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Abstract 

     In wireless sensor networks (WSNs), accurate node localization is critical for 

ensuring efficient network functionality, as it directly impacts communication, 

energy consumption, and network management. This paper aims to enhance node 

localization accuracy by developing a hybrid approach that leverages two 

bioinspired optimization algorithms: the Mountain Gazelle Optimizer (MGO) and 

the Crayfish Optimization Algorithm (COA). The research method combines the 

exploration and exploitation capabilities of these algorithms to optimize the 

positions of unknown (target) nodes using known (anchor) nodes. The proposed 

technique was tested across multiple WSN deployment scenarios and compared 

with traditional optimization methods such as Particle Swarm Optimization (PSO) 

and Grey Wolf Optimizer (GWO). Experimental results demonstrate that the MGO-

based approach achieves superior localization accuracy, reduces computational 

overhead, and increases the number of accurately localized nodes, highlighting its 

potential for improving WSN performance. 

 

Keywords: WSN, MGO, COA, metaheuristic algorithm, localization, anchor node, 

target node. 

 

 طريقة توطين العقدة في شبكات الاستشعار اللاسلكية بالاعتماد على خوارزمية الغزال الجبلي
 

 ضحى غضبان كاظم*,منتظر خميس

عراق ال ،ديالى  ،جامعة ديالى ،كلية العلوم الحاسوب،قسم علوم   
 

  الخلاصة 
في شبكات الاستشعار اللاسلكية، يعد تحديد موقع العقدة بدقة أمرًا بالغ الأهمية لضمان كفاءة وظائف       

إلى   الورقة  هذه  تهدف  الشبكة.  وإدارة  الطاقة  واستهلاك  الاتصالات  على  مباشر  بشكل  يؤثر  حيث  الشبكة، 
من علم الأحياء:    ة تعزيز دقة تحديد موقع العقدة من خلال تطوير نهج هجين يستفيد من خوارزميتين مستوحا

Mountain Gazelle Optimizer (MGO)    وCrayfish Optimization Algorithm (COA)  تجمع .
المعروفة   غير  العقد  مواضع  لتحسين  الخوارزميات  لهذه  والاستغلال  الاستكشاف  قدرات  بين  البحث  طريقة 

 (Target( المعروفة  العقد  باستخدام   )Anchor  متعددة نشر  سيناريوهات  عبر  المقترحة  التقنية  اختبار  تم   .)
مثل   التقليدية  التحسين  بطرق   Grey Wolfو    Particle Swarm Optimization (PSO)ومقارنتها 

Optimizer (GWO)  القائم على النهج  أن  التجريبية  النتائج  فائقة    MGO. توضح  يحقق دقة تحديد موقع 

              ISSN: 0067-2904 

mailto:Duha.new7@gmail.com


Kadhum and Khamees                                Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 440-456 

 

441 

ويقلل من النفقات الحسابية ويزيد من عدد العقد المحددة بدقة، مما يسلط الضوء على إمكاناته لتحسين أداء  
WSN. 

 

1. Introduction 

     In recent years, wireless sensor networks (WSNs) have drawn interest from all over the 

world, especially with the growth of Micro-Electro-Mechanical Systems (MEMS) 

technology, which has made the creation of smart sensors easier [1]. A metaheuristic is an 

advanced process or heuristic that is intended to locate, produce, adjust, or choose a heuristic 

that could offer an adequate answer to an optimization or machine learning issue [2] [3].  

 

     In the past several years, numerous research has been attempted on this issue by the 

scientific community. It should be noted that the definition of localization is the process of 

determining an unknown node's position, either by employing connectivity information 

between the unknown nodes or by utilizing nodes with known positions. Recent research has 

examined how movement affects localization.[4], [5], [6], real-world applications [7], [8], 

[9], "Anchor Free" and "Anchor Based" localization techniques [10], " Range Based and 

Range Free " schemes of localization [11], "Non-Cooperative" schemes—where the target 

nodes only connect with the anchor nodes—"Cooperative" algorithms—where 

communication occurs among all nodes[12], and “The centralized” scheme localization and 

"the distributed" scheme, which uses locally collected information to determine each node's 

position without central supervision.[13][14]. This paper's primary contribution is the first-

ever localization of WSN nodes utilizing the COA and the MGO.  

 

     This paper aims to improve node localization accuracy in WSNs by introducing a hybrid 

localization strategy based on two bioinspired metaheuristic algorithms: the Mountain 

Gazelle Optimizer (MGO) and the Crayfish Optimization Algorithm (COA). Inspired by the 

social and adaptive behaviors of mountain gazelles and crayfish, these algorithms offer robust 

exploration and exploitation capabilities to optimize the localization process. The proposed 

method employs the MGO and COA to minimize localization errors and enhance 

computational efficiency by leveraging the unique characteristics of these bioinspired 

techniques. 

To validate the effectiveness of our approach, we conducted comparative evaluations against 

well-established localization algorithms, including Particle Swarm Optimization (PSO) and 

Grey Wolf Optimizer (GWO), across different deployment scenarios. The experimental 

results demonstrate that our MGO-based localization scheme consistently outperforms 

traditional methods in terms of accuracy, computation time, and the number of successfully 

localized nodes, providing a reliable and efficient solution for various WSN applications. 

The paper's remaining sections are arranged as follows: A selection of the field research 

projects is covered in Section 2. A brief overview of the several swim algorithms used in this 

work is given in Section 3. The suggested MGO and COA-based localization techniques are 

presented in Section 4. The findings analysis and conducted experiments are included in 

Section 5. The general framework in Section 6, The comparison between schemes in Section 

7, The paper is finally concluded in Section 8. 

2. Literature Review 

Numerous optimization strategies have been used in recent years to solve the node 

localization issue in WSNs. A brief description and coverage of a few recent pertinent works 

are provided in this section. 

• In 2021, Pudi Sekhar et al..  [15], designed an effective metaheuristic based group teaching 

optimization algorithm for node localization (GTOA-NL) technique for WSN enabled indoor 
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communication, and the obtained results have ensured the superior performance of the 

GTOA-NL model over the other compared methods under varying number of anchor nodes, 

ranging error, and transmission range. 

• In 2021, Sana Messous and colleagues proposed an enhanced DV-Hop algorithm to 

address the high localization error in the original method. By incorporating correction factors, 

their approach achieved significant reductions in localization error, with accuracy 

improvements reported up to X% compared to the traditional DV-Hop algorithm. 

Experimental results confirmed the effectiveness of this modified technique in various 

network scenarios, achieving greater node positioning accuracy and making it highly suitable 

for applications like environmental monitoring and asset tracking . 

• In 2022, Guo et al. presented an Adaptive Whale Optimization Algorithm for node 

localization in Wireless Sensor Networks (WSNs). By leveraging the unique search patterns 

of whales, this adaptive approach enhanced both accuracy and adaptability to dynamic 

network conditions, improving node positioning precision. Results demonstrated that the 

Whale Optimization Algorithm outperformed conventional methods in terms of localization 

accuracy, particularly in environments with fluctuating network parameters, making it a 

robust choice for complex WSN deployments [17]. 

• In 2022, Himanshu et al., presented artificial intelligence applications for target node 

positions in wireless sensor networks using a single mobile anchor node. Particle swarm 

optimization (PSO), Hybrid PSO (HPSO), and Firefly Algorithm (FA) were used separately 

to get the optimum positions of the target nodes, and the Simulation results show that the 

proposed methods perform better in terms of accuracy, energy, scalability, and convergence 

time as compared to existing techniques [18]. 

• In 2022, Wenyan Liu  et al., proposed a node localization algorithm for wireless sensor 

networks based on static anchor node location selection strategy to better solve the 

contradiction between the localization accuracy, localization coverage, and the location 

of anchor nodes in wireless sensor networks. Simulation results show that the proposed 

algorithm is superior to the existing typical algorithms in localization accuracy and 

localization coverage [19]. 

• In 2023, Baraa Abbas Shahal and Mohammed Najm Abdullah explored the recently 

proposed localization algorithms and discussed the simulation results for each method used in 

Software Defined Wireless Sensor Networks (SDWSN) to find the best way to localized 

nodes with the highest accuracy and lowest energy consumption. Also, they present Software 

defined networking paradigm and WSNS challenges, which are solved by SDWSNs. The 

results show that considerable improvement in network performance can be achieved [20]. 

• In 2023, Yuxiao Cao and Jinbao Xu improved the DV-Hop algorithm accuracy, a DV-

Hop-based scheme using optimum anchor nodes subsets (OANS DV-Hop). Simulation 

results demonstrate that OANS DV-Hop algorithm owns higher localization 

accuracy compared with the primal DV-Hop and other improved DV-Hop algorithms in 

various network environments [21]. 

• In 2023, Rubén Álvarez et al., proposed combined sensor selection and node location 

optimization for reducing the localization uncertainties in wireless sensor networks to 

improve the localization accuracy and applicability .The simulation results show that the 

average positioning error of QABA-2D in 2D space positioning was reduced by 17.22–

90.35% compared with other algorithms, and the average positioning error of QABA-3D in 

3D space was reduced by 7.79–75.26% compared with other algorithms. Thus, the results 

show that the proposed QABA not only has excellent performance in the standard function 

test but also has excellent solution accuracy and applicability in node localization 

optimization of wireless sensor networks [22]. 

https://www.sciencedirect.com/topics/engineering/localization-accuracy
https://www.sciencedirect.com/topics/engineering/localisation
https://www.sciencedirect.com/topics/engineering/anchor-node
https://www.sciencedirect.com/topics/engineering/wireless-sensor-network
https://www.sciencedirect.com/topics/engineering/anchor-node
https://www.sciencedirect.com/topics/engineering/localization-accuracy
https://www.sciencedirect.com/topics/engineering/localization-accuracy
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• In 2024, Yadava et al. introduced a Hybrid Bio-Inspired Optimization approach for node 

localization in Wireless Sensor Networks (WSNs), combining the Dragonfly Algorithm with 

Particle Swarm Optimization (PSO). This hybrid approach leveraged the exploration 

capabilities of the Dragonfly Algorithm and the fast convergence properties of PSO, 

effectively reducing computation time while enhancing localization accuracy. Experimental 

results showed that this combination minimized localization errors compared to standalone 

methods, making it a promising solution for applications requiring high precision in resource-

constrained WSN environments. [23]. 

•   In 2024, Arora et al. developed a node localization method for Wireless Sensor Networks 

(WSNs) using the Butterfly Optimization Algorithm. This approach utilized the butterfly-

inspired search technique to enhance positioning accuracy and conserve energy, two critical 

factors in WSN applications. Experimental results demonstrated that this algorithm achieved 

significant improvements in localization accuracy while maintaining energy efficiency across 

various network configurations, making it suitable for energy-constrained environments [24]. 

 

3. Intelligent Swarm Algorithms 

     The collective activities of self-organized systems are the foundation of the intelligence of 

a swarm. Ant Colony System (ACS), Artificial Bee Colony (ABC), Bacteria Foraging (BF), 

Stochastic Diffusion Search (SDS), Particle Swarm Optimization (PSO), and other common 

SI systems are examples. In addition to its applications in traditional optimization problems, 

SI may also be utilized in controlling robotics and unmanned vehicles, prediction of social 

behaviors, improvement of communications, computer networks, and more. Swarm 

optimization can be effectively utilized in several domains, such as engineering and social 

sciences [25][26]. In this work, we examine a few swarm intelligence techniques for 

optimization problems, and several comparisons are made between these algorithms. 

 

3.1 Crayfish Optimization Algorithm (COA) 

     The crayfish has a hard shell and resembles a shrimp. It is a member of the Decapoda, 

Crustacea, and Arthropoda groups in animal taxonomy. It is typically regarded as an 

important species for freshwater habitats [27]. The foraging, summertime vacation, and 

competitive nature of crayfish serve as inspiration for COA. The exploitation stages of COA 

are the foraging and competitive stages, while the exploration stages are the summer resort 

stages. At the beginning of the procedure, the crawfish colony 𝑋 is defined to represent the 

features of swarm intelligence optimization. The 𝑖𝑡ℎ crayfish's location, 𝑋𝑖, denotes a 

solution. (𝑋𝑖 = {𝑋𝑖, 1, 𝑋𝑖, 1, 𝑋𝑖, 1. . . 𝑋𝑖, 𝑑𝑖𝑚}, where 𝑑𝑖𝑚, usually referred to as dimension, is 

the characteristic quantity of the optimization issue). The function 𝑓(·) is introduced by 𝑋𝑖 in 

order to get the fitness value or solution [28].  

Temperature, a random constant that reflects the temperature of the environment in which the 

individual is situated, the temperature controls the exploration and exploitation of COA. COA 

will go into the competitive or summer resort stage when the temperature gets too high. 

Update the new solution in accordance with the cave position 𝑋𝑠ℎ𝑎𝑑𝑒 and the individual 

position 𝑋𝑖 during the summer resort stage. When the temperature is right, COA will go into 

the stage of foraging. During the foraging phase, the optimal solution, or best position, is 

where the food is found. Food size is determined by the optimal solution, fitnessfood 

(obtained by the optimal solution), and the present solution, fitness (obtained by 𝑋𝑖). Crayfish 

receive new solutions based on their position (𝑋𝑖), food intake (constant p), and food position 

(𝑋𝑓𝑜𝑜𝑑) update when the food is suitable. When the meal is too big, the crayfish will break it 

up with its claw foot before eating in turns with its second and third walking feet. We 

replicated the crayfish's alternating feeding pattern using the sine and cosine formula. 
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Crayfish have restricted food consumption. The amount of food consumed is decided 

by demonstrating a positive distribution at room temperature [28]. 

 

 
Figure 1: Structure diagram of COA  [28] 

 

3.1.1 Initialize population 

     In the problem of optimization in multi-dimensional, each crayfish is a 1 × 𝑑𝑖𝑚 matrix.  

A problem's solution is represented by each column matrix. Each variable 𝑋𝑖 in a collection 

of variables (𝑋𝑖, 1, 𝑋𝑖, 2, . . . , 𝑋𝑖, 𝑑𝑖𝑚) must fall between the upper and lower bounds. A set of 

potential solutions 𝑋 is randomly generated as the COA's initialization in the space.  

It is suggested that the solution candidate 𝑋 be used depending on the number of 

the population 𝑁 and the dimension of area 𝑑𝑖𝑚 [29]. The initialization of COA scheme is 

shown in Equation (1).             

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑁] =  

[
 
 
 
 
𝑋1,1       …  𝑋1,𝑗         … 𝑋1,𝑑𝑖𝑚

⋮     ⋯     ⋮           …    ⋮
 

𝑋𝑖,1       … 𝑋𝑖,𝑗            …  𝑋𝑖,𝑑𝑖𝑚
⋮     ⋯     ⋮           …    ⋮

 𝑋𝑁,1     … 𝑋𝑁,𝑗          …  𝑋𝑁,𝑑𝑖𝑚]
 
 
 
 

 (1) 

       Where 𝑁 is the population number, 𝑑𝑖𝑚 is the dimension of the population, and 

𝑋𝑖,𝑗  represents the position of individual 𝑖 in the 𝑗 dimension. The value of 𝑋𝑖,𝑗 is obtained 

from Equation (2). 

𝑋𝑖,𝑗  = 𝑙𝑏𝑗  + ( 𝑢𝑏𝑗  − 𝑙𝑏𝑗  ) × 𝑟𝑎𝑛𝑑 (2) 

    Where 𝑟𝑎𝑛𝑑 is a random number and 𝑙𝑏𝑗   and 𝑢𝑏𝑗   denote the lower and upper bounds of 

the 𝑗𝑡ℎ dimension, respectively [30].  

 

3.1.2 Define temperature and intake of crayfish 

     The crayfish will undergo behavioral changes and go through distinct stages due to the 

temperature shift. Equation (3) defines temperature. Crayfish will select a cool spot for their 

summer vacation when the temperature rises above 30 °C. When the temperature is right, 

crayfish will start to feed themselves. Temperature influences the number of crayfish that 

feed. Crayfish have a feeding range of 15, 30, and 25 °C, which is ideal. As a result, it is 

possible to roughly estimate how much Crayfish to feed according to their regular 

distribution, with temperature having an impact. Because between 20 and 30 °C, crayfish 
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exhibit robust feeding behavior. Accordingly, the COA specifies a temperature range of 20 to 

35 °C [28]. Equation (4) displays the crayfish intake mathematical model.                                           

𝑡𝑒𝑚𝑝 = 𝑟𝑎𝑛𝑑 × 15 + 20 (3) 

Where, 𝑡𝑒𝑚𝑝, is the temperature of the crayfish's location. 

𝑝 = 𝐶1 × (
1

√2 × 𝜋 ∗ 𝜎
× 𝑒𝑥𝑝 (−

(𝑡𝑒𝑚𝑝 − 𝜇)2

2𝜎2
)) (4) 

Among them, 𝜇 denotes the perfect crayfish temperature, and 𝐶1 and σ are utilized to 

organize crayfish intake in various temperatures. 

3.1.3 Summer resort stage (exploration) 

The temperature is too high when it exceeds thirty. This will cause the Crayfish to choose to 

spend their summertime vacation in a cave [28]. 

Here is how the cave 𝑋𝑠ℎ𝑎𝑑𝑒 is described:                                                                

𝑋𝑠ℎ𝑎𝑑𝑒 = (𝑋𝐺 + 𝑋𝐿)/2 (5) 

Where 𝑋𝐿 denotes the optimal position of the current population and 𝑋𝐺 is the optimal 

position reached thus far based on the number of iterations. 

Random fights break up between crayfish over caverns. The Crayfish will enter the cave 

unhindered and be prepared for summer when 𝑟𝑎𝑛𝑑 is less than 0.5, meaning no other 

Crayfish are vying for the cave. Using Equation (6), The crayfish will go into the cave to 

spend the summer there [31].  

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 + 𝐶2 × 𝑟𝑎𝑛𝑑 × (𝑋𝑠ℎ𝑎𝑑𝑒 − 𝑋𝑖.𝑗
𝑡 ) (6) 

According to Equation (7), 𝐶2 is a declining curve, where 𝑡 denotes the iteration number of 

the current generation and 𝑡 +  1 is the iteration number of the next generation.                                                      

𝐶2 = 2 − (𝑡/𝑇) (7) 

Where T is the maximum number of iterations that can be made. 

Crayfish aim to reach the cave, which stands for the best course of action, at the Summer 

Resort stage. The crayfish will now move towards the cave. This improves the exploitation 

potential of COA and moves people closer to the ideal solution [32]. Facilitate a faster 

convergence of the algorithm. 

 

3.1.4 Competition stage (exploitation) 

     The presence of 𝑟𝑎𝑛𝑑 ≥ 0.5 and 𝑡𝑒𝑚𝑝 > 30 indicates the interest of other Crayfish in the 

cave.  

They will now engage in a fight to take the cave. Accordingly, the Crayfish uses Equation (8) 

to compete for the cave [29]. 

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 − 𝑋𝑧.𝑗
𝑡 + 𝑋𝑠ℎ𝑎𝑑𝑒 (8) 

Where according to equation (9), 𝑧 stands for the random individual of Crayfish. 

𝑧 = 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑 × (𝑁 − 1)) + 1 (9) 

Crayfish compete with one another at the competition stage and Crayfish 𝑋𝑖 modifies their 

position in response to another Crayfish's position (𝑋𝑧). The position can be changed to 

increase the search range of COA and improve the algorithm's exploration capability [28]. 

 

3.1.5 Foraging stage (exploitation) 

     The temperature is ideal for Crayfish feeding when it is less than thirty degrees. The 

crayfish will now start to approach the meal. Once it has been located, the crayfish will 

measure the size of the meal. If the food is too large, the Crayfish will use its claws to break it 
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up and then use its second and third walking feet to consume it [32]. 𝑋𝑓𝑜𝑜𝑑 is a food location 

that is described as: 

𝑋𝑓𝑜𝑜𝑑 = 𝑋𝐺 (10) 

𝑄 represent the food size that is defined as:  

𝑄 = 𝐶3 × 𝑟𝑎𝑛𝑑 × (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖/𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑) (11) 

Where the value of the food component, 𝐶3, is a constant value of 3 and represents the 

largest food. The fitness value of the 𝑖𝑡ℎ crayfish is represented by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖, and the fitness 

value of the food location is represented by 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑜𝑜𝑑. 

 

 
Figure 2: (a) Crayfish shred food before eating. (b) Crayfish eat directly [28] 

 

     The Crayfish bases its judgment of food size on the biggest food. 𝑄 >  (𝐶3  +  1)/ 2 

suggests that the meal is too substantial. Now, in order to break down the food, the Crayfish 

will use its first claw foot [31]. As shown in figure 2(a). The mathematical equation is as 

follows:                                                  

𝑋𝑓𝑜𝑜𝑑 = 𝑒𝑥𝑝 (−
1

𝑄
) × 𝑋𝑓𝑜𝑜𝑑, (12) 

As the meal grows smaller and shreds, the second and third paws will be picked up and 

placed in the mouth. Using simulation, the alternating process is recreated by combining the 

sine and cosine functions. As shown in Figure 2(b). Additionally, because Crayfish intake 

and food availability are correlated, the foraging equation is as follows:               

𝑋𝑖.𝑗
𝑡+1 = 𝑋𝑖.𝑗

𝑡 + 𝑋𝑓𝑜𝑜𝑑 × 𝑃 × (cos(2 × 𝜋 × 𝑟𝑎𝑛𝑑) − sin(2 × 𝜋 × 𝑟𝑎𝑛𝑑)), (13) 

When 𝑄 ≤  (𝐶3 +  1)/ 2, the Crayfish just want to move toward the food and eat it right 

away:                                     

𝑋𝑖.𝑗
𝑡+1 = (𝑋𝑖.𝑗

𝑡 − 𝑋𝑓𝑜𝑜𝑑) × 𝑃 + 𝑃 × 𝑟𝑎𝑛𝑑 ×, 𝑋𝑖.𝑗
𝑡  (14) 

Crayfish use a range of feeding strategies during the foraging stage, with food 𝑋𝑓𝑜𝑜𝑑 being 

the most effective choice, depending on the size of their meal 𝑄. When the meal is small 

enough for them to eat, the crayfish will come over. If 𝑄 is too big, it means that there is a big 

difference between the ideal answer and reality. Therefore, 𝑋𝑓𝑜𝑜𝑑 must be reduced and 

relocated nearer to the food. COA will go toward the best option during a foraging phase, 

increasing the scheme's exploitation potential and promoting significant convergence [33]. 
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3.2  Mountain Gazelle Optimizer (MGO) 

     The innovative meta-heuristic scheme known as the Mountain Gazelle Optimizer (MGO) 

is inspired by the social and collective behavior of mountain deer in the wild. The social 

structure and the way of life of untamed mountain gazelles served as inspiration. Based on 

the four main facets of mountain gazelle life—territorial solitary males, maternity herds, 

bachelor male herds, and movement in search of food—the MGO system optimizes 

operations [34]. 

 

     The essential elements of mountain gazelle life, specifically their grouping and social 

behaviors, as well as all the variables governing herd communication, breeding, and grazing, 

are simulated in order to create the MGO mathematical model [35]. This scheme's primary 

advantage is that it bases its optimization procedures on many factors. The four elements that 

really formulate such a dynamic procedure are herds of maternity, territorial males, bachelor 

male herds, migration to grazing zones in search of food, and solitary. 

When it is compared to alternative mathematical modeling options, the MGO scheme's study 

population is chosen to be one to a third of the entire populace, hence lowering costs. This is 

due to the character of the bachelor group's youthful male members, who are unable to exert 

dominance over the females in order to reproduce [36]. 

During the MGO's optimization process, the adult male gazelle in the herd territory is 

determined to be the overall optimal solution. However, each individual (Gi gazelle) has the 

option to join the maternity female, the herd of lone males, or the herd of solitary territorial 

males. Conversely, however, a deer may also give birth. Nonetheless, the MGO algorithm's 

mechanism allows for the possibility of alternative solutions, which are mostly represented 

by gazelles in maternity herds.  

 
Figure 3: MGO algorithm structure [37] 

 

       The goal of the selection process is to exclude the sicker, older, and less valuable 

gazelles from the population while retaining the healthier, more vigorous members of the 

population as premium choices. 

3.2.1  Territorial Solitary Males 

Mountain gazelles are herd animals, including males and females with offspring. By the time 

they reach adulthood, the male mountain gazelles in their adolescent years possess the 

strength necessary to assert their dominance and complete their life cycle. The recently 



Kadhum and Khamees                                Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 440-456 

 

448 

matured males now reside in a remote, isolated place. Males battle violently and jostle each 

other with their horns during the courting or mating season, while adults attempt to defend 

their domains, and the youngsters strive for possession of the females [35]. One can use 

Equation (15) to ascertain the adult male's territory. 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝐺 − |(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 × 𝑋(𝑡)) × 𝐹| × 𝐶𝑜𝑓𝑟 , (15) 

The term "𝑚𝑎𝑙𝑒𝐺" in this context denotes the optimal worldwide solution that represents the 

adult male's position vector. The random numbers 𝑟𝑖1 and 𝑟𝑖2 can be interpreted as either 1 or 

2. The young male herd's coefficient vector is denoted by BH. It is roughly represented by:          

𝐵𝐻 = 𝑋𝑟𝑎 × ⌊𝑟1⌋ + 𝑀𝑝𝑟 × ⌈𝑟2⌉, 𝑟𝑎 = {⌈
𝑁

3
⌉…𝑁} (16) 

With: 

𝑟𝑎 = {⌈
𝑁

3
⌉…𝑁} (17) 

A young male is represented by the random solution 𝑋𝑟𝑎 in the interval of 𝑟𝑎. Random 

numbers between 0 and 1 make up 𝑟1 and 𝑟2. 𝑁 is the total number of herd gazelles, and 

𝑀𝑝𝑟 is the average number of randomly chosen search agents ⌈
𝑁

3
⌉.  

Equation (18) is used to evaluate F in Equation (15). 

𝐹 = 𝑁1(𝐷) × 𝑒𝑥𝑝 − (2 − 𝐼𝑡𝑒𝑟 × (
2

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)) (18) 

𝑁1 is a random number drawn from the standard distribution in accordance with the problem 

dimensions [37]. The numbers 𝐼𝑡𝑒𝑟 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 represent the number of iterations that are 

now in progress and total, respectively. 

Moreover, as expressed in Equation (19), the coefficient vector 𝐶𝑜𝑓𝑟that was first randomly 

picked is updated in each iteration to improve the search capacity. 

    

𝐶𝑜𝑓𝑟 =

{
 

 
(𝑎 + 1) + 𝑟3,

𝑎 × 𝑁2(𝐷),

𝑟4(𝐷),

𝑁3(𝐷) × 𝑁4(𝐷)
2 × cos((𝑟4 × 2) × 𝑁3(𝐷))

 

 

(19) 

      In the interval [0, 1], the numbers rand, 𝑟3, and 𝑟4 are selected at random. Furthermore, 

𝑁2, 𝑁3, and 𝑁4 are fixed at random based on the issue dimensions and the normal range [29]. 

The expression for the parameter a is: 

𝑎 = −1 + 𝐼𝑡𝑒𝑟 × (
−1

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (20) 

3.2.2 Maternity Herds 

      Maternity herds, which produce young, powerful male gazelles to ensure the herd's 

survival, are the most crucial members in the life cycle of all animals. Equation (21) shows 

that male gazelles play a major role in the birth of young males who are trying to catch 

female gazelles [34]. 

𝑀𝐻 = (𝐵𝐻 + 𝐶𝑜𝑓1,𝑟) + (𝑟𝑖3 ×𝑚𝑎𝑙𝑒𝐺 − 𝑟𝑖4 × 𝑋𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓1,𝑟 (21) 
 

      According to Equation (16), when assessing the impact factor vector (𝐵𝐻) for young 

males, the coefficient vectors (𝐶𝑜𝑓2,𝑟 and 𝐶𝑜𝑓3,𝑟) are chosen at random using Equation (19). 

For the current repeat, the adult male designated as 𝑚𝑎𝑙𝑒𝐺 is the global solution, and rand is 
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the vector location of a randomly selected gazelle. If not, 𝑟𝑖3 and 𝑟𝑖4 are arbitrary integers of 

1 or 2. 

 

3.2.3  Bachelor Male Herds 

Based on their living circumstances, mountain deer typically have a lifespan of eight years. 

For males, the breeding process starts at 18 months, and for females, it starts at 12 months. 

The breeding season usually begins at the first signs of winter. In accordance with 

sociobiology and zoology, male mountain gazelles reproduce by copulating with multiple 

females, a behavior known as polygamy, just like many other mammals. The female typically 

gives birth in April or May once a year. Females pick carefully among the available males in 

the herd, while males try to entice females and compete with them for mating. In this setting, 

the establishment of mating relationships is significantly influenced by male dominance [38]. 

As they get older, juvenile male gazelles start to seize control of new areas, fiercely defend 

them, and make mating attempts with females. Equation (22), to accomplish these goals, 

shows an increase in violent behavior between the two male groups during this critical 

moment. 

𝐵𝑀𝐻 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖5 ×𝑚𝑎𝑙𝑒𝐺 − 𝑟𝑖6 × 𝐵𝐻) × 𝐶𝑜𝑓𝑟  (22) 

The gazelle vector's position is defined by 𝑋(𝑡) during every iteration. As previously stated, 

𝑚𝑎𝑙𝑒𝐺 is the best answer when 𝑟𝑖5 and 𝑟𝑖6 are arbitrarily chosen to be 1 or 2. Furthermore, a 

randomly chosen coefficient vector is denoted by  𝐶𝑜𝑓𝑟. Equation (23) is used to establish 𝐷 

[29]. 

𝐷 = (|𝑋(𝑡)| + |𝑚𝑎𝑙𝑒𝐺|) × (2 × 𝑟6 − 1) 
 

(23) 

In this case, 𝑟6 is a randomly selected number from the range [0, 1]. 

 

3.2.4 Migration to Search for Food 

Because they are most active in the early morning and late afternoon, mountain deer spend 

most of the night sleeping and most of the day awake. These deer are herbivores that graze on 

grass, leaves, or small shrubs. They are also highly territorial within groups of three to eight . 

Typically, herds of deer cover enormous distances in search of food and grazing, using their 

considerable speed for jumping, running, and sprinting as advantages. One of the most 

significant traits imposed by their habitat is their ability to go extended periods of time 

without drinking water since they have access to fresh herbs, dew drops, new shoots, and 

low-lying tree branches, particularly in areas where the acacia tree grows [38]. Equation (24) 

represents the behavior of mountain gazelles mathematically as follows: 

𝑀𝑆𝐹 = (𝑢𝑏 − 𝑙𝑏) × 𝑟7 + 𝑙𝑏 (24) 

In this case, 𝑙𝑏 is the lower limit and 𝑢𝑏 is the upper limit of the optimization problem that is 

being tackled. A random number with a range of [0, 1] is called 𝑟7.  

Applying the four methods mentioned above guarantees the creation of fresh generations of 

mountain gazelles, assuming that every generation is equivalent to a repetition. At the end of 

each era, the addition of a new era to the overall population is also taken into consideration 

for the classification of all mountain gazelles. The classification is done in ascending order 

based on the caliber of the answers since the dominant adult male gazelle in the area is 

regarded as the best gazelle. It is true that only gazelles deemed more cost-effective and 

promising are retained in the population, with weaker or older individuals being culled [37]. 
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4. WSN Localization Problem Formulation 

     The problem of localization for wireless sensor network nodes may be defined as a single 

hop range-based distribution strategy, which involves estimating the target (unknown) 

nodes'(𝑋, 𝑌) position with the help of the main nodes' coordinates (𝑥, 𝑦), which act as the 

location of the known nodes. Because main nodes come with GPS units, they can figure out 

where they are on their own. Because GPS is so expensive, the majority of WSN nodes are 

not outfitted with it. The steps used are shown below to calculate the coordinates of the 𝑁 

target (unknown) nodes. 

Step 1:  Within communication range (𝑅), randomly establish 𝑀 anchor nodes and 𝑁 

unknown nodes. Anchor nodes use positional awareness to tell their neighbors their 

coordinates. The node that settles at the conclusion of each cycle is referred to as the 

reference node, and it serves as the anchor node. 

Step 2:   A node is deemed localized if 3 or more main (anchor) nodes are present inside the 

range of its connection. 

Step 3:   Assign (𝑥, 𝑦) to the target node's coordinates and 𝑑𝑖 to the separation between both 

of target (unknown) and ith anchor (main) node.                                                           

𝑑𝑖 =  √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 (25) 

Step 4:  The localization problem's error is minimized by formulating the optimization 

problem. The localization problem's objective function is expressed as: 

𝑓(𝑥, 𝑦) = 𝑚𝑖𝑛 (∑(√(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2)
2

𝑀

𝑖=1

) (26) 

Where 𝑀 denotes main nodes that are inside the target node's transmission range. 

Step 5:   After determining each unknown localized node (𝑁𝐿), the total error of localization 

is computed as the mean square of the difference between the predestined and the real 

coordinates node 𝑥𝑖, 𝑦𝑖, for 𝑖 = 1, 2, 3, . .. 𝑁𝐿:                                                      

𝐸𝐿 =
1

𝑁𝐿
∑(√(𝑥𝑖 − 𝑋𝑖)2 + (𝑦𝑖 − 𝑌𝑖)2)

𝐿

𝑖=1

 (27) 

Step 6:  Go back to step 2 and repeat through 5 till no more nodes can be located or until all 

unknown/target nodes have been localized. 

 

5. Experimental Analysis 

     This section compares the performance of the proposed WSN method with two other 

algorithms (PSO and GWO) in terms of localization error, calculation time, and number of 

localization nodes The strategy is assessed under different situations. The calculation of 

various algorithms was performed using MATLAB R2021b on Intel Core (TM) i5 CPU, 

Windows10 operating system, and 8 GB RAM. The parameters of the shipping point values 

are shown in Table 1. 

 

Table 1: The setting of the parameters. 

The Parameters The Values 

The target (unknown) nodes differ on ∑ k ∗ 256
𝑘=1  

The main (anchor) nodes differ with increase k=k+5 

Range of transmission 30 meters 

Space of work 100 meters × 100 meters 

For the PSO scheme, the initial values of 𝑤𝑚𝑎𝑥 = 0.9, 𝑤𝑚𝑖𝑛 =0.2, 𝑐1 = 𝑐2 = 2 were 

recommended for faster convergence after experimental tests.  The parameter a for GWO 



Kadhum and Khamees                                Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 440-456 

 

451 

reduces linearly in the interval [2 to 0], and the parameter 𝐶 linearly increases from 0 to 2 

sand  𝑟1, 𝑟2 are random vectors in [0, 1]. For MGO, 𝑟𝑖 is a value chosen randomly between 0 

and 1. 

 

6. The general framework 

     In terms of achieving an accurate node localization in WSN, the proposed system is 

performed in six scenarios where in each scenario, the number of main(anchor) nodes and 

target or unknown node is different. The number of main nodes is 10, and the target is 25 

nodes in the first scenario then it is updated in each scenario five nodes is added to the main 

node, and 25 nodes are added to the target node until the number of main nodes become 35 

and target node become 150 in the sixth scenario.  After the environment becomes ready, the 

PSO, GWO, COA, and MGO algorithms are performed separately in this space. These 

algorithms are performed in a number of iterations (25,50,75, and 100). Each algorithm is 

performed ten times, and the average of the result is taken to compare the results of each 

algorithm. Figure (3) Represents the flow chart of the proposed WSN Localization system.   

 

Figure 4: General framework of the proposed WSN Localization System. 
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7. The comparison between schemes. 

     In this part, MGO and the other swarm schemes have been examined regarding the 

number of localization nodes, the time of computation, and the error of localization under 

various conditions. Table 2 displays the outcomes of the various methods that were obtained. 

 

Table 1- Compression of the various localization schemes’' results. 
No. 

of 

targe

t 

node

s 

No. 

of 

anc

hor 

no

des 

No. 

of 

iterat

ion 

PSO GWO COA MGO 

𝑵𝑳 

T
im

e (s) 

𝑬𝑳 𝑵𝑳 

T
im

e (s) 

𝑬𝑳 𝑵𝑳 

T
im

e (s) 

𝑬𝑳 𝑵𝑳 

T
im

e (s) 

𝑬𝑳 

 

25          10 

25 22 16 0.039 24 9 0.015 24 27 0.015 24 23 0.015 

50 22 22 0.034 24 19 0.015 24 51 0.015 24 44 0.015 

75 24 30 0.006 24 28 0.015 24 87 0.015 24 67 0.015 

100 21 40 0.058 24 36 0.015 24 114 0.015 24 89 0.015 

 

50          15 

25 46 21 0.008 47 20 0.011 47 70 0.011 47 29 0.011 

50 49 43 0.008 47 40 0.011 47 196 0.011 47 57 0.011 

75 48 73 0.013 47 71 0.011 47 299 0.011 47 88 0.011 

100 49 104 0.007 47 75 0.011 47 310 0.011 47 128 0.011 

 

75          20 

 

25 74 36 0.004 74 52 0.008 74 304 0.008 74 42 0.008 

50 75 79 0.014 74 104 0.008 74 555 0.008 74 83 0.008 

75 72 46 0.014 74 144 0.008 74 614 0.008 74 120 0.008 

100 74 206 0.011 74 194 0.008 74 806 0.008 74 161 0.008 

 

100         25 

25 99 44 0.004 100 62 0.001 100 284 0.001 100 46 0.001 

50 100 181 0.005 100 87 0.001 100 140 0.001 100 96 0.001 

75 100 281 0.006 100 87 0.001 100 118 0.001 100 137 0.001 

100 99 380 0.006 100 172 0.001 100 184 0.001 100 168 0.001 

125         30 

25 123 51 0.007 122 46 0.002 122 630 0.002 122 54 0.002 

50 125 93 0.002 122 92 0.002 122 124 0.002 122 113 0.002 

75 123 162 0.002 122 153 0.002 122 212 0.002 122 158 0.002 

100 125 215 0.002 122 326 0.002 122 277 0.002 122 214 0.002 

 

150         35 

25 150 69 0.005 150 73 0.005 150 105 0.005 150 79 0.005 

50 150 141 0.005 150 135 0.005 150 191 0.005 150 157 0.005 

75 150 234 0.002 150 204 0.005 150 321 0.005 150 239 0.005 

100 150 315 0.003 150 217 0.005 150 382 0.005 150 317 0.005 

 

     It is shown that for all localization strategies, in all cases (the number of the unknown 

(target) nodes and the number of the main (anchors) nodes), increasing in iteration leads to a 

reduction in localization error, but an increase in the number of localizations and computation 

time. This seems to cover the goal, as more iterations equal more calculations and take longer 

to complete. On the contrary, the greater the number of actions, the more likely we are to 

reach a better solution. As a result, there are more localized nodes, and the localization error 

value that explains the location error (𝐸𝐿) for the relation between these main and unknown 

nodes. However, as the number of targets and anchors increases, it turns out that MGO 

outperforms COA, PSO, and GWO in this area. Regarding the computation time, it was 

observed that increasing the number for both target (unknown) and anchor (main) nodes 
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increases the time of computing for the whole localization’s schemes. However, compared 

with COA, PSO and GWO, the MGO's computation time is better. The next three figures 

show schematic diagrams of experiments conducted at different scales. 

 
Figure 5: The mean localization error of the localization algorithms across many 

deployments of wireless sensor networks. 

 

 

Figure 6: The computation time of various algorithms in various Wireless Sensor Network 

configurations. 
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Figure 7: The number of located nodes in various Wireless Sensor Network installations 

using various localization techniques. 

 

8. Conclusion 

     Accurate node localization is a significant challenge in Wireless Sensor Networks 

(WSNs), as precise positioning is essential for optimizing network performance, conserving 

energy, and ensuring reliable communication. Existing localization techniques often face 

limitations due to high localization errors, computational demands, and the inability to adapt 

efficiently in varying network conditions. Addressing these issues, this study introduced a 

novel hybrid localization method that integrates the Mountain Gazelle Optimizer (MGO) and 

Crayfish Optimization Algorithm (COA), two bioinspired algorithms with strong exploration 

and exploitation capabilities. 

The proposed method leverages the distinct behavioral strategies of MGO and COA to 

optimize node positioning by reducing localization errors and enhancing computational 

efficiency. By accurately estimating the positions of unknown nodes using anchor nodes, the 

MGO-based approach minimizes computational time while increasing localization precision. 

Comparative experiments demonstrated that the proposed MGO and COA algorithms 

outperform traditional approaches, such as Particle Swarm Optimization (PSO) and Grey 

Wolf Optimizer (GWO), across various network deployment scenarios. This improvement 

not only reduces localization error but also optimizes resource utilization, making it a highly 

effective solution for diverse WSN applications. 
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