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Abstract 

     In this work, the effects of x-value on electrical and optical properties was 

studied for the two dimensional (2D)GaAs1-xPxstructure by applying the density 

functional theory.We found that the gallium arsenide(GaAs) and gallium 

phosphide(GaP) monolayers are bound to each other, while the charge transfer 

between these two materialsleads to tuning the band gap value between 1.5 eV for 

GaAs to 2.24 eV for GaP. The density of state, band structure, and optical properties 

are investigated in this paper. 
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 بأستخدام المبادئ الاولية دراسهGaAs1-xPxوالبصريه للنظام  والتركيبيه الخواص الكهربائيه
 

 1ابراهيم جاسم عبد الله ، 2وائل ابراهيم احمد ، 1علاء احمد الجبوري 
 ، الانبار، العراقجامعو الانبار ،التربيو لمعمؽم الررفوكميو ، قدػ الفيزياء1

 ، الانبار، العراقفدػ تربيو الفمؽجو ،مديريو تربيو الانبار2
 الخلاصه

-GaAs1عمى الخؽاص الكيربائييؽالتركيبييؽالبررييلانعسو xتاثير قيسو  في ىذا العسل تػ دراسو     

xPx  الثشائيو الابعاد باستخدام نعريو الداليالؽظيفييممكثافو , حيث وجدنا ان الشعاميؼGaAsوGaP  الاحادي
( GaAsوGaPالطبقو يرتبطؽن بتجانس تام مع بعزيسا البعض , وان انتقال الذحشو بيؼ ىاذيؼ الشعاميؼ )

سثل لكترونييالخؽاص الا , وكذلغ تػ حداب بقيو eV 2.24الى  eV 1.5يقؽد الى ضبط فجؽه الطاقو بيؼ 
 كثافو الحالو و حزمو التركيب , والخؽاص البرريو ليذه الانعسو .

Introduction 

     Two-dimensional (2D) materials, such as graphene, transition metal dichalcogenide (TMD), and 

black phosphorene have intrigued tremendous studies over the past few years owing to their 

extraordinary electronic, mechanical and optical properties, promising for a wide range of applications 

[1-5]. Recently, the main research hotspot has transferred from mono-component systems to 

heterostructures which are made by stacking at least two types of 2D materials. By stacking of 

chemically different 2D materials, most of the novel phenomena such as high carrier mobility and 

visible light absorption can be achieved in such heterostructures [6-10]. GaP with a band-gap of 2.24 

eV is one of the important wide band-gap semiconductors, being a potential material for optical and 

high-temperature electronic devices [11], GaP nanostructures attract scientist in the field of vision as a 

result of their sufficient satisfaction to the rapidly expanded commands for semiconductor devices.For 

the photo-voltaic cells by utilizing sustainable solar energy, GaP can be used both for 
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photoelectrochemical water splitting as well as CO2 reduction, along with its uses as a photocathode 

under reducing conditions [12-14]. In addition, GaAs is one of the important materials used in nano-

electronic and optoelectronic devices. Due to its high carrier mobility, smalldielectric constance, high-

temperature resistance, and directbandgap,GaAs is widely used in optoelectronic devices [15-17]. In 

the present work, we design a new 2D composed of GaP and GaAs monolayers and study its 

geometric, optical and electronic properties with first-principle calculations. 

Computational method and details 

     Electronic structure and optical calculations were performed using the firstprinciple calculations as 

implemented in the SIESTA(Spanish Initiative for Electronic Simulations with Thousands of Atoms) 

Package [18]. The optimum geometries of the periodic system were obtained by relaxing the system 

until all forces on atoms were less than 0.04 eV/Å. Generalized gradient approximation (GGA) with 

the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functionalwas adopted to describe the 

exchange-correlation interaction developed for the calculations of surface systems. The SIESTA 

calculations employed a double-zeta plus polarization orbital basis set, norm-conserving 

pseudopotentials, and an energy cut-off of 200Rydergs.Optical calculations  were carried out using 

33x33x3 optical mesh and 0.2 eV optical broadening. 

Results and discussion 

1-Structural Optimization 

     Figure-1 shows the structural optimization of GaAs1-xPx system with varied X mol from 0 to 1.The 

system has 32 atoms in total,which is changing depending on X ratio, lattice constant, and bond 

length,as illustrated in Table-1.The lengths of the bonds of GaAs1-xPx compounds are almost constant 

except for X=1 where it is shorter by 1.5 Å than X=0. The lattice constant b is decreased when P 

increases in the system from 28.16 to 26.68 Å, when comparedwith the small change for the lattice 

constant c.The reason is that we selected only two-units cell in the z-direction and four-units cell in y-

direction and , therefore, the change appeared more clearly in the y-direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-Optimized structures of periodic GaAs1-xPx system for X=0 to 1. 

 

Table 1-The structural parameters of GaAs1-xPxsystem for the x mol.  

 

Unit cell (Å) Ga-As 

bond 

(Å) 

Ga-P bond 

(Å) 

P-P bond 

(Å) 

As-As bond 

(Å) 

Band gap 

(eV) b c 

X=0.0 28.16 8.12 2.42 -- -- 4.06 1.56 

X=0.125 28.14 8.04 2.41 2.33 -- 4.03 1.60 

X=0.25 28.00 8.07 2.42 2.32 -- 4.01 1.61 

X=0.375 27.87 8.06 2.42 2.32 -- 4.01 1.65 

X=0.5 27.77 8.08 2.42 2.32 -- 4.01 1.62 

X=0.625 27.67 8.04 2.42 2.31 3.97 4.01 1.63 

X=0.75 27.60 8.00 2.42 2.32 3.95 4.01 1.68 

X=0.875 27.41 7.92 2.42 2.32 3.94 4.01 1.94 

X=1.0 26.68 7.70 -- 2.28 3.85 -- 2.24 
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2- Electronic Band Structure 

The calculated band structure and partial density of state (PDOS) of theoptimized monolayer GaAs1-

xPx are shown in Figures-(2 and 3). The overall profile of the indirect bandgap (Ec-Ev) is in a good 

agreement with previous theoretical and experimental work [5], [19-21]. The electric energy gap 

increased with the increase of phosphorene P in the system which was1.56 eV for GaAs and 2.24 eV 

for GaP.The bandgapis strongly related to the bond length and lattice constant. In other words,the 

variation in the lattice parameters is related to the radius of the atoms, meaning that the bandgap is 

decreased with the increase in the lattice constant, which is clear in Table-1.The lattice constant b 

varied from 28.16 Å for GaAs to  26.68 Å for GaP. IThe partial density of the state is shown in 

Figures-(2 and 3). To gain further insight into electric properties,we analyzed the contribution of each 

atom state by decomposing the PDOS.The results of the partial density of states showed that the 

higher peak of states is observed to minimum conduction band and maximum valence band for Ga and 

As atoms, with small  contribution of P for low x- value, while this ratio is then reversedwith the 

increase in x-value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-Band structure and partial density of state as a function of energy for all x values of GaAs1-

xPx. 

3- Optical Properties 

     In this section, we introduce the optical properties of 2D GaAs1-xPxstructure.These properties are 

related to a complex dielectric constant   which is important to understand the reaction between the 
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crystal system and the electromagnetic waves. It is too difficult to experimentally make a sample of a 

single-crystal structure.Therefore,the first principle is a good approximation to analyze optical 

properties, including dielectric constant, reflectivity, and absorption coefficient. The dielectric 

constant is the ability of the system to contain and store electrons. The imaginary part of the dielectric 

constant  can be obtained from equation 1, which led to the calculation of the real part of the 

dielectric constant , as shown in equation 2.The absorption coefficient  can be calculated by 

combining  and , as described in equation 3. Equation 4 shows the refractive index n[22]. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-The optical properties of GaAs1-xPx structure as a function of energy, in which a and b are 

real and imaginary parts of dielectric constant, c is the absorption coefficient, and d is the refractive 

index. 

     The values of the real and imaginary parts of the dielectric constant of 2D GaAs1-xPx structure are 

shown in Figures-(3a and b).The main peaks of   and were in the visible region for all values of 

x, with a small shift toward higher energies when x value increases, followed by a decrease with 
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increasing photon energy.The values of   and varied between 7 and 8 at this region.This 

peakcorresponds to the optical transitions between valence and conduction band. The absorption 

coefficient is defined as the transitions between valance and conduction states caused by means of 

excitations. It wasfound that the absorption edges are in the range of 1.6 to 2.1 eVfor all x values, as 

shown in Figure-3c, which gives the threshold for direct optical transitions between the top of the 

occupied orbital and the bottom of the unoccupied orbital. This indicates that, in the visible region 

with a wavelength of 775–590 nm, all systems can absorb a large amount of light. 

    The refractive index of the material is a more important property of an optical system. Figure-

3ddemonstrates the refractive index of GaAs1-xPx system with a higher value at the visible region.The 

refractive index decreases gradually with the increase in photon energy. 

Conclusions 

     In this study, we investigated the electrical, structural, and optical properties of GaAs1-xPx system 

by means of DFT-GGA-SIESTA code. Our resultsshowed that the lattice constants are decreased from 

28.16 to 26.28 Å with the increase in x-mol from 0 to 1, which leads to a change of the band gap from 

1.56 to 2.24 eV at the same x-mol. Optical parameters, such as real and imaginary parts of dielectric 

constant, absorption coefficient, and refractive index,were calculated.  
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