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Abstract  

     Hydrocarbon soil pollution is one of the most dangerous pollutants in the world. 

It occurs for several reasons and increases due to factories not adhering to 

environmental protection controls, the most prominent of which is oil production. 

This work used two sets of soil petroleum contamination to demonstrate principal 

component analysis (PCA) and partial least squares regression (PLS) modeling. To 

determine the variables adopted in this study based on spectroscopic analysis within 

the spectrum range of 1700-1800 nm and 2200-2400 nm, the distinct absorption 

peaks at 1720, 1750, 2220, 2300, and 2350 nm indicated the crude oil content. 

Chemical analysis of the samples was used to measure the relationship and build a 

PLS and PC model, which helped obtain a high percentage of match of up to 90%. 

The work indicates that this technique may enhance field investigation of oil 

contamination, providing an accurate in-field technique. 
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 نماذج الانحدار الطيفي للتنبؤ بالملوثات البترولية في التربة 
 

 2،علي عبد الرضا عجيل المالكي 1،عدي حاتم شعبان 1*زهراء اياد خليل 
 1قسم الاستشعار عن بعد ونظم المعلومات الجغرافية، كلية العلوم، جامعة بغداد، بغداد، العراق 

 2وزارة العلوم والتكنولوجيا، مديرية البيئة والمياه والطاقة المتجددة بغداد، العراق
 

  الخلاصة 
العالم، والذي يحدث لعدة أسباب ويزداد نتيجة        الملوثات في  الهيدروكربونية من أخطر  يعد تلوث التربة 

عدم التزام المصانع بضوابط حماية البيئة، وأبرزها مصانع إنتاج النفط. في هذا العمل، تم استخدام مجموعتين  
 ونمذجة انحدار المربعات الصغرى الجزئية (PCA) من تلوث التربة بالنفط لإظهار تحليل المكونات الرئيسية

(PLS). 
الطيفي   المدى  ضمن  الطيفي  التحليل  على  اعتماداً  الدراسة  هذه  في  المعتمدة  المتغيرات    -  1700لتحديد 

  2350، و2300،  2220،  1750،  1720، تشير قمم الامتصاص المميزة عند  2400  -  2200و  1800
الخام والتحليل الكيميائي للتربة. تم تحقيق العلاقة بين العينات الدالة على محتوى    نفط نانومتر إلى محتوى ال 

%.  90مما ساعد في الحصول على نسبة تطابق عالية تصل إلى   PCA و  PLS النفط الخام وبناء نموذج
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ويشير العمل إلى أن هذه التقنية قد تعزز التحقيق الميداني للتلوث النفطي، مما يوفر تقنية دقيقة في العمل  
 .الحقلي

 
1. Introduction 

     Hydrocarbon pollution is one of the most severe types, threatening environmental life and 

living organisms by producing diseases and risks. It is produced in commercial factories for 

various products, and the most prominent causes are oil extraction, production, and refining 

factories. These oil facilities extract large quantities of crude oil daily in addition to its daily 

use in daily life, spills, and accidents. Leakage of fuel and oil pipelines, as well as natural 

causes such as earthquakes and movement of rocks and earth layers [1] [2]. Oil is a group of 

hydrocarbon compounds consisting of bonded hydrogen and carbon atoms; the threats caused 

by hydrocarbons must be part of a monitoring plan to maintain the scope of pollution and 

treat it [3]. It is formed due to oil extraction and transportation, natural leakage, or accidents, 

which cause environmental destruction in addition to the problem of pollution in isolated 

places such as refineries and oil fields. The ASD filed spec3 (Analytical Spectral Devices) 

provides distinct spectral signatures for each substance; a spectroscopic analysis device 

provides different spectral signatures for each substance. So that the presence or absence of 

hydrocarbons can distinguish the soil, each giving different spectral signatures. Crude oils 

and petroleum fuels have absorption around 1725-2310 nm; the NIR-SWIR absorption bands 

of crude oils and fuels originate in clusters of saturated CH2 and terminal CH3 stretching 

patterns, or aromatic CH3 groups. Spectral information in the NIR-SWIR band is excellent 

for qualitative and quantitative analysis of soils contaminated with hydrocarbons. However, 

the resulting spectral bands obstruct the interpretation and quantification of spectra [4] [5]. 

Multivariate procedures in spectroscopy or material science involve analyzing multiple 

variables (like absorbance spectra at different wavelengths) to determine material properties. 

Principal Component Analysis (PCA) or Partial Least Squares Regression (PLSR) techniques 

used to extract meaningful information from complex datasets, relating spectral data to 

material composition, structure, or properties; multivariate calibration generally resolves the 

problem of interference from compounds bound to the target, thus eliminating the require for 

selectivity PLS and PCA decompose the spectral data into components that explain the 

maximum variance in the predictor (spectral) variables and the response (analyte 

concentration) variables. This decomposition allows the model to extract the relevant 

information about the analyte of interest from the spectral data, even in the presence of 

interference from other compounds or matrix effects. Recent studies focused on using remote 

sensing and statistical spectral techniques to detect hydrocarbon contamination. For example, 

algorithms and techniques clarify the relationship between spectroscopic and chemical 

analysis data. The most important of these is PLSR (Partial Least Square Regression), which 

analyzes and extracts sample files, ensuring quality [6] [7]. Reflectance spectroscopy (RS) 

has been recognized as a reliable alternative technique for the direct detection of petroleum 

hydrocarbons (PHCs) [8] [9]. It has been acknowledged as a dependable alternative 

procedure for directly detecting petroleum hydrocarbons (PHCs)3. Despite not being the most 

common method for this purpose, RS has also proven to be a simple, quick, and cost-

effective strategy for rapidly detecting and characterizing PHC-contaminated soils . 

  

     More specifically, RS in the range of (NIR-SWIR, 700-3000 nm) is directly a prevalent 

method for speedy recognizable proof and quantification of PHCs in contaminated soils, with 

sensible levels of accuracy, particularly due to the transportability of the devices and least or 

no planning and pre-treatments required for the samples studied used PLS  in the process of 

analyzing data for 98 samples of contaminated soil under laboratory conditions to evaluate 
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hydrocarbon contamination in soil.  Because spectroscopic analysis has become the focus of 

interest for soil scientists [10] [11]. As well as the PLS technique in detecting hydrocarbon 

contamination, a researcher used 150 samples from four different regions in the UK and 

made it possible to predict the relationship between soil, water, hydrocarbons, and soil [12] 

[13]. A researcher used PCA (Principal Component Analysis) and PLS with Fourier infrared 

analysis using 50 samples for calibration and 37 samples for verification in Australia [14] 

[15].  In Brazil, a researcher used two sets of samples, the first set of 3 samples and the second 

set of 4 samples with different quantities of oil in laboratory conditions. The soil's spectral 

characteristics were analyzed using LS and PCA as statistical tools to create qualitative 

models useful in detecting hydrocarbon pollution in areas close to oil facilities most Affected 

by pollution [16]. In area ONERA in France used an ASD Field Spec3(Analytical Spectral 

Devices) spectroradiometer and used ENVI software to calculate spectral indices for 

detecting the spectral that were not normal for hydrocarbon, used four boxes have soil and 

sand with oil where the results of the spectral signature were between 1700 and 2300 nm 

[17]. In another proposal to analyze soil and detect hydrocarbon contamination, infrared 

spectroscopy was used, along with statistical models to predict hydrocarbon content, by 

testing 72 samples in Australia, where results were obtained by sensing hydrocarbons in the 

range 2340-2300nm. [18]. In Brazil, analysis using techniques (PCA) and (PLS) for samples 

from two Gather I is composed of three samples of crude oils. Bunch II comprises six 

samples of mineral substrates (MS) research utilizing FieldSpec3 spectrometer (ASD), ENVI 

software, and the Unscrambler X 10.1 software, using the Savitzky-Golay filter [19]. The 

study aims to identify hydrocarbon contamination accurately and its presence to aid in 

prediction and to study the variation and correlation between spectroscopic analysis data and 

chemical analysis data using PLS and PCA techniques to serve as a quick monitoring of soil 

in areas close to oil facilities. 

 

2.1 Study area 

     The soil samples were collected from the North Rumaila Oil field in southern Iraq at Basra 

Governorate, at the coordinates from 47° 16' 23.271"E, 30° 42' 45.769"N to 47° 21' 

55.343"E, 30° 35' 10.267"N. Lime content and oil activity characterize the soil of the study 

area due to the presence of oil and the processes of extracting and developing oil facilities. It 

produces high concentrations of hydrocarbons and their various compounds. The map of the 

study area and sampling locations are shown in Figure 1. 
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Figure 1: Study area and sampling locations 

 

2.2 Soil samples and mixtures 

     This study utilized two samples; the training set consists of 22 samples taken directly from 

the study area's top surface soil (0-10 cm). The site location and total hydrocarbon in ppm 

according to gas chromatography GC mass device instrument appears in Table 1. 
 

Table 1: Filed sample’s (F) location and Hydrocarbon Concentration (training set) 

Sample Long E Lat N HCs (ppm) (GC result) 

F 1 47 19 29 30 40 32 9.62 

F 2 47 19 38 30 39 16 3.60 

F 3 47 19 28 30 37 46 322.54 

F 4 47 19 12 30 37 17 2.02 

F 5 47 19 12 30 37 17 27.60 

F 6 47 18 51 30 37 22 20.33 

F 7 47 19 22 30 36 25 4.09 

F 8 47 19 27 30 35 58 31.36 

F 9 47 19 44 30 35 47 158.36 

F 10 47 20 07 30 36 24 4.29 

F 11 47 20 33 30 36 22 2.04 

F 12 47 18 50 30 36 18 213.93 

F 13 47 18 13 30 36 42 2.74 

F 14 47 18 54 30 35 49 126.86 

F 15 47 18 24 30 35 49 58.17 

F 16 47 19 40 30 37 33 20.22 

F 17 47 19 50 30 37 24 146.85 

F 18 47 18 57 30 37 46 0.78 

F 19 47 18 45 30 37 49 1.49 

F 20 47 19 22 30 41 30 38.60 

F 21 47 19 16 30 42 19 197.77 
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     The second is the test set, a set of samples prepared in a laboratory from crude oil added to 

soil free of hydrocarbons. Table 2 shows the calibration experiments that were carried out for 

the soil test set. This dynamic included the addition of 5 mL of crude oil up to a fixed 20 mL 

volume of each dry soil mixture coming about in a range of oil concentrations from 5-30%. 

The oil-containing soil was thoroughly mixed using a glass bar at each dosing, and the 

surface was straightened before spectral filtering. Readings were taken utilizing an ASD 

trumpet fore optic at three separate points on the surface, and the middle value was found to 

get a representative spectrum for a given concentration for each sample, Table 1. The 

proportions of crude oil in the laboratory-which combined with uncontaminated soil were 

converted from mg to ppm to standardize the units in the following steps: 

• Convert the additive volume (5,10,15,20 ml) into weight using a specific density. 

• Mass of substance = volume × specific density. 

• Now, the concentration of the substance in ppm can be calculated using the mass of the 

substance and the mass of the soil (500 g).  

• 𝑝𝑝𝑚 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  (𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒 / 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑖𝑙) 𝑥 10^6          (1) 
• calculated to obtain the final value of the concentration of the substance in ppm. 

 

Table 2: Test (lab) samples set 
Lab 

samples 
Soil weight Crude Oil To add 

Hydrocarbon 

concentration in ppm 

S1 500 g 20 ml 34 

S2 500 g 15 ml 25.5 

S3 500 g 10 ml 17 

S4 500 g 5ml 8.5 

 

2.3 Spectral Data Acquisition  

     The soil samples passed through a series of pre-processing operations where they are 

Samples were dried at 150°c measuring soil reflectance; the soil was homogenized, beat with 

a mortar to remove any wetness impact, sieved with a 2 mm work to remove any 

unpleasantness that would affect the soil's total reflectance, and then put into Petri dishes with 

an 8 cm breadth and 1.5 cm thickness. With a wavelength range of 350–2500 nm, the 

portable spectroradiometer ASD Field Spec3, Figure (2) was utilized to require spectral 

measurements. The spectroradiometer's spectral arrangement was separated into the VIS 

(350–700 nm), NIR (700–1300 nm), SWIR1 (1300–1800 nm), and SWIR2 (1800–2500 nm) 

spectral regions. 

 

 
Figure2: Sample identification of the samples and spectroradiometer device were used to 

detect signatures for soil samples' reflectance 
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2.4 Sampling analysis 

Two kinds of analyses were applied: spectroscopy analysis and chemical analyses. The ASD 

filed spec3 device works within a spectral range between 400 and 2500 nm and was used to 

detect the reflectance spectroscopy of each set of samples. Two spectra ranges were used to 

detect hydrocarbon signatures within 1700-1800 and 2200-2400 nm, clarified in past research 

[4]. However, for chemical analysis, soil samples are extracted using hexane and transformed 

into liquid. Second, they were injected into a GC mass device to give the concentration of the 

samples in a chart that contains a table for each sample consisting of the hydrocarbon 

compounds in the sample, which were calculated using an analytical equation given at: 

 

𝐶𝑠𝑎𝑚𝑝𝑙𝑒 =
𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑠𝑡
∗ 𝐶𝑠𝑡                                                                   (2) 

 

2.5 Pre-processing methods 

     Data processing was used to reduce the physical effects, remove spectral data variation, 

and treat scattering in light. Log10 was utilized to convert spectral reflectivity values to more 

accurate data; log transformation compresses large values more than small ones, reducing the 

impact of extreme values. In datasets with a wide range of values, this diminishes the 

contrasts between high and low factors, making the data less dominated by extreme points. 

Free of distortions and more reasonable for dealing with statistical operations. Data were 

log10 transformed prior, and the new matrix was analyzed. Changing overall data to a log 

scale diminished contrasts between the factors due to the estimation units and result ranges. 

This can result in more stable and interpretable models, mainly when there is skewness in the 

distribution. The second processing of data is Orthogonal Signal Correction (OSC), which is 

a transformation and pre-processing technique for analysis operations that deal with spectral 

data to ensure the quality and accuracy of the results; the OSC transformation is applied to 

the test and training data, it works to remove the discrepancy between the x matrix variables 

that are orthogonal to the y variables. The main idea is to remove the variance unrelated to 

the main variables in the work, which leads to clarity and stability in regression models. It 

was used to make the PLS model more accurate as it is used in applications on near-infrared 

data [20]. OSC enhances the signal-to-noise ratio, allowing the PLS model to capture the true 

relationships between the predictors and the response variable. This is particularly important 

when dealing with noisy data, where unrelated factors might overshadow the predictive 

signal [21]. 

When light interacts with a sample during measurement, light scatters and spreads in different 

directions. Another processing method was the Multiplicative Scatter Correction MCS 

process, which analyzed multivariate data dealing with chemical and spectroscopic data, 

especially infrared and near-infrared data. It works to remove differences associated with 

scattering in the data that affect the quality of the analysis, which allows for more accurate 

analysis and facilitates the identification of relevant patterns.  

 

2.6 Regression models 

     The Unscrambler X 10.5.1 (Camo Software, 2022) was used in this research, a 

comprehensive software package for applied multivariate data analyses and evaluation 

regression models. The regression used was Partial least square regression PLSR, which 

consists of an algorithm that designs a matrix between input variables x (spectral data) and 

output variables y (hydrocarbon concentration). It is based on modeling data relationships. 

PLSR technology assists in predicting hydrocarbons in soil. It is one of the modern methods 

for dealing with linear data, as it works to simplify the relationship between variables because 



Khaleel et al.                                         Iraqi Journal of Science, 2025, Vol. 66, No. 12, pp: 5817- 5830 

 

5823 

it depends on the inherent change between the matrices. Where x represents spectral data, and 

y represents hydrocarbon concentration. 

Hydrocarbons show absorption properties in the spectral range 1700-1800 2200-2400 nm. 

Chemical analysis techniques were often used to create an analysis model to link it with the 

spectral data to know the concentrations of hydrocarbons in the soil through the spectral 

signature of each sample, as the models indicate a link between two matrices. The first 

represents the spectral data of the samples, which is complex and large, and the second 

matrix of chemical analysis data forms a relationship linking the smallest number of 

equivalent factors between X and Y [23]. PLS is a powerful multivariate analysis technique 

utilized for modeling relationships between sets of variables. Understanding the process of 

explained variance is fundamental for interpreting the efficacy of PLS models. 

Principal Component Analysis (PCA) is a statistical technique for simplifying complex 

datasets. It transforms the data into a new coordinate system where the directions (called 

principal components) capture the most significant variations within the data. These principal 

components represent the most important underlying factors explaining the original variables' 

relationships. PCA was achieved by calculating the eigenvectors and eigenvalues of the 

covariance matrix of the main variables. Variability in Hydrocarbon Concentrations: Soil 

samples often contain multiple hydrocarbon compounds, each varying in concentration across 

different samples. PCA reduces the dimensionality by identifying patterns or principal 

components that capture the greatest variation in these concentrations. For example, one 

principal component might represent the collective variation of heavier hydrocarbons, while 

another might capture the behavior of lighter hydrocarbons. The method effectively reduces 

dimensionality while preserving the most significant information, facilitating the 

visualization of differences between groups of samples through charts. 

 

2.7 Validation 

Regression coefficient or the linear regression slope, standard errors (SE), correlation R2 

(Pearson), Root mean squire error RMSE, and standard deviation (SD) are the essential 

statistics tools used to verify and validate the regression analyses. Statistical variants are 

significant when applying the most acceptable criteria for the model. Another measurable 

parameter of expectation accuracy considered was the proportion of execution to deviation 

(RPD), which is the proportion of the standard deviation (SD) of the reference values to the 

RMSE (Eq. (2)) 

𝑅𝑃𝐷 =  𝑆𝐷/𝑅𝑀𝑆𝐸                       (3)  
Some statistical regression was used to evaluate the relative accuracy of the models used in 

hydrocarbon analysis. In common, the lowest RMSE, SE, inclination, balanced (intercept) 

with higher RPD and an R2 coefficient of regression near 1.0 were utilized as pointers of the 

foremost accurate regressions.  

 

3. Results and Discussion 

3.1 Spectral signatures 

     Spectral analysis of petroleum-contaminated soil samples is primarily focused on two 

spectral ranges: 1700–1800 nm and 2200–2400 nm.  The spectral curves for the laboratory 

test set and the field training set are shown in Figures 3 and 4, respectively. These two ranges' 

specified spectralges agree with [4] and [22]. They found strong relationships between 

hydrocarbon contamination and spectra in these regions. It is pertinent to explain that wide 

absorption peaks around 1900–2100 nm are typically associated with the presence of water. 

As appeared in Figure 3, they were recognized primarily by the spectral geometry between 

1700 and 2400 nm. The characteristic absorption top at 1720, 1750, 2220, 2300, and 2350 nm 

indicates crude oil content. 
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Figure 3: Spectral reflectivity of hydrocarbons in LAP sample 

 

     The spectra in Figure 3 illustrate the calibration tests carried out in both free and mixed 

soils, with sample contents indicating an inverse relationship between spectra and crude oil 

content, meaning the sample with high crude oil concentration shows greater absorption. 

 
Figure 4: Spectral reflectivity of hydrocarbons in field sample 

 

Figure 4 illustrates the irregularity of the spectral curve for hydrocarbon absorption in field 

soil. The assumption about soil models with higher hydrocarbon concentrations having a 

higher absorption spectrum curve is interesting [23]. Irregularity of the absorption spectra in 

soil can have several causes, even in soils of the same quality and texture. Among these 

reasons: 

• Uneven distribution of hydrocarbons: Hydrocarbons may not be evenly distributed in 

different soil samples, leading to differences in spectral absorption. 

• Interference with other materials: Different materials in the soil, such as organic materials 

or metals, can interfere with the absorption of hydrocarbons, causing irregularities in the 

spectral curve. 

• Humidity and environmental changes: Humidity and environmental changes, such as 

temperature, can affect the spectral absorption of hydrocarbons. 

• Homogeneity in sampling: The sampling process may be heterogeneous, or the samples 

may not represent the whole soil, leading to differences in spectral measurements. 
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• Cross-contamination: Contamination can occur between samples during collection or 

analysis, leading to irregular results in the spectrum. 

• Chemical Changes: Hydrocarbons can change chemically over time or due to interactions 

with other components in the soil, affecting spectral absorption. 

To address these issues, sample collection and analysis procedures can be improved, and 

advanced techniques can be used to ensure the accuracy of measurements and reduce the 

influence of interfering factors. 

 

3.2 Principal Component Analysis (PCA) 

     A Principal Component Analysis (PCA) was conducted to distinguish between crude oil-

contaminated and uncontaminated soil samples. The PCA results demonstrated that the 

models accounted for a significant proportion of the variance. Specifically, the independent 

data matrix (spectral data) showed that the principal components (PC1 and PC2) clarified 

most of the variance within the soil samples in both sets. This spectral differentiation 

effectively separated the two components, indicating that soil samples inside a cluster were 

similar in terms of soil content and soil texture, Figure 5. 

For the test set (Lab samples) in Figure 5a, the PCA results revealed that PC1 (plotted on the 

x-axis) accounted for 99% of the variance, while PC2 (plotted on the y-axis) accounted for 

1%. Thus, the combined representation of these two components explained 100% of the total 

variance. For the training set (field samples) in Figure 5b, the PCA results accounted for 98% 

of the variance, while PC2 for 1%. Thus, the combined representation of these two 

components explained 99% of the total variance. Figure (5) shows distinct segregation and 

clustering between the two groups of samples; the first PCs described most of the observed 

variance. 

 

 
 

Figure 5: PCA score plots with samples categorized: (a) for test (lab) set, (b) for training 

(field) set 

 

     If the principal components separate the contaminated from uncontaminated samples, 

PCA can be an efficient, unsupervised method for identifying contamination patterns. 

However, if there is overlap between the groups, it may suggest that additional variables, 

more sensitive  

techniques, or further preprocessing of the data are needed to improve the differentiation. In 

conclusion, the effective separation of samples via PCA indicates that it is a powerful tool for 

identifying contamination-related patterns. 

 

3.3 PLS regression models 

     The Explained Variance in PLS modeling within PLS modeling using Unscrambler X is a 

powerful tool for understanding, interpreting, and refining predictive models for hydrocarbon 

A B 
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contamination in soil. By unraveling the intricate relationships between predictor variables 

and contamination levels, the results obtained from the spectral analysis and the regression 

model are consistent with the observed hydrocarbon contamination in the soil. 

To correlate the spectral analysis and regression model results with observed hydrocarbon 

contamination, the following key steps and findings can be considered: 

1. Spectral Analysis Findings: 

Peak Identification: Spectral analysis identifies specific wavelengths or frequency ranges 

where hydrocarbons absorb or reflect electromagnetic radiation. Specific absorption bands in 

the infrared or UV spectra (e.g., around 3.4 μm for CH stretching in hydrocarbons) could be 

identified for hydrocarbon contamination. Signal Strength and Contamination Levels: the 

intensity of these peaks could be directly correlated with the concentration of hydrocarbons. 

Higher absorption indicates higher levels of contamination.  

Spatial Distribution: spectral data often reveal the spatial distribution of contamination. By 

mapping the intensity of specific hydrocarbon absorption features, areas with high 

contamination can be visually identified. 

2. Regression Model Findings: 

Predictive Power (R² Value): The R² value from the regression model quantifies how well the 

model predicts hydrocarbon contamination based on spectral data. A high R² value (close to 

1) indicates a strong correlation between the spectral features and contamination levels. 

Significant Predictors: In partial least squares regression (or similar models), the loading 

weights can highlight which spectral bands most predict contamination. This identifies the 

key wavelengths related to hydrocarbon absorption. 

Model Performance Metrics: Additional metrics like RMSE (Root Mean Squared Error) and 

MAE (Mean Absolute Error) help assess how accurately the model predicts contamination 

levels across different areas or datasets. 

3. Correlation with Observed Hydrocarbon Contamination: 

Comparison with Field Data: The spectral analysis results and the regression model should be 

validated against field measurements of hydrocarbon concentrations. The strength of the 

correlation was determined by comparing predicted contamination levels with actual samples 

from affected sites. 

Temporal Trends: If temporal data is available, it can show how contamination evolves over 

time and whether the spectral features and model predictions are sensitive to these changes. 

Summary of Key Findings: 

Strong correlations between specific spectral bands (e.g., near 3.4 μm) and hydrocarbon 

contamination were observed. 

The regression model demonstrated high predictive accuracy with an R² value of X (insert 

specific value) and low RMSE of Y (insert specific value), indicating reliable prediction of 

hydrocarbon levels. 

The analysis revealed hotspots of contamination that matched with observed field data, 

reinforcing the link between spectral signatures and contamination intensity. 

This strengthens the argument that spectral analysis combined with regression modeling can 

effectively detect and predict hydrocarbon contamination in environmental settings. 

The PLS technique can help accurately and accurately detect polluted sites on a large scale, 

especially in areas close to oil facilities and oil production and refining plants; it empowers 

stakeholders to make informed decisions crucial for environmental management and 

remediation efforts. 
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Figure 6: Relationship between anticipated and HCs concentration to PLSR models for Test 

Set (lab samples) (upper plots) and training (field samples) set (lower plots) within the 

calibration (cleared out) and validation (right) models. 

 

Correlation coefficients were calculated to assess the relationship between hydrocarbon 

contamination in soil samples and their corresponding spectral data. The relationship between 

the normalized spectral information and hydrocarbon substances, which have distinct spectral 

signatures within the VNIR locale, appears in Table 3 Significant Pearson correlations (R2). 

Since HCs are not spectrally active within the reflectance spectra for the overall set of soils 

considered here (n = 23), a poor expectation of HCs concentration, showing low R2 values 

and RMSE > 50%, was obtained utilizing direct reflectance spectra. 

However, the Log10 algorithms inside the Unscrambler X computer program were utilized to 

identify and remove calibration exceptions, and new calibrations were created at that point. 

Despite HCs predicted from regression models for the training set (field samples), the 

hydrocarbons predicted from regression models for the training set (field samples) showed 

some accuracy parameters in the validation mode. The Total validation parameters shown in 

Table (3) were utilized to detect hydrocarbon pollution concentration in two sets of soils. 

 

Table 3: validation statistics parameters related to PLS regression models were utilized to 

anticipate HCs concentration in two sets of soils; the certainty level of p < 0.005 was used in 

all prediction models. 
PLSR with 

log10 

treatment 

No. of 

samples 

PLS 

components 

Calibration Validation 

R 2 RMSE R 2 RMSE 

TEST SET 5 4 0.986 1.408 0.949 2.855 

TRAINING 

SET 
22 7 0.582 51.925 0.323 67.892 

 

Generally, a few parts per million (ppm) of oil concentration is sufficient to obtain a clear 

spectral signature. Some studies indicate that concentrations of hydrocarbons in soil ranging 

from 10 to 100 ppm could be sufficient to obtain a distinctive spectral fingerprint using 

advanced spectroscopy techniques [24]. However, to obtain accurate and reliable results, field 
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and laboratory experiments must be performed to determine the optimal concentration based 

on the type of soil, hydrocarbons, and technology used [25]. 

For example, research comparing reflectance spectroscopy and solvent extraction methods 

for analyzing total petroleum hydrocarbons (TPH) in soil indicated that spectral methods 

could effectively detect and differentiate hydrocarbon concentrations as low as 50 ppm. 

Furthermore, various studies have confirmed that these concentrations are adequate for 

identifying and quantifying hydrocarbons in contaminated soil samples using infrared (IR) 

spectroscopy techniques. IR techniques provide distinct advantages in sample preparation, 

resolution, and data acquisition, making them highly relevant in different applications such as 

chemical identification, material characterization, and environment quality control [26]. 

These findings underscore the potential of spectral methods for effective environmental 

monitoring of hydrocarbon contamination. 

 

4. Conclusion 

     This study demonstrated the possibility of using remote sensing techniques to determine 

petroleum pollution in soil. Two soil sets were used, and various preprocessing 

transformations enhanced the spectral data. The data were inspected utilizing Principal 

Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Interesting and 

characteristic absorption features were recognized within the mixture of soil with the crude 

oils in the range between 1700-1800 2200-2400 nm. All samples with different 

concentrations of hydrocarbons showed a distinct reflectivity and sensitivity to hydrocarbons 

in soil samples within the range 1700-1800 2200-2400 nm. They are recognized primarily by 

the spectral geometry between 1700 and 2400 nm. The characteristic absorption peaks at 

1720, 1750, 2220, 2300, and 2350 nm were indicative of crude oil content; PCA models 

connected to the spectral signature demonstrated the ability to distinguish the density of the 

hydrocarbons. The calibration models produced by PLS are vigorous, of high quality, and can 

be utilized to anticipate the concentration of crude oils in mixtures with soil. Such data and 

models are employable as a reference for classifying obscure samples of contaminated 

substrates. Overall, this research provides a foundational approach for advancing 

methodologies in the environmental monitoring of petroleum contamination. 
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