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Abstract 

     An annular two-phase, steady and unsteady, flow model in which a conducting 
fluid flow under the action of magnetic field is concavely. Two models are 
presented, in the model one; the magnetic field is perpendicular to the long side of 
the channel, while in the model two is perpendicular to the short side. Also, we 
study, to some extent the single-phase liquid flow. 
It is found that the motion and heat transfer equations are controlled by different 
dimensionless parameters namely, Reynolds, Hartmann, Prandtl, and Poiseuille 
parameters. The Laplace transform technique is used to solve each of the motion and 
heat transfer equations. The effects of each of dimensionless parameters upon the 
velocity and heat transfer is analyzed. 
A comprehensive study for Model 1, and 2 is given. Also, a comparison study 
among steady, unsteady, single-phase, two-phase for Model 1, and Model 2 is 
considered. 
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Introduction 
     Magnetofluiddynamics (MFD) is that branch 
of applied mathematics which deals with the 
flow of electrically conducting fluids in electric 

and magnetic fields. It unified in a common 
framework the electromagnetic and fluid-
dynamic theories to yield a description of the 
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concurrent effects of the magnetic field on the 
flow and the flow on the magnetic field. 
For two-phase flow in a rectangular channel, 
Thome [1], reported, by performing experiments 
on gas-liquid metal two-phase flow and 
developing a homogeneous two-phase flow 
model that the magnetohydrodynamic MHD 
pressure drop of two-phase flow is nearly equal 
to and a little higher than that of single-phase 
flow, for the same liquid flow rate and the same 
magnetic field, in the cases of low and medium 
void fractions. Also, for two-phase flow in a 
rectangular channel, Owen et al. [2], proposed a 
separated two-phase flow (annular two-phase 
flow) model, together with a homogeneous flow 
model, and showed that the two-phase flow 
pressure drop cannot be lowered below the 
single-phase flow pressure drop. However, 
Inoue et al. [3], showed, by performing 
experiments on gas-liquid metal two-phase flow 
that the two-phase flow pressure drop becomes  
10 % of the single-phase flow pressure drop in a 
rectangular channel for the case of high void 
fraction. 
Kumamaru and Fujiwara [4], considered a 
separated flow (annular flow) models for a 
rectangular channel have been developed in 
order to propose a flow model which can predict 
Inoue et al., experimental data on the 
magnetohydrodynamic MHD pressure drop. 
Also, in his work, the heat transfer from the 
channel walls to gas-liquid metal two-phase 
flow has been calculated based on the proposed 
flow models in order to estimate the 
improvement of heat transfer in the two-phase 
flow comparing with that in the single-phase 
liquid flow. 
In this paper, the magnetohydrodynamic MHD 
pressure drop and heat transfer of two-phase 
flow for fusion reactor conditions have been 
calculated by the proposed flow and heat 
transfer models and have been compared with 
those of single-phase liquid flow. 

1. Formulation of the Problems 
     In this section, we will describe two 
problems in magnatohydrodynamic MHD 
namely, Model 1 and Model 2. In both models 
two-phase gas-liquid flow under the action of 
uniform magnetic field is considered. The 
difference between the two problems is in the 
applied magnetic field. 

1.1 Model 1, [5] 
     In this model, a rectangular channel, an 
annular two-phase flow (gas-liquid) models has 

been presented, in which there is a liquid 
continua adjacent to the channel walls, while in 
the center of the channel there is a gas 
continuum. The applied uniform magnetic field, 
B, is directed perpendicularly to the long side of 
the channel cross-section. Since the flow will be 
considered in the direction of z-axis, then the 
applied magnetic field has only one component 
in the y-direction, this component will be, 
denoted by B0, see (figure 1). The paths of 
induced current for this model flow are in the x-
direction and they are shown in (figure 2). 

 
Figure 1: Model 1, annular flow in magnetic field 

perpendicular to channel long-side, [4]. 

 
Figure 2: Induced electric current paths in Model 

1, [4]. 

     Let a be the half width of short side of the 
channel and b be the half width of long side of 
the channel. 

1.1.1 Momentum Equation for the Liquid 

Phase, [4]: 
     The motion of a conducting liquid under a 
magnetic field is described by the momentum 
equation including the Lorentz force 
(electromagnetic force) term (J×B) and Ohm's 
law Thome [1]. They are, respectively, 
expressed by: 

ρ 2

t z

∂ ∂ 
+ = −∇ + µ∇ + × 

∂ ∂ 

u u
u p u J B  …(1) 

( )= σ + ×J E u B  …(2) 

where, u is velocity, p is pressure, µ is dynamic 
viscosity, ρ is density, σ is electrical 
conductivity, J is induced current, E is induced 
electric field, and B is magnetic field. 



 Faisal and Abdulhadi                                Iraqi Journal of Science, Vol.52,No.3,2011,PP.350-361                                                                             

                                                         

 352

Now, since the flow is unidirectional, in the z-
direction, then u and −∇p  have only z-

component, i.e. in the z-direction, let there 
components be u and ∇ p respectively,.Since the 
magnatic field B in the y-direction, then (u×B) 
will be in the x-direction this component say B0, 
also we have E in the x-direction, consequently 
J will have only one component which is in the 
x-direction.The total induced current in the x-
direction within the liquid is obtained by 
integration of Eq.(2). E in the x-direction is 
constant, since there is no current in the y-
direction.To calculate the last term in the right 
hand side in Eq(1), we start with Ohm's law: 

a a

a r a r

 dy ( ) dy
− −

= σ + ×∫ ∫J E u B  …(3) 

The substitution in Eq(3) performed the integral 
by using the mean value theorem for integration, 
we obtain: 
Jr = 0r E r uBσ − σ  

where, B0 the applied magnetic field, and u  is 
the average liquid velocity. The plus and minus 
signs correspond to the positive and negative 
direction of the y-axis, respectively. The total 
current in the x-direction within the wall is 
given by: 
Jw rw = rwσwE 
where, Jw is the wall induced current, rw is the 
wall thickness, σw is the wall electrical 
conductivity.The application of the continuously 
equation for current tell us that the net current in 
the x-direction must be zero, i.e., 
rσ(E − u B0) + rwσwE = 0 
from which 

E = 0

w w

uB

1 r / r+ σ σ
 …(4) 

Let γ = (a − r)/a, and the wall conductivity 

number φ = w wr

a

σ

σ
.Then Eq.(4) becomes: 

E = 0uB

1 /(1 )+ φ − γ
 

where, γ is a void fraction. 
     By substituting the above expression for E in 
Ohm's law, Eq.(2), we get: 
J = σ(E − u B0) 

J = 0uB

1 / (1 )

σ

+ φ − γ
 − σuB0 

Now, we have: 

(J×B) = 
2

20
0

uB
uB

1 / (1 )

 σ
− σ  + φ − γ 

 

The substituting of the last equation in the 
momentum Eq.(1) gives final form of 
momentum equation, which is: 

ρ
u

t

∂ 
 

∂ 
 = −

P

z

∂

∂
 + µ

2

2

u

y

∂

∂
 + 

2
0uB

1 / (1 )

σ
−

+φ −γ
 2

0uBσ .(5) 

The associated boundary conditions are: 
u = 0 at y = a (non-slip condition) …(6a) 
and,  

 −µ
u

y

∂

∂
 = τ1 = (a − r)

P

z

∂ 
− 

∂ 
 at y = a − r                                                                                

… (6b) 
(viscosity law) and the initial condition: 
u = 0  at  t = 0 …(6c) 
Note that, Eq.(5) and its boundary conditions are 
in dimensional form. 

1.1.2 Gas-Phase, [4]: 

     For the gas phase with a large gas-to-liquid 
relative velocity, the pressure gradient, Branover 
[5], is evaluated for a flow channel with a width 
of 2a, is given by: 

2
g g

P / z
f

u / 2a

−∂ ∂
=

ρ
 

Now, since in our case, the channel width is  
2a − 2r, thus we have: 

−
P

z

∂

∂
 = f

 

2
g gu

2(a r)

ρ

−
 

−
P

z

∂

∂
 = 4f 

h

1

d

2
g gu

2

ρ
 …(7) 

where, ρg is density of gas, gu  is the average 

liquid velocity of gas, and dh = 4(a −r) is the 
hydraulic equivalent diameter, defined for the 
infinite parallel plates and the friction 
coefficient, f, is evaluated by: 

g g

0.25
g g

f 16 / Re             for    Re 2000

f 0.0791/Re    for    Re 2000

= ≤ 


= ≥ 

 …(8 a,b) 

The Reynolds numbers, based on both real 
velocities and superficial velocities, are defined 
by using the hydraulic equivalent diameters for 
the infinite parallel plates. 

u  = 0u

1− γ
 …(9 a) 

u g = 0gu

γ
 …(9  b) 

0 0

g g g g

0 0 g g g g g

Re u4r / ,                Re u 4(a r) /

Re u 4a / ( Re),Re u 4a / ( Re )

=ρ µ =ρ − µ 


=ρ µ = =ρ µ = 
 …(10 a,b,c,d) 
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where µg is the dynamic viscosity of the gas. 
     The average velocity is given by : 

u  = 
1

r

a

a r

u dy
−
∫  …(11) 

By introducing the nondimensional new 
variables u* = u/ u , y* = y/a, Hartmann number 

Ha = B0a /σ µ , Poiseuille number P = 

P

z

∂ 
− 

∂ 

2a

u

 
  µ 

 and t* = 
tu

4a
, the momentum 

equation in dimensionless form can be written as 

1

16
Re0

u *

t *

∂

∂
 = P + 

2

2

u *

y*

∂

∂
 + 

2Ha

1 / (1 )
−

+ φ − γ
 

2Ha u * … (12) 
     The associated boundary and the initial 
conditions are: 

u* = 0  at  y* = 1 ,   −
u *

y *

∂

∂
 = γP  at  y* = γ ,    

u* = 0  at  t* = 0 …(13a,b,c) 

1.2 Energy Equation, [4] 

     By neglecting the internal heat generation for 
the present one-dimensional problem, the 
unsteady state energy equation for liquid phase 
with a constant heat flux from long-side channel 
wall for this model is: 

ρCp u
t z

∂θ ∂θ 
+ 

∂ ∂ 
 = k

2

2y

∂ θ

∂
 … (14) 

where Cp is specific heat, θ is temperature, θw is 
temperature of the wall, θ* = θ − θw, k is 
thermal conductivity. 
      The associated boundary and initial 
conditions are: 

w   at  y a , 0  at  y a r
y

∂θ
θ = θ = = = −

∂
   

, θ = 0  at  t = 0                               …(15a,b,c) 
     By introducing nondimensional variables u* 

= u/ u , y* = y/a, and z* = z/a, t* = 
tu

4a
, and 

Prandtl number Pr = pC

k

µ
. 

2

2

*

y *

∂ θ

∂
= 0 0Re Pr Re Pr1 *

u *
4 4(1 ) t * 4(1 ) z *

∂θ ∂θ
+

− γ ∂ − γ ∂
 …(16) 

and 
z *

∂θ

∂
 is constant, because of constant wall 

heat flux. 
The associated boundary and initial conditions 
are: 

θ* = 0  at y* = 1,  

 

*

y*

∂θ

∂
 = 0  at  y* = γ,  

θ* =0  at  t* = 0 …(17a,b,c) 
The dimensionless form of equation (7) can be 
written as: 

P = f 0

2
g

h

Re

d 0u 4a

µ

ρ
0

2
g 0

2
g

u u 4a

8u u g

 ρ
 
 ρ 

2
gµ 

  µ 
 

By using the equations dh = 4(a − r), gu  = 

0gu /γ, and u  = 0u /(1 − γ), we get: 

P = f 0

2
g

0

Re

Re g

ρ

ρ

2
gµ 

 
µ 

3

1 1

8

− γ

γ
 …(18) 

The dimensionless form of equation (8a,b) can 
be written as: 

0 0

0 0

g g

0.25
g g

f 16 / Re           for Re 2000

f 0.0791 / Re  for Re 2000

= ≤ 


= ≥ 

 …(19 a,b) 

By using the same procedure, the dimensionless 
form of the average velocity ,equation 11, is: 

1 = 

1
1

u *  d y *
1

γ
− γ ∫  …(20) 

1.3 Model 2, [4] 

    In this model, a rectangular channel, an 
annular two-phase flow (gas-liquid) models has 
been presented, in which there is a liquid 
continua adjacent to the channel 
 walls, while in the center of the channel there is 
a gas continuum. The applied uniform 
 magnetic field, B, is directed perpendicularly to 
the short side of the channel cross-section. Since 
the flow will be considered in the direction of z-
axis, then the applied magnetic  
field has only one component in the x-direction, 
this component will be, denoted 
by B0, see (figure 3). The paths of induced 
current for this model flow are in  
the y-direction and they are shown in (figure 4). 

 
Figure 3: Model 2, annular flow in magnetic field 

perpendicular to channel short side, [4]. 
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Figure 4: Induced electric current paths  in Model 

2, [4]. 

Let a be the half width of short side of the 
channel and b be the half width of long side of 
the channel. In Model 2, one side of the liquid 
film is in contact with gas core, i.e.,  
nonconducting medium, and the thickness of 
channel wall perpendicular to the magnetic field, 
rw is considerably smaller than the half width of 
the channel parallel to the magnetic field, B. 
Hence, induced current paths are considered to 
be nearly equivalent to those for liquid flow in a 
channel insulating (nonconducting) walls 
perpendicular to the magnetic field Lielausis [6]. 
From the above consideration, the equations as 
for Model 1 hold for Model 2 except that the 
coordinate y and y* replaced by x and x*, 
respectively, and conductivity number φ is set to 
be zero. 
     The momentum equation is: 

ρ
2

2
02

u P u
B (u u)

t z x

∂ ∂ ∂ 
= − + µ − σ − 

∂ ∂ ∂ 
 …(21) 

The associated boundary conditions are: 
u = 0  at  x = a   (Non-Slip condition)     …(22a)  … (22a) 
and                                                         

1
u

x

∂
−µ = τ

∂

P
(a r)

z

∂ 
= − − 

∂ 
 at x = a − r 

(Viscosity Law) …(22b) 
and the initial condition: 
u = 0  at  t = 0 …(22c) 
     The energy equation is: 

ρCp u
t z

∂θ ∂θ 
+ 

∂ ∂ 
 = k

2

2x

∂ θ

∂
 …(23) 

The associated boundary and initial conditions 
are: 

w   at  x aθ = θ = ,
 

0  at  x a r
x

∂θ
= = −

∂
,  

θ = 0  at  t = 0 …(24a,b,c) 
Then the momentum and energy equations in 
dimensionless form are: 

1

16
Re0

u *

t *

∂

∂
 = P + 

2

2

u *

x *

∂

∂
 +Ha2 − Ha2u* …(25) 

The associated boundary and initial condition 
can be written as: 

u* = 0  at  x* = 1   ,   −
u *

x *

∂

∂
 = γP  at  x* = γ ,   

u* = 0  at  x* = 0 …(26a,b,c) 
     The energy equations is: 

2

2

*

x *

∂ θ

∂
 = 0 0Re Pr Re Pr1 *

u *
4 4(1 ) t * 4(1 ) z *

∂θ ∂θ
+

− γ ∂ − γ ∂
 …(27) 

and 
z *

∂θ

∂
 is constant, because of constant wall 

heat flux. 
The associated boundary and initial  

conditions can be written as: 

* 0  at  x* 1θ = = , 
*

0  at  x*
x *

∂θ
= = γ

∂
,   

θ* =0  at  t* = 0 …(28a,b,c) 

2. Solution of the Problems 
     In this section, we will describe the solution 
of Model 1 and Model 2. The Laplace 
transformation method is used to solve these 
problems. 

2.1 The Solution of Model 1 

     The solution of velocity equation is: 

u*(y*,s) = 
{ }
{ }

Psinh Ha(1 y*)

Ha cosh Ha(1 )

γ −

− γ
−

 { }

{ }2

P 'cosh Ha(y * )

Ha cosh Ha(1 )

−γ

− γ
+

 
2

P '

Ha
+ 

{ }
{ }

t

0

32 Pe sinh M(1 y*)

Re (1 ) sinh M(1 )

γ −

− γ − γ

l

l
−

{ }
{ }

t

0

32P 'e cosh M(y * )

Re (1 ) Msinh M(1 )

−γ

− γ − γ

l

l
 …(29) 

where: 
2 2 2

2
0n=1 0

4(2n 1) 16Ha
Re(1 ) Re

∞ − + π
= −

− γ
∑l ,   

M = 2
0

1 Re Ha
16

+l , and 

P' = 
2Ha

1 / (1 )+ φ − γ
 + P …(30) 

From expression (30), one can see that the 
velocity distribution is depending on y-
coordinate and time t, also it depends on the 
dimensionless numbers Re0, P, and Ha. It is easy 
to show that the u*-solution for unsteady state 
(30) approaches the u*-solution for steady state 
as t approaches infinity, which is: 
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u* = 
{ }
{ }

Psinh Ha(1 y*)

Ha cosh Ha(1 )

γ −

− γ
 − 

{ }

{ }2

P 'cosh Ha(y * )

Ha cosh Ha(1 )

−γ

− γ
 + 

2
P '

Ha
 …(31) 

The last solution is corresponding to steady case 
as in [4]. 

2.1.1 Friction Pressure Drop (Poiseuille 

Number): 

     By substituting equation (31) in equation 
(20), the friction pressure drop in 
nondimensional form, i.e., the Poiseuille number 
result in: 

P = 
2Ha

1 / (1 )+ φ − γ
[φHa cosh{Ha(1−γ)} 

Re0(1−γ) l M2sinh{M(1−γ)} + 

32 tel Ha3cosh{Ha(1 − γ)}sinh{M(1 − γ)} + 

Re0(1 − γ) lM2sinh{Ha(1 − γ)}sinh{M(1 − 

γ)}] [(M2Re0(1 − γ)l  sinh{M(1 − γ)}) 

(Hacosh{Ha(1 − γ)} −γHa − sinh{Ha(1 − γ)} 

− 32γM tel Ha3cosh{Ha(1 − γ)}(1 − 

cosh{M(1 − γ)}) − 32 tel Ha3cosh{Ha(1 − 
γ)}sinh{M(1 − γ)}] …(32) 

Now, for large Hartmann number, it is easy 
to show that the Poiseuille number for 
unsteady state (32) approaches the 
Poiseuille number for steady state as t 
approaches infinity, which is: 

P = Ha2 11
Ha

1 1
1 1

 
 φ + φ

+ φ φ + +
− γ − γ 

, γ ≠ 0 …(33) 

The last solution is corresponding to steady 
case as in [4]. 
     The solution of energy equation is: 

θ*(y*,s)= 0Re Pr
4(1 )− γ z *

∂θ
∂  

{ }
{ }3 4

sinh Ha(1 y*)P P '
cosh Ha(1 )Ha Ha

 −γ
−

− γ
 

{ }
{ }

cosh Ha(y* )

cosh Ha(1 )

−γ
+

− γ
2

2
P ' y *

2Ha
+

2Ha

γ
 

(P − P′)y* − 
2

P

Ha

γ
 + 

4
P '

Ha
 + ( )2

P' 1
2Ha


γ − 

 

+128
z*
∂θ

∂ 2
P '

Ha
 

( )

2 2 2 2

2
0n 1 n 1

22 2

2
n 1 0

4(2n 1) (2n 1)
exp t cosh (y* )

Re Pr(1 ) 4(1 )

4(2n 1)

Re Pr(1 )

∞ ∞

= =

∞

=

  + π + π 
− − −γ    − γ − γ    

− + π

− γ

∑ ∑

∑

 

2 2

2
n 1

2 2

2
n 1

(2n 1)

4(1 )

(2n 1)
sinh (1 )

4(1 )

∞

=

∞

=

+ π
−

− γ

 + π 
− − γ 

− γ  

∑

∑

+ 

128
z*
∂θ

∂ 2
P '

Ha
 

2 2 2 2

2
0n 1 n 1

2 2 2 2 2

0 0n 1 n 1

4(2n 1) (2n 1)
exp t cosh (y* )

Re Pr(1 ) 4(1 )

4(2n 1) 16Ha (1 ) 4(2n 1)

(1 ) Re Pr Re Pr(1 )

∞ ∞

= =

∞ ∞

= =

  + π + π 
− − −γ    − γ − γ    
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 …(34) 

From expression (34), one can see that the 
temperature distribution is depending on y-
coordinate and time t, also it depends on the 
dimensionless numbers Re0, P, Ha and Pr. It is 
easy to show that θ*-solution for unsteady state 
(34) approaches the θ*-solution for steady state 
as t approaches infinity, which is: 
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The last solution is corresponding to steady case 
as in [4]. 

2.2 The Solution of Model 2 

     The solution of velocity and energy equations 
are: 
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where: 

P′ = P + Ha2, 
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and the solution of heat equation (27), is: 
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3. Results and Discussion 
     In this section, we have studied the effect of 
different parameters that governing the motion 
and energy equations, upon the velocity 
distribution and heat transfer. 

3.1 Velocity Distribution of Model 1 

     In this section, we have studied the effect of 
Reynolds, Hartmann numbers, and time will be 
considered also. 

Effect of Reynolds number, To study the effect 
of Reynolds number on the velocity distribution, 
we keep Hartmann number  and time fixed at 
469, Pi/4 and we give Reynolds number three 
values 1760, 6160 and 12100 Kumamaru and 
Fujiwara [4], the following results are made: 
(a)There is upward displacement. (b)As 
Reynolds number increases, there is a 
displacement to the left. (c)As Reynolds number 
increases, there is an increasing in the velocity 
range. See (figures 5). Effect of Hartmann 
number, To study the effect of Hartmann 
number on the velocity distribution, we keep 
Reynolds number and time fixed at 6160, Pi/6 
and we give Hartmann number three values 169, 
269 and 569 Kumamaru and Fujiwara [4], the 
following results are made: (a) There is upward 
displacement. (b)As Hartmann number 
increases, there is a displacement to the left. 
(c)As Hartmann number increases, there is an 
increasing in the velocity range. See (figures 6). 
Effect of time, To study the effect of time on the 
velocity distribution, we keep Reynolds  and 
Hartmann numbers fixed at 1760 and 169, 
respectively, Kumamaru and Fujiwara [4], and 
time will be varies from π/200 to π/100, the 
following results are made: (a) There is upward 
displacement. (b)As time increases, there is no 
displacement to right or left,since γ dose not 
change. (c)As time increases, there is a small  
increasing in the velocity range. See (figures 7). 
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Figure 5: Ha = 469, t = Pi/4, Re = 1760, 6160, 

12100. 
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Figure 6: Re=6160,t=Pi/6, Ha=169, 269,569 
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Figure 7: Re = 1760, Ha = 169, t = Pi/200, Pi/150, 

Pi/100. 

3.2 Temperature Distribution of Model 1 

     In this section, we have studied the effect of 
each of Reynolds, Hartmann, Prandtl numbers, 

z *

∂θ

∂
, and time will be considered also. 

Effect of Reynolds number, To study the effect 
of Reynolds number on the temperature 

distribution, we keep Hartmann, Prandtl, 
z *

∂θ

∂
 

and time fixed at 469, 0.694, 1 and 5π/4 
respectively, while Reynolds will be given three 
values 1760, 6160 and 12100 [4], Bayazitog% lu 

and Özişik [1], and Gebhert [3], following 
results are observed: (a) There is downward 
displacement. (b) As Reynolds number 
increases, there is a displacement to the left. (c) 
As Reynolds number increases, there is a 
decreasing in the temperature range. See (figures 
8). Effect of Hartmann number, To study the 
effect of Hartmann number on the temperature 
distribution, we keep each of Reynolds, Prandtl 

numbers, 
z *

∂θ

∂
 and time Pi/6 fixed at 1760, 

0.694 and 1, respectively, while Hartmann will 
be given three values 269, 369 and 469 
Kumamaru and Fujiwara [4], Bayazitog% lu and 

Özişik [1] and Giebhert [3], the following 
results are made: (a)There is downward 
displacement. (b) As Hartmann number 
increases, there is a displacement to the left. (c) 
As Hartmann number increases, there is a small 
decreasing in the temperature range. See (figures 
9). Effect of Prandtl number. To study the 
effects of Prandtl number on the temperature 

distribution, we keep Hartmann, 
z *

∂θ

∂
, Reynolds 

and time fixed at 169, 1, 6160, and π/4, 
respectively, while Prandtl number will be given 
two values 0.694 and 0.71, Kumamaru and 
Fujiwara [5], Bayazitog% lu and Özişik [1], and 

Gebhert [3], the following results are observed: 
(a) There is  a small downward displacement. 

(b) As Prandtl number increases, there is no 
displacement to right or left, since γ dose not 
change. (c) As Prandtl number increases, there is 
a small decreasing in the temperature range. See 

(figures 10). Effect  of 
z *

∂θ

∂
 , The term 

z *

∂θ

∂
 

will effect the temperature range only. And 
effect of time, To study the effect of time on 
temperature distribution, we keep each of 

Reynolds, Hartmann, Prandtl numbers and 
z *

∂θ

∂
 

are the fixed values 12100, 169, 0.71 and 1, 
respectively, Kumamaru and Fujiwara [5], 
Bayazitog% lu and Özişik [6] and Gebhert [7], 

while time varies between π/384 and π/96, the 
following results are observed: (a) There is very 
small upward displacement. (b) As time 
increases, there is no displacement to right or 
left, since γ dose not change. (c) As time 
increases, there is a small decreasing in the 
temperature range. See (figures 11). 
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Figure 8: Ha=469,Pr=0.694, 
z *

∂θ

∂
=1, t=5Pi/4,         

Re= 1760, 6160, 12100. 
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Figure 9: Re = 1760, Pr = 0.694, 
z *

∂θ

∂
 = 1, t = Pi/6,  

Ha = 269,369,469. 
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Figure 10: Re = 6160, Ha = 169, 
z *

∂θ

∂
 = 1, t = Pi/4,   

Pr = 0.694, 0.71. 
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Figure 11: Re = 12100, Ha = 169, 
z *

∂θ

∂
 = 1, Pr = 

0.71, t = Pi/384, Pi/192, Pi/96. 

3.3 Velocity Distribution of Model 2 

     In this section, we have studied the effect of 
Reynolds, Hartmann numbers, and time will be 
considered also. 
Effect of Reynolds number. To study the effect 
of Reynolds number on the velocity distribution, 
we keep Hartmann number and time fixed at 
469, Pi/4 and we give Reynolds number three 
values 1760, 6160 and 12100 Kumamaru and 
Fujiwara [4], the following results are made: (a) 
As Reynolds number increases, there is a 
displacement to the left. (c) As Reynolds 
number increases, there is no increasing or 
decreasing in the velocity range. This is because 
p = p', since Ha dose not change in three cases. 
See (figures 12). Effect of Hartmann number, To 
study the effect of Hartmann number on the 
velocity distribution, we keep Reynolds number 
and time fixed at 6160,Pi/6 and we give 
Hartmann number three values 169, 269 and 569 
Kumamaru and Fujiwara [4], the following 
results are made: (a) There is downward 
displacement. (b)As Hartmann number 
increases, there is a displacement to the left. (c) 

As Hartmann number increases, there is a 
decreasing in the velocity range. See (figures 
13). Effect of time, To study the effect of time 
on the velocity distribution, we keep Reynolds  
and Hartmann numbers fixed at 1760 and 169, 
respectively, Kumamaru and Fujiwara [4], and 
time will be varies from π/10000 to π/1000, the 
following results are made: (a) There is upward 
displacement. (b) As time increases, there is no 
displacement to right or left, since γ dose not 
change. (c) As time increases, there is an 
increasing in the velocity range. See (figures 
14). 
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Figure 12: Ha=469, t=Pi/4, Re=  1760, 6160, 

12100. 
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Figure 13: Re=6160, t=Pi/6, Ha=169, 269, 569. 
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Figure 14: Re=1760, Ha=169, t=Pi/10000, Pi/9000, 

Pi/1000. 
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3.4 Temperature Distribution of Model 2 

     In this section, we have studied the effect of 
each of Reynolds, Hartmann, Prandtl numbers, 

z *

∂θ

∂
, and time will be considered also. 

Effect of Reynolds number, To study the effect 
of Reynolds number on the temperature 

distribution, we keep Hartmann, Prandtl, 
z *

∂θ

∂
 

and time fixed at 469, 0.694, 1 and 5π/4, 
respectively, while Reynolds will be given three 
values 1760, 6160 and 12100 Kumamaru and 
Fujiwara [4], Bayazitog% lu and Özişik [6], and 

Gebhert [7], following results are observed: (a) 
There is downward displacement. (b) As 
Reynolds number increases, there is a 
displacement to the left. (c) As Reynolds 
number increases, there is a decreasing in the 
temperature range. See (figures 15). Effect of 
Hartmann number, To study the effect of 
Hartmann number on the temperature 
distribution, we keep each of Reynolds, Prandtl 

numbers and 
z *

∂θ

∂
 fixed at 1760, 0.694, Pi/6 and 

1, respectively, while Hartmann will be given 
three values 269, 369 and 469 Kumamaru and 
Fujiwara [4], Bayazitog% lu and Özişik [6] and 

Giebhert [7], the following results are made: (a) 
There is downward displacement. (b) As 
Hartmann number increases, there is a 
displacement to the left. (c) As Hartmann 
number increases, there is a decreasing in the 
temperature range. See (figures 16). Effect of 
Prandtl number. To study the effects of Prandtl 
number on the temperature distribution, we keep 

Hartmann, 
z *

∂θ

∂
, Reynolds and time fixed at 

169, 1, 6160, and π/4, respectively, while 
Prandtl number will be given two values 0.694 
and 0.71, Kumamaru and Fujiwara [4], 

Bayazitog% lu and Özişik [7], and Gebhert [6], the 

following results are observed: (a) There is  a 
small downward displacement. (b) As Prandtl 
number increases, there is no displacement to 
right or left, since γ dose not change. (c) As 
Prandtl number increases, there is a small 
decreasing in the temperature range. See (figures 

17). Effect of 
z *

∂θ

∂
, The term 

z *

∂θ

∂
 will effect 

the temperature range only. And effect of time, 
To study the effect of time on temperature 

distribution, we keep each of Reynolds, 

Hartmann, Prandtl numbers and 
z *

∂θ

∂
 are the 

fixed values 12100, 169, 0.71 and 1, 
respectively, Kumamaru and Fujiwara [4], 
Bayazitog% lu and Özişik [7] and Gebhert [6], 

while time varies between π/1500 and π, the 
following results are observed: (a) There is 
downward displacement. (b) As time increases, 
there is no displacement to right or left, since γ 
dose not change. (c) As time increases, there is a  
decreasing in the temperature range. See (figures 
18). 
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Figure 15: Ha=469,Pr=0.694, 
z *

∂θ

∂
=1, t=5Pi/4, 

Re= 1760, 6160, 12100. 
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Figure 16: Re=1760,Pr=0.694, 
z *

∂θ

∂
=1, t=Pi/6,       

Ha= 269,369, 469. 
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Figure 17: Re=6160,Ha=169, 
z *

∂θ

∂
=1, t=Pi/4, Pr= 

0.694, 0.71. 
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Figure 18: Re=12100,Ha=169, 
z *

∂θ

∂
=1, Pr=0.71, 

t=Pi/1500, Pi/500, Pi. 
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