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Abstract

Hydrocarbon soil pollution is one of the most dangerous pollutants in the world.
It occurs for several reasons and increases due to factories not adhering to
environmental protection controls, the most prominent of which is oil production.
This work used two sets of soil petroleum contamination to demonstrate principal
component analysis (PCA) and partial least squares regression (PLS) modeling. To
determine the variables adopted in this study based on spectroscopic analysis within
the spectrum range of 1700-1800 nm and 2200-2400 nm, the distinct absorption
peaks at 1720, 1750, 2220, 2300, and 2350 nm indicated the crude oil content.
Chemical analysis of the samples was used to measure the relationship and build a
PLS and PC model, which helped obtain a high percentage of match of up to 90%.
The work indicates that this technique may enhance field investigation of oil
contamination, providing an accurate in-field technique.
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1. Introduction

Hydrocarbon pollution is one of the most severe types, threatening environmental life and
living organisms by producing diseases and risks. It is produced in commercial factories for
various products, and the most prominent causes are oil extraction, production, and refining
factories. These oil facilities extract large quantities of crude oil daily in addition to its daily
use in daily life, spills, and accidents. Leakage of fuel and oil pipelines, as well as natural
causes such as earthquakes and movement of rocks and earth layers [1] [2]. Oil is a group of
hydrocarbon compounds consisting of bonded hydrogen and carbon atoms; the threats caused
by hydrocarbons must be part of a monitoring plan to maintain the scope of pollution and
treat it [3]. It is formed due to oil extraction and transportation, natural leakage, or accidents,
which cause environmental destruction in addition to the problem of pollution in isolated
places such as refineries and oil fields. The ASD filed spec3 (Analytical Spectral Devices)
provides distinct spectral signatures for each substance; a spectroscopic analysis device
provides different spectral signatures for each substance. So that the presence or absence of
hydrocarbons can distinguish the soil, each giving different spectral signatures. Crude oils
and petroleum fuels have absorption around 1725-2310 nm; the NIR-SWIR absorption bands
of crude oils and fuels originate in clusters of saturated CH> and terminal CHj stretching
patterns, or aromatic CH3 groups. Spectral information in the NIR-SWIR band is excellent
for qualitative and quantitative analysis of soils contaminated with hydrocarbons. However,
the resulting spectral bands obstruct the interpretation and quantification of spectra [4] [5].
Multivariate procedures in spectroscopy or material science involve analyzing multiple
variables (like absorbance spectra at different wavelengths) to determine material properties.
Principal Component Analysis (PCA) or Partial Least Squares Regression (PLSR) techniques
used to extract meaningful information from complex datasets, relating spectral data to
material composition, structure, or properties; multivariate calibration generally resolves the
problem of interference from compounds bound to the target, thus eliminating the require for
selectivity PLS and PCA decompose the spectral data into components that explain the
maximum variance in the predictor (spectral) variables and the response (analyte
concentration) variables. This decomposition allows the model to extract the relevant
information about the analyte of interest from the spectral data, even in the presence of
interference from other compounds or matrix effects. Recent studies focused on using remote
sensing and statistical spectral techniques to detect hydrocarbon contamination. For example,
algorithms and techniques clarify the relationship between spectroscopic and chemical
analysis data. The most important of these is PLSR (Partial Least Square Regression), which
analyzes and extracts sample files, ensuring quality [6] [7]. Reflectance spectroscopy (RS)
has been recognized as a reliable alternative technique for the direct detection of petroleum
hydrocarbons (PHCs) [8] [9]. It has been acknowledged as a dependable alternative
procedure for directly detecting petroleum hydrocarbons (PHCs)3. Despite not being the most
common method for this purpose, RS has also proven to be a simple, quick, and cost-
effective strategy for rapidly detecting and characterizing PHC-contaminated soils.

More specifically, RS in the range of (NIR-SWIR, 700-3000 nm) is directly a prevalent
method for speedy recognizable proof and quantification of PHCs in contaminated soils, with
sensible levels of accuracy, particularly due to the transportability of the devices and least or
no planning and pre-treatments required for the samples studied used PLS in the process of
analyzing data for 98 samples of contaminated soil under laboratory conditions to evaluate
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hydrocarbon contamination in soil. Because spectroscopic analysis has become the focus of
interest for soil scientists [10] [11]. As well as the PLS technique in detecting hydrocarbon
contamination, a researcher used 150 samples from four different regions in the UK and
made it possible to predict the relationship between soil, water, hydrocarbons, and soil [12]
[13]. A researcher used PCA (Principal Component Analysis) and PLS with Fourier infrared
analysis using 50 samples for calibration and 37 samples for verification in Australia [14]
[15]. In Brazil, a researcher used two sets of samples, the first set of 3 samples and the second
set of 4 samples with different quantities of oil in laboratory conditions. The soil's spectral
characteristics were analyzed using LS and PCA as statistical tools to create qualitative
models useful in detecting hydrocarbon pollution in areas close to oil facilities most Affected
by pollution [16]. In area ONERA in France used an ASD Field Spec3(Analytical Spectral
Devices) spectroradiometer and used ENVI software to calculate spectral indices for
detecting the spectral that were not normal for hydrocarbon, used four boxes have soil and
sand with oil where the results of the spectral signature were between 1700 and 2300 nm
[17]. In another proposal to analyze soil and detect hydrocarbon contamination, infrared
spectroscopy was used, along with statistical models to predict hydrocarbon content, by
testing 72 samples in Australia, where results were obtained by sensing hydrocarbons in the
range 2340-2300nm. [18]. In Brazil, analysis using techniques (PCA) and (PLS) for samples
from two Gather I is composed of three samples of crude oils. Bunch II comprises six
samples of mineral substrates (MS) research utilizing FieldSpec3 spectrometer (ASD), ENVI
software, and the Unscrambler X 10.1 software, using the Savitzky-Golay filter [19]. The
study aims to identify hydrocarbon contamination accurately and its presence to aid in
prediction and to study the variation and correlation between spectroscopic analysis data and
chemical analysis data using PLS and PCA techniques to serve as a quick monitoring of soil
in areas close to oil facilities.

2.1 Study area

The soil samples were collected from the North Rumaila Oil field in southern Iraq at Basra
Governorate, at the coordinates from 47° 16' 23.271"E, 30° 42' 45.769"N to 47° 21'
55.343"E, 30° 35' 10.267"N. Lime content and oil activity characterize the soil of the study
area due to the presence of oil and the processes of extracting and developing oil facilities. It
produces high concentrations of hydrocarbons and their various compounds. The map of the
study area and sampling locations are shown in Figure 1.
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2.2 Soil samples and mixtures

Figure 1: Study area and sampling locations

This study utilized two samples; the training set consists of 22 samples taken directly from
the study area's top surface soil (0-10 cm). The site location and total hydrocarbon in ppm
according to gas chromatography GC mass device instrument appears in Table 1.

Table 1: Filed sample’s (F) location and Hydrocarbon Concentration (training set)

Sample Long E LatN HCs (ppm) (GC result)
F1 471929 3040 32 9.62
F2 4719 38 303916 3.60
F3 471928 303746 322.54
F4 4719 12 303717 2.02
F5 4719 12 303717 27.60
F6 4718 51 303722 20.33
F7 471922 303625 4.09
F8 471927 303558 31.36
F9 4719 44 303547 158.36
F 10 472007 303624 4.29
F 11 4720 33 303622 2.04
F 12 47 18 50 303618 213.93
F 13 4718 13 303642 2.74
F 14 47 18 54 303549 126.86
F 15 47 18 24 303549 58.17
F 16 4719 40 303733 20.22
F 17 4719 50 303724 146.85
F 18 4718 57 303746 0.78
F 19 47 18 45 303749 1.49
F 20 471922 304130 38.60
F 21 4719 16 304219 197.77
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The second is the test set, a set of samples prepared in a laboratory from crude oil added to
soil free of hydrocarbons. Table 2 shows the calibration experiments that were carried out for
the soil test set. This dynamic included the addition of 5 mL of crude oil up to a fixed 20 mL
volume of each dry soil mixture coming about in a range of oil concentrations from 5-30%.
The oil-containing soil was thoroughly mixed using a glass bar at each dosing, and the
surface was straightened before spectral filtering. Readings were taken utilizing an ASD
trumpet fore optic at three separate points on the surface, and the middle value was found to
get a representative spectrum for a given concentration for each sample, Table 1. The
proportions of crude oil in the laboratory-which combined with uncontaminated soil were
converted from mg to ppm to standardize the units in the following steps:

» Convert the additive volume (5,10,15,20 ml) into weight using a specific density.

» Mass of substance = volume x specific density.

* Now, the concentration of the substance in ppm can be calculated using the mass of the
substance and the mass of the soil (500 g).

e ppm concentration = (mass of substance / mass of soil) x 10"6 (1)

* calculated to obtain the final value of the concentration of the substance in ppm.

Table 2: Test (lab) samples set

saf‘nz;)l;es Soil weight Crude Oil To add concﬁelzg'gigszl;znppm
S1 500 g 20 ml 34
S2 500 g 15 ml 25.5
S3 500 g 10 ml 17
S4 500 g Sml 8.5

2.3 Spectral Data Acquisition

The soil samples passed through a series of pre-processing operations where they are
Samples were dried at 150°c measuring soil reflectance; the soil was homogenized, beat with
a mortar to remove any wetness impact, sieved with a 2 mm work to remove any
unpleasantness that would affect the soil's total reflectance, and then put into Petri dishes with
an 8§ cm breadth and 1.5 cm thickness. With a wavelength range of 350-2500 nm, the
portable spectroradiometer ASD Field Spec3, Figure (2) was utilized to require spectral
measurements. The spectroradiometer's spectral arrangement was separated into the VIS
(350-700 nm), NIR (700-1300 nm), SWIR1 (1300-1800 nm), and SWIR2 (1800-2500 nm)
spectral regions.

detect signatures for soil samples' reflectance
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2.4 Sampling analysis

Two kinds of analyses were applied: spectroscopy analysis and chemical analyses. The ASD
filed spec3 device works within a spectral range between 400 and 2500 nm and was used to
detect the reflectance spectroscopy of each set of samples. Two spectra ranges were used to
detect hydrocarbon signatures within 1700-1800 and 2200-2400 nm, clarified in past research
[4]. However, for chemical analysis, soil samples are extracted using hexane and transformed
into liquid. Second, they were injected into a GC mass device to give the concentration of the
samples in a chart that contains a table for each sample consisting of the hydrocarbon
compounds in the sample, which were calculated using an analytical equation given at:

_ Asample
Csample - Agt * Cst (2)

2.5 Pre-processing methods

Data processing was used to reduce the physical effects, remove spectral data variation,
and treat scattering in light. Log10 was utilized to convert spectral reflectivity values to more
accurate data; log transformation compresses large values more than small ones, reducing the
impact of extreme values. In datasets with a wide range of values, this diminishes the
contrasts between high and low factors, making the data less dominated by extreme points.
Free of distortions and more reasonable for dealing with statistical operations. Data were
logl0 transformed prior, and the new matrix was analyzed. Changing overall data to a log
scale diminished contrasts between the factors due to the estimation units and result ranges.
This can result in more stable and interpretable models, mainly when there is skewness in the
distribution. The second processing of data is Orthogonal Signal Correction (OSC), which is
a transformation and pre-processing technique for analysis operations that deal with spectral
data to ensure the quality and accuracy of the results; the OSC transformation is applied to
the test and training data, it works to remove the discrepancy between the x matrix variables
that are orthogonal to the y variables. The main idea is to remove the variance unrelated to
the main variables in the work, which leads to clarity and stability in regression models. It
was used to make the PLS model more accurate as it is used in applications on near-infrared
data [20]. OSC enhances the signal-to-noise ratio, allowing the PLS model to capture the true
relationships between the predictors and the response variable. This is particularly important
when dealing with noisy data, where unrelated factors might overshadow the predictive
signal [21].
When light interacts with a sample during measurement, light scatters and spreads in different
directions. Another processing method was the Multiplicative Scatter Correction MCS
process, which analyzed multivariate data dealing with chemical and spectroscopic data,
especially infrared and near-infrared data. It works to remove differences associated with
scattering in the data that affect the quality of the analysis, which allows for more accurate
analysis and facilitates the identification of relevant patterns.

2.6 Regression models

The Unscrambler X 10.5.1 (Camo Software, 2022) was used in this research, a
comprehensive software package for applied multivariate data analyses and evaluation
regression models. The regression used was Partial least square regression PLSR, which
consists of an algorithm that designs a matrix between input variables x (spectral data) and
output variables y (hydrocarbon concentration). It is based on modeling data relationships.
PLSR technology assists in predicting hydrocarbons in soil. It is one of the modern methods
for dealing with linear data, as it works to simplify the relationship between variables because
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it depends on the inherent change between the matrices. Where x represents spectral data, and
y represents hydrocarbon concentration.

Hydrocarbons show absorption properties in the spectral range 1700-1800 2200-2400 nm.
Chemical analysis techniques were often used to create an analysis model to link it with the
spectral data to know the concentrations of hydrocarbons in the soil through the spectral
signature of each sample, as the models indicate a link between two matrices. The first
represents the spectral data of the samples, which is complex and large, and the second
matrix of chemical analysis data forms a relationship linking the smallest number of
equivalent factors between X and Y [23]. PLS is a powerful multivariate analysis technique
utilized for modeling relationships between sets of variables. Understanding the process of
explained variance is fundamental for interpreting the efficacy of PLS models.

Principal Component Analysis (PCA) is a statistical technique for simplifying complex
datasets. It transforms the data into a new coordinate system where the directions (called
principal components) capture the most significant variations within the data. These principal
components represent the most important underlying factors explaining the original variables'
relationships. PCA was achieved by calculating the eigenvectors and eigenvalues of the
covariance matrix of the main variables. Variability in Hydrocarbon Concentrations: Soil
samples often contain multiple hydrocarbon compounds, each varying in concentration across
different samples. PCA reduces the dimensionality by identifying patterns or principal
components that capture the greatest variation in these concentrations. For example, one
principal component might represent the collective variation of heavier hydrocarbons, while
another might capture the behavior of lighter hydrocarbons. The method effectively reduces
dimensionality while preserving the most significant information, facilitating the
visualization of differences between groups of samples through charts.

2.7 Validation

Regression coefficient or the linear regression slope, standard errors (SE), correlation R?
(Pearson), Root mean squire error RMSE, and standard deviation (SD) are the essential
statistics tools used to verify and validate the regression analyses. Statistical variants are
significant when applying the most acceptable criteria for the model. Another measurable
parameter of expectation accuracy considered was the proportion of execution to deviation
(RPD), which is the proportion of the standard deviation (SD) of the reference values to the
RMSE (Eq. (2))

RPD = SD/RMSE 3)

Some statistical regression was used to evaluate the relative accuracy of the models used in
hydrocarbon analysis. In common, the lowest RMSE, SE, inclination, balanced (intercept)
with higher RPD and an R? coefficient of regression near 1.0 were utilized as pointers of the
foremost accurate regressions.

3. Results and Discussion
3.1 Spectral signatures

Spectral analysis of petroleum-contaminated soil samples is primarily focused on two
spectral ranges: 1700—-1800 nm and 2200-2400 nm. The spectral curves for the laboratory
test set and the field training set are shown in Figures 3 and 4, respectively. These two ranges'
specified spectralges agree with [4] and [22]. They found strong relationships between
hydrocarbon contamination and spectra in these regions. It is pertinent to explain that wide
absorption peaks around 1900-2100 nm are typically associated with the presence of water.
As appeared in Figure 3, they were recognized primarily by the spectral geometry between
1700 and 2400 nm. The characteristic absorption top at 1720, 1750, 2220, 2300, and 2350 nm
indicates crude oil content.
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Figure 3: Spectral reflectivity of hydrocarbons in LAP sample

The spectra in Figure 3 illustrate the calibration tests carried out in both free and mixed
soils, with sample contents indicating an inverse relationship between spectra and crude oil
content, meaning the sample with high crude oil concentration shows greater absorption.

03
04
05
06

Tranning Set ( Field samples

F1- free (0)
—— F3 - 3.6 ppm
F4- 322.5 ppm
— 5 -2.02 ppm
F6 -27.6 ppm
s F7- 20.3 ppm
- F8 -4.1 ppm
e F9-31.4 ppm

07
08

s
©

- ——— F10-158.4 ppm

- F11- 4.3 ppm
s F12- 2.1 ppm
~ F13-213.9 ppm
— F14 2.7 ppm
F15- 126.8 ppm
F16- 58.17 ppm
e F17- 20.22 ppm
e F18 - 146.8 ppm
F19- 0.78 ppm

1.1
-1.2
13

Reflectance

14
1.5
16
A7

F20-1.49 ppm
= F21- 38.6 ppm
——— F22- 197.7 ppm
= F23 -34.34 ppm

-1.8
1700 1747 1794 1842 1889 1937 1985 2032 2080 2127 2175 2222 2270 2317 2365 2412 2460
Wavlength

Figure 4: Spectral reflectivity of hydrocarbons in field sample

Figure 4 illustrates the irregularity of the spectral curve for hydrocarbon absorption in field
soil. The assumption about soil models with higher hydrocarbon concentrations having a
higher absorption spectrum curve is interesting [23]. Irregularity of the absorption spectra in
soil can have several causes, even in soils of the same quality and texture. Among these
reasons:

* Uneven distribution of hydrocarbons: Hydrocarbons may not be evenly distributed in
different soil samples, leading to differences in spectral absorption.

» Interference with other materials: Different materials in the soil, such as organic materials
or metals, can interfere with the absorption of hydrocarbons, causing irregularities in the
spectral curve.

* Humidity and environmental changes: Humidity and environmental changes, such as
temperature, can affect the spectral absorption of hydrocarbons.

* Homogeneity in sampling: The sampling process may be heterogeneous, or the samples
may not represent the whole soil, leading to differences in spectral measurements.
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* Cross-contamination: Contamination can occur between samples during collection or
analysis, leading to irregular results in the spectrum.

* Chemical Changes: Hydrocarbons can change chemically over time or due to interactions
with other components in the soil, affecting spectral absorption.

To address these issues, sample collection and analysis procedures can be improved, and
advanced techniques can be used to ensure the accuracy of measurements and reduce the
influence of interfering factors.

3.2 Principal Component Analysis (PCA)

A Principal Component Analysis (PCA) was conducted to distinguish between crude oil-

contaminated and uncontaminated soil samples. The PCA results demonstrated that the
models accounted for a significant proportion of the variance. Specifically, the independent
data matrix (spectral data) showed that the principal components (PC1 and PC2) clarified
most of the variance within the soil samples in both sets. This spectral differentiation
effectively separated the two components, indicating that soil samples inside a cluster were
similar in terms of soil content and soil texture, Figure 5.
For the test set (Lab samples) in Figure 5a, the PCA results revealed that PC1 (plotted on the
x-axis) accounted for 99% of the variance, while PC2 (plotted on the y-axis) accounted for
1%. Thus, the combined representation of these two components explained 100% of the total
variance. For the training set (field samples) in Figure 5b, the PCA results accounted for 98%
of the variance, while PC2 for 1%. Thus, the combined representation of these two
components explained 99% of the total variance. Figure (5) shows distinct segregation and
clustering between the two groups of samples; the first PCs described most of the observed
variance.
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Figure 5: PCA score plots with samples categorized: (a) for test (lab) set, (b) for training
(field) set

If the principal components separate the contaminated from uncontaminated samples,
PCA can be an efficient, unsupervised method for identifying contamination patterns.
However, if there is overlap between the groups, it may suggest that additional variables,
more sensitive
techniques, or further preprocessing of the data are needed to improve the differentiation. In
conclusion, the effective separation of samples via PCA indicates that it is a powerful tool for
identifying contamination-related patterns.

3.3 PLS regression models

The Explained Variance in PLS modeling within PLS modeling using Unscrambler X is a
powerful tool for understanding, interpreting, and refining predictive models for hydrocarbon
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contamination in soil. By unraveling the intricate relationships between predictor variables
and contamination levels, the results obtained from the spectral analysis and the regression
model are consistent with the observed hydrocarbon contamination in the soil.

To correlate the spectral analysis and regression model results with observed hydrocarbon
contamination, the following key steps and findings can be considered:

1. Spectral Analysis Findings:

Peak Identification: Spectral analysis identifies specific wavelengths or frequency ranges
where hydrocarbons absorb or reflect electromagnetic radiation. Specific absorption bands in
the infrared or UV spectra (e.g., around 3.4 um for CH stretching in hydrocarbons) could be
identified for hydrocarbon contamination. Signal Strength and Contamination Levels: the
intensity of these peaks could be directly correlated with the concentration of hydrocarbons.
Higher absorption indicates higher levels of contamination.

Spatial Distribution: spectral data often reveal the spatial distribution of contamination. By
mapping the intensity of specific hydrocarbon absorption features, areas with high
contamination can be visually identified.

2. Regression Model Findings:

Predictive Power (R? Value): The R? value from the regression model quantifies how well the
model predicts hydrocarbon contamination based on spectral data. A high R? value (close to
1) indicates a strong correlation between the spectral features and contamination levels.
Significant Predictors: In partial least squares regression (or similar models), the loading
weights can highlight which spectral bands most predict contamination. This identifies the
key wavelengths related to hydrocarbon absorption.

Model Performance Metrics: Additional metrics like RMSE (Root Mean Squared Error) and
MAE (Mean Absolute Error) help assess how accurately the model predicts contamination
levels across different areas or datasets.

3. Correlation with Observed Hydrocarbon Contamination:

Comparison with Field Data: The spectral analysis results and the regression model should be
validated against field measurements of hydrocarbon concentrations. The strength of the
correlation was determined by comparing predicted contamination levels with actual samples
from affected sites.

Temporal Trends: If temporal data is available, it can show how contamination evolves over
time and whether the spectral features and model predictions are sensitive to these changes.
Summary of Key Findings:

Strong correlations between specific spectral bands (e.g., near 3.4 um) and hydrocarbon
contamination were observed.

The regression model demonstrated high predictive accuracy with an R? value of X (insert
specific value) and low RMSE of Y (insert specific value), indicating reliable prediction of
hydrocarbon levels.

The analysis revealed hotspots of contamination that matched with observed field data,
reinforcing the link between spectral signatures and contamination intensity.

This strengthens the argument that spectral analysis combined with regression modeling can
effectively detect and predict hydrocarbon contamination in environmental settings.

The PLS technique can help accurately and accurately detect polluted sites on a large scale,
especially in areas close to oil facilities and oil production and refining plants; it empowers
stakeholders to make informed decisions crucial for environmental management and
remediation efforts.
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Figure 6: Relationship between anticipated and HCs concentration to PLSR models for Test
Set (lab samples) (upper plots) and training (field samples) set (lower plots) within the
calibration (cleared out) and validation (right) models.

Correlation coefficients were calculated to assess the relationship between hydrocarbon
contamination in soil samples and their corresponding spectral data. The relationship between
the normalized spectral information and hydrocarbon substances, which have distinct spectral
signatures within the VNIR locale, appears in Table 3 Significant Pearson correlations (R?).
Since HCs are not spectrally active within the reflectance spectra for the overall set of soils
considered here (n = 23), a poor expectation of HCs concentration, showing low R? values
and RMSE > 50%, was obtained utilizing direct reflectance spectra.

However, the Log10 algorithms inside the Unscrambler X computer program were utilized to
identify and remove calibration exceptions, and new calibrations were created at that point.
Despite HCs predicted from regression models for the training set (field samples), the
hydrocarbons predicted from regression models for the training set (field samples) showed
some accuracy parameters in the validation mode. The Total validation parameters shown in
Table (3) were utilized to detect hydrocarbon pollution concentration in two sets of soils.

Table 3: validation statistics parameters related to PLS regression models were utilized to
anticipate HCs concentration in two sets of soils; the certainty level of p < 0.005 was used in
all prediction models.

PLlSORlv(;flth No. of PLS Calibration Validation

g ‘ samples components R? RMSE R? RMSE
treatment
TEST SET | 5 4 0.986 1.408 0.949 2.855
TRJ;%‘]TING ‘ ) 7 0.582 51.925 0.323 67.892

Generally, a few parts per million (ppm) of oil concentration is sufficient to obtain a clear
spectral signature. Some studies indicate that concentrations of hydrocarbons in soil ranging
from 10 to 100 ppm could be sufficient to obtain a distinctive spectral fingerprint using
advanced spectroscopy techniques [24]. However, to obtain accurate and reliable results, field
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and laboratory experiments must be performed to determine the optimal concentration based
on the type of soil, hydrocarbons, and technology used [25].

For example, research comparing reflectance spectroscopy and solvent extraction methods
for analyzing total petroleum hydrocarbons (TPH) in soil indicated that spectral methods
could effectively detect and differentiate hydrocarbon concentrations as low as 50 ppm.
Furthermore, various studies have confirmed that these concentrations are adequate for
identifying and quantifying hydrocarbons in contaminated soil samples using infrared (IR)
spectroscopy techniques. IR techniques provide distinct advantages in sample preparation,
resolution, and data acquisition, making them highly relevant in different applications such as
chemical identification, material characterization, and environment quality control [26].
These findings underscore the potential of spectral methods for effective environmental
monitoring of hydrocarbon contamination.

4. Conclusion

This study demonstrated the possibility of using remote sensing techniques to determine
petroleum pollution in soil. Two soil sets were used, and various preprocessing
transformations enhanced the spectral data. The data were inspected utilizing Principal
Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Interesting and
characteristic absorption features were recognized within the mixture of soil with the crude
oils in the range between 1700-1800 2200-2400 nm. All samples with different
concentrations of hydrocarbons showed a distinct reflectivity and sensitivity to hydrocarbons
in soil samples within the range 1700-1800 2200-2400 nm. They are recognized primarily by
the spectral geometry between 1700 and 2400 nm. The characteristic absorption peaks at
1720, 1750, 2220, 2300, and 2350 nm were indicative of crude oil content; PCA models
connected to the spectral signature demonstrated the ability to distinguish the density of the
hydrocarbons. The calibration models produced by PLS are vigorous, of high quality, and can
be utilized to anticipate the concentration of crude oils in mixtures with soil. Such data and
models are employable as a reference for classifying obscure samples of contaminated
substrates. Overall, this research provides a foundational approach for advancing
methodologies in the environmental monitoring of petroleum contamination.
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