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Abstract

In this paper we investigate the numerical solution of an important class of
mixed linear integral equations, called Volterra-Fredholm integral equations which
are used in technology, mechanics and mathematical physics.
The basic concepts are: First, approximates the unknown function by a tensor
product (Algebraic or Chebyshev)-surface and substituting it in the Volterra-
Fredholm integral equations. Second, apply least-square technique for minimizing
the error terms on the given domain. Third, obtain a system of linear algebra
equations which we solve for control points.
An algorithm is illustrated by several numerical examples with comparison tables
and written computer programs in MatLab (V 7.1) for the given algorithm.
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Introduction
In this paper we consider linear two-
dimensional Volterra-Fredholm (V-F) integral
equation of second kind:
ulx, t) = flx,t)
t

—J r Nix, t,v,s)uly,s)dyds ..(1]
c I

Where f is the given function in domain
D—-0x[cd] (0- a compact subset of
Euclidean space B* or compact manifold) and u
is unknown function in D . The given kernel N
is defined in domain T ={{x,t,y,5):x,y €N
and r = g < = d}. It will be assumed that the
functions N:DxD—=RK and f:D—=R are
bounded and continuous. On virtue this property
the prove of existence and uniqueness of
solution for equation (1) in space L%(D) are
given in [1].

The consider integral equation in mixed
type plays a very important role in mechanics
and technology, with special attention paid to
large sense of power engineering. Some initial-
boundary problems for a number of partial
differential equations in physics can be reduced
to consider integral equation [1].

Numerical results for double integral
equation had been treated by many authors and
different methods are used by: H.Brunner
(Collocation  method), Lechoslaw Hacia
(Galerkin method), Valise Carutasu (Spline
functions) and (Taylor’s expansion method)

using by Shazad Shawki Ahmed, [2, 1, 3, and
4].

In this paper we propose a new
procedure for solving the mixed integral
equation of type (V-F), using algebraic and
orthogonal (Chebyshev) polynomials with the
aid of least-squares techniques for two variables.

Preliminaries [5, 6]

The Chebyshev polynomial of the first
kind and k-th degree 13 (x) for interval [—1, 1]
are even and odd functioning of x defined by the
relation:
1 (x) =cos(kcos™x) , k=012 ..
Or by series expansion as:

Tl}(x} = 1 ]
Lk/2]

k k—r—1)! )
Telx) =5 Z -1 ri! (s; zrjjll! (@)
r=0

k=123 .. e (2)
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Where the bracket |.] denotes the largest
integer not greater than the number it embraces.
The Chebyshev polynomials Ty (x) are an
important set of orthogonal functions over the
interval [—1,1] with weighting function

wix) =1/41—x2  thatis

1

T (x)T, (x) Q0 n£m
j”}:’“qd:ﬁ:{ﬁjz n=m=0
Y1l—x~

21 m n=m=_0
Although the T;, are defined only on the
interval [—1,1], a simple change of variable
allows the expansion to be used to represent a
function between two arbitrary limits, [a,b]:

_x—%{b+a}

=—7 a=x=hb
i(i"—ﬂ}

3

To shift the number x in the interval
[a,b] into corresponding number &, in the
interval [—1,1] . Therefore use equation (2) to
find Ty (8,.).
At last, in this section, we defined also the
algebraic polynomial of k-th degree for interval
[a, b] by the relation:

P.x)=(x—a)¥ E=012,.  ..(3)

The Method
The approximate solution of equation (1)
proposed in the form:

k
uk(-x; t} = ﬁ',,.i,b,..(x, I'}

with basis functions {i2,.}, [7]. In practice, we
take ¥,-(x, £) = ¢;(x)¢;(t), where
i=01..,n;7=01,...m and {¢;] is a
linearly independent in L2(02), {g;]is a linearly
independent in L2([c, c]).

Then we seek an approximate solution
in the formula:

(5, 1) = iiﬁf}-cﬁf(x}qb}-(ﬂ Gt €D

=0 j=0

. (4)
This equation shows a mathematical description
of the tensor product g-surface, where the
control points f;; are undermined constants
coefficients, which control the shape of the ¢-
surface.
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The solution 1 of the mixed integral equation
(1) will be approximated by an element u,,,,, as
in equation (4) submitted it, to obtain:

iiﬁi}' ¢:(x)p;(t) = f(x, )

i=0 ;=0
Zzﬁu j J N(x, t,y,5)9;(y)¢;(s)dyds
+é‘*’a::(-‘-u t) .. (5]

Where E,,,,, is the error involved which depends
on (x, t) € D and on the way that control points
are chosen. Define:

X:‘_;‘(xJ t} = qbz' {x}‘p}(t}

~[ [ et 0006,y as
e 2
Thus equation (5) becomes:

Eum () = ZZﬁUL; (8 — Fx.8)
=0 =
..(6)
The main point here is how to find the
coefficients f;;’s of the approximate solution
(4) such that error is minimized.

The general least-squares techniques
insist on minimizing the norm of the error
function E,,, on the domain D. The least-
squares technique used to minimized || E,,,,|l5 is
equivalent to that used to minimized [IEpmll3,
using the definition of () norm, [5], to get:

min||E,,,||Z = min [ﬂ |E o G t}lgdxdt]
O

- |

]

' ity ) - 70| dxa

i=0 j=0

I

In order to find this minimum, we compute the
partial derivative of I[g] with respect to all
control points @ and setting each of these
derivatives to zero, i.e.

o1 5]
3By

=0 Fforeack £=10,],
r=01,..,m

ey T3 @TLEA
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At last putting the resulting equations as a
system of algebraic linear equations:

iiﬁi}'ﬂ'-ﬁri}' = fer (7]

i=0 j=0
foreach £ =01, ...,n;r=01,..,m

with:
d B

Apyij = j j Xer(6t) yi(x t)dxdt

c L1

b (7a)

= jj vorlx, t)f(x, tdx dt
e

Ed

Xi_;l'(xi t.} = qbz' (qub_;l(tj

- j j N(x,t,%.5)6: (0, (s)dvds ...(7b)
c Il

Writing the resulting equations (7) in
matrix from yields:

AB=F .. (8)
where 4 and R are constant matrices with
dimensions p xp and p x 1 respectively. The
vector B is an p % 1 block-column vector whose
rows are the unknown control points g;; for
D=i=mnand 0 =j=m,such that:
p=m+1)m+1); nmeZ*

with szq]i and J‘:‘fz[,fi’q]I for each

g =0,1,...,p. On the other hand, g =1ij (as a
component) where j =0,1,..,m;i =01,..,n
Furthermore:

A=T[4g] and Ag =[ag;]
where

{é‘=ﬂ,1,...,n : r=01,..m
i=0L.,n; j=01,.m

For more detail see Appendix (A). The system
of equations (8) can be partitioned as follows:

Ao Apr - Ao By
Ay Ay - An By
nl Anl Ann (ne1dwlmnel) Bﬂ {4131
Fy
=1 - (9)
Fy (mt+1)x1
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where, forall i,# =0,1,...,n,
F, = [fz'u fa fim]ri
B; = [ﬁ:'u- Bix - .Eim]r
and
Orpip Dot « Dgpim
A = Oryip Opppy - Beiim
£ — H H H

Cgmin  CFmit Cpmim d fmae 105 (e 1)
. (10)
Note that, the diagonal blocks in matrix
A are square of order (m + 1) and non-singular.
The block Jacobi-iterative method [8] for the

solution of the system (9) is given by:

AEEB:J{} =F - Zﬂe}'ﬁf;fk_i}, i=01,..,n
=o
J®E

we(11)

Consequently, in the i-th of the total (n + 1)
phases of the k-th iteration of the block Jacobi-

iterative method, equation (11) for Ef’d is

solved. These sub-systems can be solved using
Gauss-elimination procedure [8].

Finally, we will attempt to solve the
system of linear algebraic equations in (7) for
control points g;;’s by above technique,
substituting these values in (4) to get the
approximation solution u,,,.(x,t) of equation
(1) . Then the resulting method error
e(xt) = ulx,t) — u,,,(x t) satisfies, [2]:

llell . = supf{le(x, t)]: (x,t) € D}

(asn,m — o)

Because the calculation of error given in
above, is not easy so we use the norm of matrix
to study the quantitatively of the error in this
approximation method, and we use the relative
error which is  |lu — wumll/llwll , [5].The
method presented above was implemented in the
MatLab (V 7.1), (see Appendix B).

The Algorithm [LS (V-F) M]
Step 1: Input the number of terms (', m)) for
approximation the function wu(x, t).
Step2: Forall i =01, ...,n and j =0,1,..,m:
a. Evaluate y,,(x,¢), apply equation
(7b).
b. Compute ag,.; and [, for each
£=01...,n ;: r=01,...m;
using equation (7a).
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Step 3: Construct the block-matrices 4and F,
which are represented in system (9).

Step 4: Solving the system (9) for control points

Bij;it—01,..,nand j=01,..,m,

using block Jacobi-iterative as in (11)
with Gauss- elimination method.

Step 5: Substituting all §; ;’s into equation (4) to
obtain the approximate solution
U (%, 2) Of w(x, £).

By using the basic functions
¢, (k=1 or j) developed in section (3) we are
going to apply the least-square mixed to the
following cases:

(1) Algebraic polynomials.
(2) Orthogonal (Chebyshev) polynomials.

1. Algebraic Polynomials

In this section the solution of mixed
type (V-F) integral equations will be found
using algebraic polynomial (3) accompanied
with least-squares techniques.

Here, the unknown function wu(x,t) in
equation (1) is approximated by the form:

T L

u,, (5,8) = Zzﬁi}.{x—a}f(:— )

i=1 i=0
(x.,#)ED

Doing the same stages described in section (3),
obtain the system (7) with their descriptions.
Here, change each ¢;({x) and ¢;(t) in (7b) by
{x —a)® and (t— c)’ respectively. At last,
applying the algorithm [LS (V-F) M] to
founding all control points £,’s to get the
approximate solutions for mixed integral
equation (1).

2. Chebyshev Polynomials

Here, the unknown function uf{x,t) in
equation (1) is approximated by a tensor-product
Chebyshev polynomial expansion, that is, a
polynomial of the form:

Uy (3, 1)
(3}

:Z Z "R TEITE)  ..(12)
=0 j=0

with 6, = 2(35) -1 ; 6, = 2(=2) — 1and
13 (k=1 or j) are the Chebyshev polynomials
of the first kind with k-th degree .

Note that the primes ('J)on the
summation signs mean that the zeroth row and

column of the matrix of coefficients are each
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multiplied by % and hence that fiy; is multiplied

by - [4].

Substituting 1,... (x,t) into equation (1)
and applying the same steps described in section
(3), we conclude the following system:

Z F Z ' BijCsri; = fer
i=a

=
foreach +£=01,.,n ; r=01,...m
where ag,;;and fe, are as the same in equation

(7a), forall £ and r, with

Borij = Phaal if i=00rj=0
ﬂét?.i}' ..

xijlxt) = T()T;(9.)

_ij(I’ tj?’g}ﬂ(gy}j‘}(gy}dj-‘ds
!

c

At last, applying the algorithm [LS (V-
F) M] to founding all control points j;;’s with
above properties of ag,; to get the approximate
solutions for mixed integral equation (1).

Numerical Experiment
For numerical verification of the above
method we consider the following examples:

Iraqi Journal of Science, Vol.52, No.4, 2011, PP.504-512

Example (1):
Consider the following
Fredholm integral equation:

Volterra-

ule,t) =1/2 —x2+ ¢t +(1/6)t3
—{}HIE}xtz cos(t) — (1/6) xtcos(t)

+! !(x cos(t) — syJuly, s)dyds ,

(x,2) eD; =[01] = [0,1] ..(13)

Let us that
approximated by:

e Algebraic polynomial:

ud (x,t) = zz,ﬁ*ﬁ}-xftf , (x,t) € D,

assume ulx,t) is

i=0j=0
. (14)
e Chebyshev polynomial:
uf,, (x,t) =
n
I I

Z Bi;Ti(2x— 1) T;(2t - 1),

=0 j=0

(x,tleD, ..(15)

To process (V-F) integral equation (13) we
apply the algorithm [LS (V-F) M], here we take
n=2 and m=1 S0 Wwe obtain:

0.8132228817 0.4324889226 0.3871913439
0.432488922¢ 0.3166121068 0.2164624188
0.3871913439 0.2164684188 0.26756&61750

0.2025702236
0.2516541%&9
M1AN4ARTARS

0.156&157048
0.1443869317
NANAR4TNANA

0.1432566585
0.20:303428842
MANTITRRRART

0.2025702236
01566157048
0.1432566585

0.1053506851
0.109494954 5

0.2516541%969
0.1423869317
0.2030342884
0.1094949545
01666474778

0.130438 7365
0.1032470203
0.1071785887

007924806766
0.08820824368

0.2033057204
0.01293874089
—0.00971004234

0.02587745178
01748578091
0. 01926801193

—0.0194200970
0.01986801153
0.1e73611111

S
—0.0039641892 0007190683943 0.00007 71605
—0.0677685735 —0.0086258273 0.00&64733657
—0.004312913& —0.0582859364 —0.006622671
and

F*=[05g74461665 03824696364 0.2070293024

F = [0.5874451665 0.1894931062 —0.1733865618
Next, we substitute these values in
equation (8) to construct the block-matrices in

linear system (9). Table (1) presents the control

NOTR24RNMRTAA  NORRZNAZ43AR  NORIATIANAZAN

—0.1355371469
—0.0026258273
0. 00647336566

—.017251655
—.116571873
—.013245341

—0.015856 7568
000143813789
0.0001543210

0.00264279280
0. 2229568268
0.00287527575

0.1111772.487
0.0052855 856
—0.000479 3793

—0.0004793793
0.00575055151
0.157375805%4

0.1432058621 0.1035665524 0.08083314488]7

—-0.0099292627 —0.2402598333 -0.06316436875]7

points #&,, ‘s for Algebraic (14) and Chebyshev
(15) polynomials.

Table (1)
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~Pil g, B V; B
Method\ 00 01 10 ﬁll 20 ﬂZl
Algebraic 0.5 1.0 —0.31301le— 13 0.33834e — 13 —1.0 —0.5255e — 13
Chebyshev 2.C 1.0 —1.0 —0.3047e— 16 | —0.25 06228 — 16

Putting these values in approximation (14) and
(15) respectively, we obtain:

u (x,t) =05 +t— (031801 — 13) x
+(0.33834¢ — 13) xt — x?
—(05255e — 13 x%¢t
and
ul, (x,t) =05 +t+ (0.55925¢ — 15) x
—(0.,111% —14) xt — x°
+(0.9966e —15) x°t

where the exact solution is (1,/2 —x? +t). We
could all these manipulations in such the
program; see Appendix (B), which can find the
relative error for it with running time (R.T.). In
this example the error for algebraic and
Chebyshev approximations are:

{(2.61351e — 014) and (5.9456e — 017)

with running time: (1.060976 sec) and
(1.243939 sec) respectively.

Example (2):
Consider the following mixed (V-F)
integral equation:

ulx, t) = x — sinlt) — 39‘11 (tcos(t) —sin(t))

+j Jse""u(y, )dyds,
B -
whose exact solution is wu(x, t) = x — sin(t) ,

Assume that the approximate solution is in the
forms:
e Algebraic polynomial:

uﬂm(x, t} = E Er .Ez'_l'

=0 j=0
{x,tl €D,

(x~1)'e,

..(16)

e Chebyshev polynomial:
T 1708

=) ' ) BT T 1),
i=0  j=o0

(x,t) € D5 . (17)
Take n —1 and m—3, then apply
algorithm [LS (V-F) M] to find the approximate
solution (16 and 17) of consider problem by
running the program (in appendix B). So, table
(2) present the control points f§;;’s of equations

(16 and 17) for each i and j, respectively.

Table (2)
\MEthOd Algebraic Polynomial Chebyshev Polynomial
ﬁij ~

Boo —0.9997394418 —1.799539750
ﬁ(,l —1.004922061 —0.8504228742
B 0.01962675087 0.05886470195
Bos 0.1438530528 0.009013204415
B 0.9999916901 2.000002848
B 0.0001592185453 0.000005099398626
B —0.0004848490177 0.000006559726709
Bis 0.0003582178876 0.000011194309

Thus, we obtain the following approximate
formulas:
ul (x,t) = —0.999739 — 1.004922 ¢
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+0.019627 t% + 0.143853 ¢3

+0.999992 (x + 1) + 0.000159(x + 1)t
—0.000485(x + 1)2+ 0.000358(x + 1)£3
and

u€, (x,1) :&(—1.?995393}
+%(—{].35{]423} T(2t—1)
+%{n.053355} rp(2t —1)
+%({].{]{]9{]13} Ta(2t —1)

1
+§ (2.000003) T (x)

+0.0000051 T, (x)Ty (2t — 1)

+0.0000066 T3 (x)T-(2t — 1)
+0.000011 T; (x)T3 (2t — 1)

Iragi Journal of Science, Vol.52, No.4, 2011, PP.504-512

Table (3), as well, exhibits the convergence of
the approximated solutions. It presents the
comparison between the exact solutions u(x, t)
and approximate solutions w45 (x,£) which
depends on relative error and running time with
different values of nandm. The error values
E,m(x t, ), W{x,t) € D, are also included by
applying the formula (6).

Table (3)
(n,m) (1,3) {1,5) (1,7) {19)
2.79026289 | 4910687692 | 2.221446461
Error ) 972
0.00012972 e 007 e 009 e 006
Al i
gebraic E._(xt ) | oo00og2sgy | 11695005 | 2.648585951 |  nn0qegasg
¢ — 005 e — 007
R.T./sec 1.457584 3.069190 5111184 7.963633
2.79014780 | 3.224827632 | 5.990197443
Error
0 0.00012372 e — 007 e — 010 e —011
Chebyshev 2116914548 | 2.439781148 | 3.503084418
E..(x.t.f) | n0n9g?531  ooe  o0s 005
R.T./sec 1.638185 3.836393 7.520051 13.431364
) We have shown that increasing the
Conclusion number of the basis functions one obtains

Algebraic and orthogonal polynomials with
aid of least-squares technique are introduced to
find the numerical solutions of linear Volterra-
Fredholm integral equations. The approximate
results are easily obtained by a few
computations. Several examples are included for
illustration. In practice, we conclude that:

. This method can be used even where
there is no information about the exact
solution (from the evaluation of error
function E,, .. in equation (6)).

o Numerical computations of this method,
compared to the numerical schemes are
simple and inexpensive.

o The solution is given by a function.

better results.

) The choice algebraic polynomial is
unwise since for large n and m it usually
leads to ill-conditioning and we favors the
choice Chebyshev polynomial, see last
column in table (3).

o The disadvantage of the new methods is
their dependence on a number of basis
functions n and mwhich make the square
matrix 4 in equation (8) with dimension
(n+ 1)(m+ 1) x(n+1)(m+ 1) very
large, which need large memory of
computer with too much time to compute it.
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Appendix (A):
For instance, in equation (7) thus:
'.S-u{] --ﬂ]ﬂ 1
[ G000 Foooy Ganam Gogog1o  Fgoas pgim Goonn Fpam + Sgonm ] 'E':u ﬁ:i
Gpign  GBpiny Sg1am Gpign  Spgagyr v Bpgaym Gpinn Bpimt * Coiem Bom Farm
Gorenn Pomos Agmim fpmin Somit Aammim Sommn Zomama Homnma ||
Gigo0  Pio01 S1g0m Gip10 G011 © Bigim Gigma  Bigmi * Cigwm '-:m ?'ﬂ
G300 Bi101 G110m G390 P11 © Birim G1ima S1im * Oiiwm :“ 11
Gymepn Fimoa A9 mim Gimin Fimit Amim Gimmn Fimm By mnm Bam = | fim
Gego0 Srooi = Broom Grp10 Fro1i Onoim Grpgng Gromi S |
Bpign Swiar v Swigm Bpign T v Gpiam Brind Bt ™ Fpiem Bus fuo
: : : : : : : : : ;
“Spmon Snmoi Aymim Apmio Snmit Anrmim Appmn Fnmmt Sy - 11.1. fu
'ﬁ'ﬂ.ﬂ- -fnm'
Appendix (B):

In this appendix we introduce a program in
MatLab (V 7.1) for the method which is given in
section-3 (i.e., algorithm [LS (V-F) M]):
clc
clear
format long g
syms x t y s
% [al,bl];[a2,b2] is the boundary points of
integrals
al=0 ; bl=1 ; a2=0 ; b2=1 ;

% (n,m) is the number of terms in power
function or Chebyshev expansion

n=2 ; m=1 ;

% To apply power function take (H=1) and
(H=2) for Chebyshev expansion
H=input(“input 1: for using power function;

or 2: for Chebyshev expansion : %);

% tic & toc is using for determine the time
in program

tic

g=(n+1)*(m+1);
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. Ahmed S.S. 2006. Expansion Method for

Solving Fredholm Integral Equations in

Space-Time. Journal of Kirkuk University,

Vol.1 No. 1.

JAMES F.E. 2002. An Introduction to

Numerical Methods and Analysis. John

Wiley and Sons; Inc; New York. pp. 20-60.

. John H.M. and Kurtis D.F. 2004. Numerical
Methods Using MatLab; Fourth Edition;
Pearson Education, Inc. pp. 1-100.

A=zeros(q);
B=zeros(q,1);T2=zeros(n+1,m+1); Tp=sym(zeros(
n+l,m+1,q));Q=zeros(q,1);
[Ker,Ggl=NG(X,t,y,s);
[xt,ys]=1IXY(x,t,y,s,n,m,al,bl,a2,b2,H);
p=ys*Ker;
T2=xt-int(int(p,y,al,bl),s,a2,t);
BB=int(int(T2*Gg,x,al,bl),t,a2,b2);
B(:)=double(BB");
L=1;
for 1=0:n
for j=0:m
TP(:,:,L)=T2(i+1,j+1)*T2 ;
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A=int(int(TP(:,:,L),%x,al,bl),t,a2,b2);
QQ=double(AA");
Q(:)=QQ ; A(L,:)=Q ;
L=L+1;
end
end
switch H
case 1
AC,)=AC, )
case 2
A, 1D)=(1/4)*A(=,1);
A(:,2:m+1)=(1/2)*A(:,2:m+1);
for i=m+2:m+l:q
A(:,1)=(1/2)*A(:,1); end
otherwise
end
%vpa(A,10),vpa(B,10)
cq=zeros(q,1);
cl=inv(A)*B; cqg=vpa(cl,10); cq"
switch H
case 1
cq(:,1)=cq(:,1);
case 2
cq(l,1)=(1/4)*cq(l,1);
cq(2:m+1,1)=(1/2)*cq(2:m+1,1);
for i=m+2:m+l:q
cq(i,1)=(1/2)*cq(i,1); end

otherwise
end
Ls=1;f1=0;Lc=1;fc=0;
for 1=0:n
for j=0:m
fl=Fl+cq(Ls,l)*xt(i+1l,j+1);
fec=Fc+cq(lLc,1)*T2(i+1,j+1);
Ls=Ls+1;Lc=Lc+1;
end
end
toc

% The following steps using to find error®s
for u and g by matrix-norm(2)
fv=vpa(fl,10);Ff=simplify(fv);
plg=char(f);apg=inline(plg, "x","t");
XT=char(fc-6g) ; TX=inline(XT, *x","t");
exact=0.5-x"2+t
,ex=char(exact);exa=inline(ex, "x","t");
n0=100;m0=100; Erroru=0.0; Errorg=0.0;
DF=zeros(n0,m0) ;DG=zeros(n0,m0) ;DD=zeros(nO,
mo) ;
hO=(b1-al)/(n0-1);k0=(b2-a2)/(m0-1);
for 10=1:n0
xo0=al+(i0-1)*h0;
for jO=1:mO
t10=a2+(j0-1)*kO0;
DD(i0,jO)=exa(xo,tl0);
DF(i0,j0)=apq(xo,tl1l0);
DG(i0,j0)=TX(x0,t10);
end
end
Erroru=norm(DD-DF)/norm(DD) ;
Errorg=norm(DG) ;
pretty(simplify(f)),
[Erroru Errorg]

% the subroutine of algebraic and Chebyshev
polynomials
function
[JIx,dly]=10XY(x1,t1l,yl1,s1,n1,ml,all,bll,a22
,b22 ,HH)
format long g
JIx=sym(zeros(nl,ml));Jly=sym(zeros(nl,ml));
syms xx tt yy ss
switch HH

case 1

for i11=0:nl1
for j1=0:ml
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Ix=(x1-all)~il; Jt=(tl-
a22)"j1;
ly=(yl-all)”il; Js=(sl-
a22)"Nj1;
JIx(il+1, j1+1)=Ix*Jt;
Jly(il+1,j1+1)=1y*Js;
end
end
case 2
for 11=0:nl1
for j1=0:ml
sx=0;sy=0;z1=Floor(il/2);
st=0;ss1=0;z2=Floor(J1/2);
xx=2*((x1l-all)/(bl1-all))-1;
tt=2*((t1-a22)/(b22-a22))-1;
yy=2*((yl-all)/(bll-all))-1;
ss=2*((s1-a22)/(b22-a22))-1;

if i1==0

chebx=1; cheby=1;
else

for ri1=0:z1

sj=1;si=1;skx=1;sky=1;sj=Factorial (il-rl1-1);

si=factorial(rl)*factorial (il-2*rl);
sji=sj/si;sil=(-1);
for 1=0:rl1
sil=sil*(-1);
end
skx=2*xx)"(il1-
2*rl); sky=2*yy)™N(il-2*rl);
sx=sx+sji*sil*skx;
sy=sy+sji*sil*sky;
end
chebx=sx*11/2;
cheby=sy*i1/2;

end
if j1==0

chebt=1; chebs=1;
else

for r2=0:z2

sj=1;si=1;skt=1;sks=1;sj=Factorial(Jl-r2-1);

si=factorial(r2)*factorial (J1-2*r2);
sji=sj/si;sjl=(-1);
for 1=0:r2
sjl=sji*(-1);
end
skt=2*tt)"(g1-
2*r2); sks=(2*ss)*(J1-2*r2);
st=st+sji*sjl*skt;
ssl=ssl+sji*sjl*sks;
end
chebt=st*j1/2;
chebs=ss1*j1/2;
end
JIx(il+l, jl+1)=chebx*chebt;
Jly(il+1,jl1+1)=cheby*chebs;
end
end
otherwise
end

function [M,Z]=NG(x,t,y,S)
format long g
% input the kernel N(x,t,y,s)

M=x*cos(t)-s*y ;
%M=s*exp(-x) ;

% input the function F(x,t)
Z=0.5-x"2+t+(1/6)*t"3-(1/2)*x*cos(t)*t"2-

(1/76)*x*t*cos(t) ;
%Z=x-sin(t)-2*exp(-x)*(-sin(t)+t*cos(t))



