BGK- lattice Boltzmann model 

     The D2Q9 discrete Boltzmann equation for the particle distribution functions 𝑓𝑖 , 𝑖 = 0, … ,8 

is given by [8], 
𝑑𝑓𝑖

𝑑𝑡
+ 𝝃𝑖. ∇𝑓i = −

1

𝜏
(𝑓𝑖 − 𝑓𝑖

(0)
).                                         (1) 
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      As shown in Figure 1, D2Q9 model contains 9 particle velocities  𝝃𝑖 where the distribution 

functions streaming according to the direction of the lattice velocity. This procedure is 

described in the left side of Equation (1). The right-hand side is the collision term where 𝑓𝑖 

moves towards their local equilibria 𝑓𝑖
(0)

 over one relaxation time 𝜏. The equilibrium function 

that truncated up to the second order of Mach number is given by, [42] 

𝑓𝑖
(0)

(x, t) =𝜔𝑖 𝜌(1 +
𝝃𝑖.𝒖

𝑐𝑠
2 +

(𝝃𝑖.𝒖)𝟐

2𝑐𝑠
4 −

𝒖2

2𝑐𝑠
2),                                   (2) 

where the speed of sound  𝑐𝑠
2 = 1/3 and  𝜔0 = 0, 𝜔1,2,3,4 = 1/9  and 𝜔5,6,7,8 =

1

36
   are the 

weights.  

 

 
 

Figure 1:  The D2Q9 lattice Boltzmann model. 

 

 At each lattice the three macroscopic moments, mass, momentum and momentum flux are 

defined as 

𝜌 = ∑ 𝑓𝑖  ;          8
𝑖=0  𝜌𝒖 = ∑ 𝑓𝑖

8
𝑖=0 𝜉𝑖𝛼     ;      Π𝛼𝛽 = ∑ 𝑓𝑖

8
𝑖=0 𝜉𝑖𝛼𝜉𝑖𝛽,             (3) 

 

     where the cartesian components  𝛼   and 𝛽  are used to define the velocity vector and the 

shear tensor in Equation (3). 

The Navier-Stokes equations can be obtained easily by taking the first three moments of 

Equation (1) then applying the Chapman-Enskog expansion [43] and truncating the 

expansion up to leading order in relaxation rate to get 

 

𝜕𝑡 𝜌 + ∇. 𝜌𝒖 = 0,                                                                (4) 

𝜕𝑡𝚷 + ∇. (𝚷(𝟎) + 𝜏𝚷(𝟏)) = 𝟎.                                              (5) 

Where 𝚷(𝟎)=∑ 𝑓𝑖
8
𝑖=0 𝝃𝑖𝝃𝑖   is the equilibrium momentum flux and 𝚷(𝟏) is the first order 

correction of the momentum flux tensor 

    𝚷(𝟎) =
𝜌

3
𝑰 + 𝜌𝒖𝒖.                                                               (6) 

    𝚷(𝟏) = −
𝜌

3
(∇𝐮 + (∇𝐮)𝐓) + Ο(𝑀𝑎3).                                 (7) 

The Mach number 𝑀𝑎 ≪ 1, 𝑰 is the identity matrix and the kinematic viscosity in Equation (5) 

is  𝜈 = 𝜏/3 . 
Now, to find the lattice Boltzmann equation, integrating Equation (1) over a characteristic for 

time gives 

𝑓𝑖(𝒙 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑗(𝒙, 𝑡) = −
Δ𝑡

2𝜏
(𝑓𝑖(𝒙 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓𝑖

(0)(𝒙, 𝑡)) 

                            −
Δ𝑡

2𝜏
(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

(0)(𝒙, 𝑡)) + Ο(Δ𝑡3).                (8) 
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     The left-hand side of Equation (8) is obtained exactly while to find the integration for the 

right-hand side the Trapezoidal rule has been applied.  Equation (8) is a second order implicit 

system of equations which is difficult to be approximate. Alternatively, an explicit algorithm 

was proposed by He et al. [44] 

𝑓 ̅𝑖 = 𝑓𝑖(𝒙, 𝑡) +
Δ𝑡

2𝜏
(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

(0)(𝒙, 𝑡)).                                                          (9) 

Thus, the lattice Boltzmann equation in terms of  𝑓 ̅𝑖 is obtained 

𝑓 ̅𝑖(𝒙 + 𝝃𝑖Δ𝑡, 𝑡 + Δ𝑡) − 𝑓 ̅𝑖(𝒙, 𝑡) = −
Δ𝑡

(𝜏+
Δ𝑡

2
)

(𝑓 ̅𝑖(𝒙, 𝑡) − 𝑓̅
𝑖
(0)(𝒙, 𝑡)) + Ο(Δ𝑡3).  

                                                                       (10) 

Equation (9) can be employed to compute the hydrodynamic quantities in terms of  𝑓 ̅𝑖 as 

𝜌 = ∑ 𝑓𝑖 =  ∑  𝑓 ̅𝑖  
8
0 ;          8

𝑖=0                                                         (11) 

𝜌𝒖 = ∑ 𝑓𝑖
8
𝑖=0 𝝃𝑖 = ∑  𝑓 ̅𝑖  𝝃𝑖  

8
𝑖=0 ;                                                    (12) 

   ∑  𝑓 ̅𝑖

8

𝑖=0

𝝃𝑖𝝃𝑖 = (
2τ + Δ𝑡

2𝜏
 ) 𝚷 −

Δ𝑡

2𝜏
𝚷(𝟎)  .                                         (13)  

Note that the ratio between grid spacing Δ𝑥 to time step Δ𝑡  is equal to 
Δ𝑡

Δ𝑥
= 0.1. 

 

3. Multiple relaxation time model for LBM 

     For higher Reynolds numbers, the BGK-LBM suffers from lack of numerical stability so 

(MRT) collision operator will be used instead [13], [14], [16], and [45]. In this work we will 

follow Dellar [16] by forming orthogonal basis Hermite polynomials. Since the D2Q9 model 

will be used, we need nine vectors. The first six lattice vectors are 𝜌, 𝜌 𝒖 and the three vectors 

of the momentum flux 𝚷.  The last three components are obtained from the orthogonal weighted 

lattice vectors, [16] 

𝑔𝑖 = (1, −2, −2, −2, −2, 4, 4, 4, 4)T,                       (14) 

𝑔𝑖 𝜉𝑖𝑥 =  (0, −2, 0, 2, 0, 4, −4, −4, 4)T,                   (15) 

𝑔𝑖 𝜉𝑖𝑦 = (0, 0, −2, 0, 2, 4, 4, −4, −4)T,                     (16) 

where T indicates transpose operator.  

The corresponding “ghost moments” are introduced as 

ℋ = ∑ 𝑔𝑖𝑓𝑖  ;         𝓛 = ∑ 𝑔𝑖𝝃𝑖 𝑓𝑖  .                (17)      

8

𝑖=0

     

8

𝑖=0

 

     The equilibrium of the “ghost moments” ℋ0 = ℒ𝛼
0 = 0. The ghost moments are linked to 

the third and fourth order non-hydrodynamic moments of D2Q9 model as  

 𝑄𝑥𝑥𝑦 = ∑ 𝑓𝑖
8
𝑖=0 𝝃𝑖𝑥 𝝃𝑖𝑥𝝃𝑖𝑦 =

1

3
𝜌𝑢𝑦 +

1

6
 ℒ𝑦, 

𝑄𝑥𝑦𝑦 = ∑ 𝑓𝑖

8

𝑖=0

𝝃𝑖𝑥 𝝃𝑖𝑦𝝃𝑖𝑦 =
1

3
𝜌𝑢𝑥 +

1

6
 ℒ𝑥, 

 

𝑅𝑥𝑥𝑦𝑦 = ∑ 𝑓𝑖
8
𝑖=0 𝝃𝑖𝑥 𝝃𝑖𝑥 𝝃𝑖𝑦𝝃𝑖𝑦 = −

1

9
𝜌 +

1

3
Π𝑥𝑥 +

1

3
Π𝑦𝑦 +

1

9
 ℋ.           (18) 

 

Noting, one can obtain the zero and first order moments equations from the ghost variables.  

Different relaxation times will be chosen for the non-conserved moments that relax to their 

equilibria separately according to their own rates. By using Equation (10), one can compute 

the three post-collisional moments for MRT model in terms of  𝑓 ̅𝑖  as 
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 𝚷̅~ = 𝚷̅ −
Δ𝑡

𝜏 +
∆𝑡
2

(𝚷̅ − 𝚷(𝟎)); 

ℋ̅~ = ℋ̅ −
Δ𝑡

𝜏𝑟+
∆𝑡

2

(ℋ̅ − ℋ(𝟎));                                                                            (19) 

 

𝓛̅~ = 𝓛̅ −
Δ𝑡

𝜏𝑠 +
∆𝑡
2

(𝓛̅ − 𝓛(𝟎)). 

    The post collision velocity distribution function   𝑓 ̅𝑖  can be proposed according to Equation         

(19) as                                         

𝑓 ̅𝑖 = 𝜔𝑖(𝜌 + 3𝜌𝒖 . 𝝃𝑖 +
9

2
(𝚷̅~ −

𝜌 

3
𝐈) : (𝝃𝑖𝝃𝑖 −

1

3
𝐈)) +  𝜔𝑖𝑔𝑖(

1

4
ℋ̅~ +

3

8
𝝃𝑖𝓛̅

~).             (20) 

Noting, if 𝜏 = 𝜏𝑟=𝜏𝑠 then the BGK-LBE will be recovered. 

 

4. Moment-based boundary conditions 

     The general idea of this method is to impose conditions upon three of the lattice Boltzmann 

moments then express them into conditions on the unknown distribution functions 𝑓 ̅𝑖 or 𝑓𝑖. At 

each boundary there are three unknown functions. From each row in Table- 1 we pick one 

moment, in particular the hydrodynamic moments, and then apply conditions on these 

moments. Finally, solves the three independent equations to find the unknown functions. For 

moving straight no slip boundaries, the southern wall will be chosen as an example to explain 

the moment method.  

 

Table 1: Combination of unknown at the north boundary 

Moments Combination of unknown at the south wall 

𝜌,̅ 𝜌𝑢̅𝑦 , Π̅𝑦𝑦 𝑓 ̅2 + 𝑓 ̅5 + 𝑓 ̅6 

𝜌𝑢̅𝑥, Π̅𝑥𝑦, 𝑄̅𝑥𝑦𝑦 𝑓 ̅5 − 𝑓 ̅6 

Π̅𝑥𝑥 , 𝑄̅𝑥𝑥𝑦 , 𝑆𝑥̅𝑥𝑦𝑦  𝑓 ̅5 + 𝑓 ̅6 

 

     At this wall  𝑓 ̅2, 𝑓 ̅5 and  𝑓 ̅6  are unknown and need to be found. Three conditions will 

impose on each moment from each row in Table 1 in terms on barred 𝑓. The constraints will 

be no slip and no flux boundary condition.  From the first and second rows we have the 

horizontal and vertical velocities respectively 𝑢𝑥̅̅ ̅ = 𝑈𝑙 and  𝑢𝑦̅̅ ̅ = 0 where 𝑈𝑙 is a constant 

velocity. The third condition is Π̅𝑥𝑥 = Π𝑥𝑥
(0)

. The tangential stress condition is found by 

truncating the Chapman-Enskog expansion into Ο(𝜏) such that Πxx ≅ Π𝑥𝑥
(0)

+ 𝜏Π𝑥𝑥
(1)

. Since 

𝜕𝑥𝑢𝑥 = 0 then from Equation (7), Π𝑥𝑥
(1)

= 0.  For no slip moving boundary, the three conditions 

are 

𝜌𝑢𝑥̅̅ ̅̅ ̅ = 𝑈𝑙;       𝜌𝑢𝑦̅̅ ̅̅ ̅ = 0 ;  and     Π̅𝑥𝑥  =  
𝜌

3
+ 𝜌𝑈𝑙

2.                          (21) 

Solving the three equations in (21) given the three unknown functions 

𝑓 ̅2 = 𝑓 ̅1 + 𝑓 ̅3 + 𝑓 ̅4 + 2(𝑓 ̅7 + 𝑓 ̅8) −
𝜌

3
− 𝜌𝑈𝑙

2,    

𝑓 ̅5 = −𝑓 ̅1 − 𝑓 ̅8 +
𝜌

6
+

1

2
𝜌𝑈𝑙(𝑈𝑙

2 + 1),  

𝑓 ̅6 = −𝑓 ̅3 − 𝑓 ̅7 +
𝜌

6
+

1

2
𝜌𝑈𝑙(𝑈𝑙

2 − 1).                             (22) 

The density is calculated from Equations (22) and the vertical velocity 𝜌𝑢𝑦, which equal to 

zero at the south wall, such that 

 𝜌 = 𝑓 ̅0 + 𝑓 ̅1 + 𝑓 ̅3 + 2(𝑓 ̅2 + 𝑓 ̅5 + 𝑓 ̅6) + 𝜌𝑢̅𝑦. 

At the corners, five distribution functions are unknows and need five moments to be found.  
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     The no slip conditions will be applied. These moments are Π̅𝑥𝑥, Π̅𝑦𝑦, 𝜌𝑢𝑥̅̅ ̅̅ ̅, 𝜌𝑢𝑦̅̅ ̅̅ ̅ and the fifth 

moment is the zero-shear stress  Π̅𝑥𝑦. For more details, see [25].  

 

5. Numerical results and discussion for double-sided lid-driven cavity flow using LBM 

     In this section, an incomparable sequare cavity flow with top and bottom moving walls is 

studied. The investigation is carried out by using the LBM with moment boundary conditions 

from Section 4, see Figure 2. 

 

 
Figure 2: Geometry of double-sided parallel wall 

 

     In this work a Fortran 90 software is employed to simulate double-sided lid-driven cavity 

flow.  Here, the dimensionless Reynolds number is defined as Re = 𝑈𝑙 𝑚/𝜈 where 𝑚 is the 

number of grid points. The uniform velocity is chosen in lattice unit as 𝑈𝑙 = 0.1. Various 

Reynolds numbers are studied in a range of  Re = 100 to Re = 5000. Different lattice size is 

examined to test the accuracy of LBM. The simulations show that the convergence of the two-

sided cavity flow is identical to the investigation of single lid cavity flow in [27]. The same 

challenge we faced which is the convergence of BGK-LBE with moment method for higher 

Reynolds numbers. For a sake of comparison, a grid resolution equal to 𝑚 × 𝑚 = 257 × 257  
is used in this article for all Reynolds numbers. So, at Re= 100 and 𝑅𝑒 = 400 we apply the 

BGK-LBM while to achieve stability and more accuracy at  Re =  1000, 1500, 2000 and 

5000,  the MRT-LBM is applied. The two relaxation times of the ghost moments is chosen to 

be  𝜏𝑟 = 𝜏𝑠 =
∆𝑡

2
 to ensure the distribution functions relax to their equilibrium separately and 

directly [16], [46]. The stream function 𝜑 is given to be 

 

𝜑 = ∫ −𝑢𝑦𝑑𝑥 + 𝑢𝑥𝑑𝑦. 

Which satisfies the velocity components, [47] 

 

𝑢𝑥 =
𝜕𝜑

𝜕𝑦
, 𝑢𝑦 =

𝜕𝜑

𝜕𝑥
 . 

A steady state is achieved if the following conditions is hold, 
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max
𝑖𝑗

|𝜑𝑖𝑗
(𝑡+1)

− 𝜑𝑖𝑗
(𝑡)

| < 10−9. 

 

 Figure 3 shows a stream line patterns for the top and bottom moving walls at different 

Reynolds numbers. The walls are moving with the same velocity. The two walls are moving 

from the left to the right. The two primary vortices cores are observed near the center of two 

halves of the lid driven cavity. These two counter-rotating stream functions are identical with 

a symmetry line separating between them horizontally in the middle of the domain at 𝑥 = 0.5.  

For all Reynolds numbers the two cavities keep their symmetry in this flow. The two vortex 

cores of the primary vortices are slightly away from the middle of the cavities. However, by 

increasing the Reynolds number, the two cores are moving towards the center of the primary 

vortices. At Re > 100 additional vortices formulate in the side of the two cavities. These 

counter-rotating secondary vortices are located at the right corner of each cavity. They placed 

exactly on the symmetry centre line. These symmetrical secondary vortices increase in size as 

Reynolds number increases. At Re= 5000  the stream lines are combined again to create 

another secondary vortex at the top left of the upper cavity and at the lower left of the bottom 

one.   

(a) Re=100  

 

(b) Re=400  

 

(c) Re=2000 

 

(d) Re=5000 

 
Figure 3: Streamlines pattern on 257x257 grid resolutions and various Reynolds numbers. 

Figure 4 plots the vertical 𝑢𝑦 and horizontal 𝑢𝑥  velocity profiles, respectively.  In these figures 

we consider various Reynolds numbers along the centrelines  𝑥 and 𝑦 = 0.75. This figure gives 

an expected behaviour. We notice that  𝑢𝑥, Figure 4 (a), take a parabolic shape symmetry about 

𝑦 = 0.5. This is due to location of the two cavities. The velocity 𝑢𝑥  decreases until 𝑦 = 0.5. 

Then it starts to increase again until reach to 𝑢𝑥 = 1. On the other hand, the vertical velocity 
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𝑢𝑦  which is given in Figure 4 (b), increases slightly then decreases steadily down until passing 

the line 𝑦 = 0.8  then it raises again. This behaviour is true for all Reynolds numbers. To show 

the whole picture of the velocity behaviour, in Figures 5 and 6 we plot the vertical and 

horizontal velocity profiles along various lines of 𝑥 and 𝑦 at Re = 400 and 1000, respectively. 

 

(a) 

 

(b) 

 

Figure 4: a A horizontal velocity 𝒖𝒙 along  𝒙 = 𝟎. 𝟓, and (b) A vertical velocity   𝒖𝒚 through 

𝒚 = 𝟎. 𝟕𝟓 at different Reynolds numbers. 

 

(a) 

 

(b) 

 
Figure 5: a A horizontal velocity 𝒖𝒙 along 𝒙 = 𝟎. 𝟐𝟓, 𝟎. 𝟓 and 0.75, (b) A vertical velocity   𝒖𝒚 

through 𝒚 = 𝟎. 𝟐𝟓, 𝟎. 𝟓 and 𝟎. 𝟕𝟓  at 𝐑𝐞 = 𝟒𝟎𝟎.  
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(a) 

 

(b) 

 
Figure 6: a A horizontal velocity 𝒙 = 𝟎. 𝟐𝟓, 𝟎. 𝟓 and 0.75, (b) A vertical velocity   𝒖𝒚 through 

𝒚 = 𝟎. 𝟐𝟓, 𝟎. 𝟓 and 𝟎. 𝟕𝟓  at 𝐑𝐞 = 𝟏𝟎𝟎𝟎.  
 

     The locations of the primary and secondary stream functions are listed in Table- 2. To 

validate our method, a comparison between our results with moment method and other methods 

in [40] is given. These methods are the LBM with bounce-back boundary conditions for 

stationary walls and equilibrium boundary for moving walls and the finite difference method 

(FDM). Table 2 shows a very good agreement between our results and those in [40]. Noting, 

since at Re = 100 there is no secondary vortex so only the locations of the primary vortex are 

inserted. 

 

Table 2: Comparisons of the locations of the primary and secondary vortices at different 

Reynolds numbers. 

 

Re 

The comparison 
Primary vortex centre Secondary vortex centre 

Bottom Top Bottom Top 

 x y x y x y x Y 

 

100 

 

Present(LBM) 0.6171 0.2187 0.6170 0.7968 - - - - 

LBM [40] 0.6145 0.2024 0.6145 0.7949 - - - - 

FDM [40] 0.6146 0.2025 0.6145 0.7949 - - - - 

 

400 

Present(LBM) 0.5859 0.2421 0.5859 0.7656 0.9921 0.4804 0.9921 0.5234 

LBM [40] 0.5845 0.2388 0.5845 0.7549 0.9875 0.4713 0.9874 0.5283 

FDM [43] 0.5844 0.2387 0.5844 0.7552 0.9872 0.4636 0.9872 0.5262 

 

1000 

Present(LBM) 0.5312 0.2500 0.5312 0.7578 0.9609 0.500 0.9609 0.4609 

LBM [40] 0.5314 0.2431 0.5314 0.7556 0.9528 0.4619 0.9528 0.5365 

FDM [40] 0.5352 0.2453 0.5352 0.755 0.9550 0.4572 0.9550 0.5408 

 

1500 

Present(LBM) 0.5234 0.2500 0.5234 0.7578 0.9492 0.4609 0.9492 0.5390 

LBM [40] 0.5234 0.2434 0.5234 0.7518 0.9434 0.4569 0.9433 0.5385 

FDM [40] 0.5245 0.2453 0.5267 0.7528 0.9444 0.4572 0.9443 0.5429 

 

2000 

Present(LBM) 0.5234 0.2500 0.5234 0.7578 0.9453 0.4609 0.9453 0.5390 

LBM [40] 0.5108 0.2489 0.5108 0.7497 0.9378 0.4598 0.9377 0.5389 

FDM [40] 0.5132 0.2474 0.5132 0.7528 0.9400 0.4573 0.9400 0.5478 

 

5000 

Present(LBM) 0.5078 0.2500 0.5078 0.7500 0.9375 0.4687 0.9375 0.5390 

LBM [40] - - - - - - - - 

FDM [40] - - - - - - - - 
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6. Conclusions 

     In this work double-sided lid driven cavity flow is computed. Simultaneously the lattice 

Boltzmann method with moment-based boundary condition is employed to simulate this flow. 

Both the BGK and a particular implementation of the MRT collision operator were applied 

with the moment method. The MRT schemer was used for higher Reynolds numbers to reach 

a numerical stability. Here, we studied the physics of the cavity flow when the north and the 

south walls are moving. Two cavities were appeared and for both of the them core the primary 

vortices moved to the centre with higher Reynolds numbers. Secondary vortices are visualized 

in the side of the two cavities for Re > 100. An additional two counter-rotating stream 

functions were formed in the left side of the primary vortices. Horizontal and vertical velocity 

profiles are explained in graphs in details for different Reynolds numbers and locations. 

Meanwhile, the locations of the primary and secondary vortices centres are listed for various  

Re and compared with other works. A very good agreement was obtained. 
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