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Abstract

In wireless sensor networks (WSNs), accurate node localization is critical for
ensuring efficient network functionality, as it directly impacts communication,
energy consumption, and network management. This paper aims to enhance node
localization accuracy by developing a hybrid approach that leverages two
bioinspired optimization algorithms: the Mountain Gazelle Optimizer (MGO) and
the Crayfish Optimization Algorithm (COA). The research method combines the
exploration and exploitation capabilities of these algorithms to optimize the
positions of unknown (target) nodes using known (anchor) nodes. The proposed
technique was tested across multiple WSN deployment scenarios and compared
with traditional optimization methods such as Particle Swarm Optimization (PSO)
and Grey Wolf Optimizer (GWO). Experimental results demonstrate that the MGO-
based approach achieves superior localization accuracy, reduces computational
overhead, and increases the number of accurately localized nodes, highlighting its
potential for improving WSN performance.

Keywords: WSN, MGO, COA, metaheuristic algorithm, localization, anchor node,
target node.
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1. Introduction

In recent years, wireless sensor networks (WSNs) have drawn interest from all over the
world, especially with the growth of Micro-Electro-Mechanical Systems (MEMS)
technology, which has made the creation of smart sensors easier [1]. A metaheuristic is an
advanced process or heuristic that is intended to locate, produce, adjust, or choose a heuristic
that could offer an adequate answer to an optimization or machine learning issue [2] [3].

In the past several years, numerous research has been attempted on this issue by the
scientific community. It should be noted that the definition of localization is the process of
determining an unknown node's position, either by employing connectivity information
between the unknown nodes or by utilizing nodes with known positions. Recent research has
examined how movement affects localization.[4], [5], [6], real-world applications [7], [8],
[9], "Anchor Free" and "Anchor Based" localization techniques [10], " Range Based and
Range Free " schemes of localization [11], "Non-Cooperative" schemes—where the target
nodes only connect with the anchor nodes—"Cooperative" algorithms—where
communication occurs among all nodes[12], and “The centralized” scheme localization and
"the distributed" scheme, which uses locally collected information to determine each node's
position without central supervision.[13][14]. This paper's primary contribution is the first-
ever localization of WSN nodes utilizing the COA and the MGO.

This paper aims to improve node localization accuracy in WSNs by introducing a hybrid
localization strategy based on two bioinspired metaheuristic algorithms: the Mountain
Gazelle Optimizer (MGO) and the Crayfish Optimization Algorithm (COA). Inspired by the
social and adaptive behaviors of mountain gazelles and crayfish, these algorithms offer robust
exploration and exploitation capabilities to optimize the localization process. The proposed
method employs the MGO and COA to minimize localization errors and enhance
computational efficiency by leveraging the unique characteristics of these bioinspired
techniques.

To validate the effectiveness of our approach, we conducted comparative evaluations against
well-established localization algorithms, including Particle Swarm Optimization (PSO) and
Grey Wolf Optimizer (GWO), across different deployment scenarios. The experimental
results demonstrate that our MGO-based localization scheme consistently outperforms
traditional methods in terms of accuracy, computation time, and the number of successfully
localized nodes, providing a reliable and efficient solution for various WSN applications.

The paper's remaining sections are arranged as follows: A selection of the field research
projects is covered in Section 2. A brief overview of the several swim algorithms used in this
work is given in Section 3. The suggested MGO and COA-based localization techniques are
presented in Section 4. The findings analysis and conducted experiments are included in
Section 5. The general framework in Section 6, The comparison between schemes in Section
7, The paper is finally concluded in Section 8.

2. Literature Review

Numerous optimization strategies have been used in recent years to solve the node
localization issue in WSNs. A brief description and coverage of a few recent pertinent works
are provided in this section.

e In 2021, Pudi Sekhar et al.. [15], designed an effective metaheuristic based group teaching
optimization algorithm for node localization (GTOA-NL) technique for WSN enabled indoor
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communication, and the obtained results have ensured the superior performance of the
GTOA-NL model over the other compared methods under varying number of anchor nodes,
ranging error, and transmission range.

e In 2021, Sana Messous and colleagues proposed an enhanced DV-Hop algorithm to
address the high localization error in the original method. By incorporating correction factors,
their approach achieved significant reductions in localization error, with accuracy
improvements reported up to X% compared to the traditional DV-Hop algorithm.
Experimental results confirmed the effectiveness of this modified technique in various
network scenarios, achieving greater node positioning accuracy and making it highly suitable
for applications like environmental monitoring and asset tracking .

e In 2022, Guo et al. presented an Adaptive Whale Optimization Algorithm for node
localization in Wireless Sensor Networks (WSNs). By leveraging the unique search patterns
of whales, this adaptive approach enhanced both accuracy and adaptability to dynamic
network conditions, improving node positioning precision. Results demonstrated that the
Whale Optimization Algorithm outperformed conventional methods in terms of localization
accuracy, particularly in environments with fluctuating network parameters, making it a
robust choice for complex WSN deployments [17].

e In 2022, Himanshu et al., presented artificial intelligence applications for target node
positions in wireless sensor networks using a single mobile anchor node. Particle swarm
optimization (PSO), Hybrid PSO (HPSO), and Firefly Algorithm (FA) were used separately
to get the optimum positions of the target nodes, and the Simulation results show that the
proposed methods perform better in terms of accuracy, energy, scalability, and convergence
time as compared to existing techniques [18].

e In 2022, Wenyan Liu et al., proposed a node localization algorithm for wireless sensor
networks based on static anchor node location selection strategy to better solve the
contradiction between the localization accuracy, localization coverage, and the location
of anchor nodes in wireless sensor networks. Simulation results show that the proposed
algorithm 1is superior to the existing typical algorithms in localization accuracy and
localization coverage [19].

e In 2023, Baraa Abbas Shahal and Mohammed Najm Abdullah explored the recently
proposed localization algorithms and discussed the simulation results for each method used in
Software Defined Wireless Sensor Networks (SDWSN) to find the best way to localized
nodes with the highest accuracy and lowest energy consumption. Also, they present Software
defined networking paradigm and WSNS challenges, which are solved by SDWSNs. The
results show that considerable improvement in network performance can be achieved [20].

e In 2023, Yuxiao Cao and Jinbao Xu improved the DV-Hop algorithm accuracy, a DV-
Hop-based scheme using optimum anchor nodes subsets (OANS DV-Hop). Simulation
results demonstrate that OANS DV-Hop algorithm owns higher localization
accuracy compared with the primal DV-Hop and other improved DV-Hop algorithms in
various network environments [21].

e In 2023, Rubén Alvarez et al., proposed combined sensor selection and node location
optimization for reducing the localization uncertainties in wireless sensor networks to
improve the localization accuracy and applicability .The simulation results show that the
average positioning error of QABA-2D in 2D space positioning was reduced by 17.22—
90.35% compared with other algorithms, and the average positioning error of QABA-3D in
3D space was reduced by 7.79-75.26% compared with other algorithms. Thus, the results
show that the proposed QABA not only has excellent performance in the standard function
test but also has excellent solution accuracy and applicability in node localization
optimization of wireless sensor networks [22].
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e In 2024, Yadava et al. introduced a Hybrid Bio-Inspired Optimization approach for node
localization in Wireless Sensor Networks (WSNs), combining the Dragonfly Algorithm with
Particle Swarm Optimization (PSO). This hybrid approach leveraged the exploration
capabilities of the Dragonfly Algorithm and the fast convergence properties of PSO,
effectively reducing computation time while enhancing localization accuracy. Experimental
results showed that this combination minimized localization errors compared to standalone
methods, making it a promising solution for applications requiring high precision in resource-
constrained WSN environments. [23].

e In 2024, Arora et al. developed a node localization method for Wireless Sensor Networks
(WSNs) using the Butterfly Optimization Algorithm. This approach utilized the butterfly-
inspired search technique to enhance positioning accuracy and conserve energy, two critical
factors in WSN applications. Experimental results demonstrated that this algorithm achieved
significant improvements in localization accuracy while maintaining energy efficiency across
various network configurations, making it suitable for energy-constrained environments [24].

3. Intelligent Swarm Algorithms

The collective activities of self-organized systems are the foundation of the intelligence of
a swarm. Ant Colony System (ACS), Artificial Bee Colony (ABC), Bacteria Foraging (BF),
Stochastic Diffusion Search (SDS), Particle Swarm Optimization (PSO), and other common
SI systems are examples. In addition to its applications in traditional optimization problems,
SI may also be utilized in controlling robotics and unmanned vehicles, prediction of social
behaviors, improvement of communications, computer networks, and more. Swarm
optimization can be effectively utilized in several domains, such as engineering and social
sciences [25][26]. In this work, we examine a few swarm intelligence techniques for
optimization problems, and several comparisons are made between these algorithms.

3.1 Crayfish Optimization Algorithm (COA)

The crayfish has a hard shell and resembles a shrimp. It is a member of the Decapoda,
Crustacea, and Arthropoda groups in animal taxonomy. It is typically regarded as an
important species for freshwater habitats [27]. The foraging, summertime vacation, and
competitive nature of crayfish serve as inspiration for COA. The exploitation stages of COA
are the foraging and competitive stages, while the exploration stages are the summer resort
stages. At the beginning of the procedure, the crawfish colony X is defined to represent the
features of swarm intelligence optimization. The ith crayfish's location, Xi, denotes a
solution. (Xi = {Xi,1,Xi,1,Xi,1...Xi,dim}, where dim, usually referred to as dimension, is
the characteristic quantity of the optimization issue). The function f(-) is introduced by Xi in
order to get the fitness value or solution [28].

Temperature, a random constant that reflects the temperature of the environment in which the
individual is situated, the temperature controls the exploration and exploitation of COA. COA
will go into the competitive or summer resort stage when the temperature gets too high.
Update the new solution in accordance with the cave position Xshade and the individual
position Xi during the summer resort stage. When the temperature is right, COA will go into
the stage of foraging. During the foraging phase, the optimal solution, or best position, is
where the food is found. Food size is determined by the optimal solution, fitnessfood
(obtained by the optimal solution), and the present solution, fitness (obtained by Xi). Craytish
receive new solutions based on their position (Xi), food intake (constant p), and food position
(Xfood) update when the food is suitable. When the meal is too big, the crayfish will break it
up with its claw foot before eating in turns with its second and third walking feet. We
replicated the crayfish's alternating feeding pattern using the sine and cosine formula.
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Crayfish have restricted food consumption. The amount of food consumed is decided
by demonstrating a positive distribution at room temperature [28].

Paw foot

I'kird walking foot Walking foot

Figure 1: Structure diagram of COA [28]

3.1.1 Initialize population

In the problem of optimization in multi-dimensional, each crayfish is a 1 x dim matrix.
A problem's solution is represented by each column matrix. Each variable Xi in a collection
of variables (Xi, 1, Xi, 2, ..., Xi, dim) must fall between the upper and lower bounds. A set of
potential solutions X is randomly generated as the COA's initialization in the space.
It is suggested that the solution candidate X be used depending on the number of
the population N and the dimension of area dim [29]. The initialization of COA scheme is
shown in Equation (1).

Xl,l Xl,j Xl,dim
X =[X,Xy ... Xyl = | Xin o Xij v Xidim (1)
XN,l XN,j XN,dim

Where N is the population number, dim is the dimension of the population, and
X, j represents the position of individual i in the j dimension. The value of X; ; is obtained
from Equation (2).

X;; =1b; + (ub; —1b; ) xrand 2)

Where rand is a random number and [b; and ub; denote the lower and upper bounds of
the jth dimension, respectively [30].

3.1.2 Define temperature and intake of crayfish

The crayfish will undergo behavioral changes and go through distinct stages due to the
temperature shift. Equation (3) defines temperature. Crayfish will select a cool spot for their
summer vacation when the temperature rises above 30 °C. When the temperature is right,
crayfish will start to feed themselves. Temperature influences the number of crayfish that
feed. Crayfish have a feeding range of 15, 30, and 25 °C, which is ideal. As a result, it is
possible to roughly estimate how much Crayfish to feed according to their regular
distribution, with temperature having an impact. Because between 20 and 30 °C, crayfish
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exhibit robust feeding behavior. Accordingly, the COA specifies a temperature range of 20 to
35 °C [28]. Equation (4) displays the crayfish intake mathematical model.

temp = rand X 15 + 20 3)

Where, temp, is the temperature of the crayfish's location.

1 t — n)?
)

Among them, u denotes the perfect crayfish temperature, and C; and o are utilized to
organize crayfish intake in various temperatures.

3.1.3 Summer resort stage (exploration)

The temperature is too high when it exceeds thirty. This will cause the Crayfish to choose to
spend their summertime vacation in a cave [28].

Here is how the cave X4, 18 described:

Xshadze = (Xg +X1)/2 (5)
Where X; denotes the optimal position of the current population and X; is the optimal
position reached thus far based on the number of iterations.
Random fights break up between crayfish over caverns. The Crayfish will enter the cave
unhindered and be prepared for summer when rand is less than 0.5, meaning no other
Crayfish are vying for the cave. Using Equation (6), The crayfish will go into the cave to
spend the summer there [31].
Xt = X{; + G xrand X (Xspage — X)) (6)

According to Equation (7), C, is a declining curve, where t denotes the iteration number of
the current generation and t + 1 is the iteration number of the next generation.

C;=2— (t/T) (7

Where T is the maximum number of iterations that can be made.

Crayfish aim to reach the cave, which stands for the best course of action, at the Summer
Resort stage. The crayfish will now move towards the cave. This improves the exploitation
potential of COA and moves people closer to the ideal solution [32]. Facilitate a faster
convergence of the algorithm.

3.1.4 Competition stage (exploitation)

The presence of rand > 0.5 and temp > 30 indicates the interest of other Crayfish in the
cave.
They will now engage in a fight to take the cave. Accordingly, the Crayfish uses Equation (8)
to compete for the cave [29].

ij'-l = Xit.j - X;.j + Xshade (8)
Where according to equation (9), z stands for the random individual of Crayfish.
z =round(rand x (N — 1)) + 1 9)

Crayfish compete with one another at the competition stage and Crayfish Xi modifies their
position in response to another Crayfish's position (Xz). The position can be changed to
increase the search range of COA and improve the algorithm's exploration capability [28].

3.1.5 Foraging stage (exploitation)

The temperature is ideal for Crayfish feeding when it is less than thirty degrees. The
crayfish will now start to approach the meal. Once it has been located, the crayfish will
measure the size of the meal. If the food is too large, the Crayfish will use its claws to break it
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up and then use its second and third walking feet to consume it [32]. Xf404 1s a food location
that is described as:

Xfooa = X (10)
Q represent the food size that is defined as:
Q = C3 Xrand X (fitnessi/fitnessfood) (11)

Where the value of the food component, C3, is a constant value of 3 and represents the
largest food. The fitness value of the ith crayfish is represented by fitness;, and the fitness
value of the food location is represented by fitnesssyoq-

Use the second and
third paws to cat

b &
Crush food with
the first paw

Normal food Bigger food

food

(a) (b)

Figure 2: (a) Crayfish shred food before eating. (b) Crayfish eat directly [28]

The Crayfish bases its judgment of food size on the biggest food. @ > (C; + 1)/ 2
suggests that the meal is too substantial. Now, in order to break down the food, the Crayfish
will use its first claw foot [31]. As shown in figure 2(a). The mathematical equation is as

follows:
1
Xfaod = €30 (= ) X Xrooa: (12

As the meal grows smaller and shreds, the second and third paws will be picked up and
placed in the mouth. Using simulation, the alternating process is recreated by combining the
sine and cosine functions. As shown in Figure 2(b). Additionally, because Crayfish intake
and food availability are correlated, the foraging equation is as follows:

X = X[+ Xpooa X P X (cos(2 x m X rand) — sin(2 x m x rand)), (13)

When Q < (C3 + 1)/ 2, the Crayfish just want to move toward the food and eat it right
away:

Xt = (Xf_j — Xfo0a) X P+ P X rand X, X} (14)

Crayfish use a range of feeding strategies during the foraging stage, with food Xr,,4 being
the most effective choice, depending on the size of their meal Q. When the meal is small
enough for them to eat, the crayfish will come over. If Q is too big, it means that there is a big
difference between the ideal answer and reality. Therefore, Xf,,q must be reduced and

relocated nearer to the food. COA will go toward the best option during a foraging phase,
increasing the scheme's exploitation potential and promoting significant convergence [33].
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3.2 Mountain Gazelle Optimizer (MGO)

The innovative meta-heuristic scheme known as the Mountain Gazelle Optimizer (MGO)
is inspired by the social and collective behavior of mountain deer in the wild. The social
structure and the way of life of untamed mountain gazelles served as inspiration. Based on
the four main facets of mountain gazelle life—territorial solitary males, maternity herds,
bachelor male herds, and movement in search of food—the MGO system optimizes
operations [34].

The essential elements of mountain gazelle life, specifically their grouping and social
behaviors, as well as all the variables governing herd communication, breeding, and grazing,
are simulated in order to create the MGO mathematical model [35]. This scheme's primary
advantage is that it bases its optimization procedures on many factors. The four elements that
really formulate such a dynamic procedure are herds of maternity, territorial males, bachelor
male herds, migration to grazing zones in search of food, and solitary.

When it is compared to alternative mathematical modeling options, the MGO scheme's study
population is chosen to be one to a third of the entire populace, hence lowering costs. This is
due to the character of the bachelor group's youthful male members, who are unable to exert
dominance over the females in order to reproduce [36].

During the MGO's optimization process, the adult male gazelle in the herd territory is
determined to be the overall optimal solution. However, each individual (Gi gazelle) has the
option to join the maternity female, the herd of lone males, or the herd of solitary territorial
males. Conversely, however, a deer may also give birth. Nonetheless, the MGO algorithm's
mechanism allows for the possibility of alternative solutions, which are mostly represented
by gazelles in maternity herds.

Migration population

) Maternity herds ) /
o gl 4

g
} Territorial solitary males
g™ .
1 -

(T (2 ()

| weak gazelle
e i
1\ ol :ﬁ}’ ﬂ

) 2 |
{ |

Figure 3: MGOialgoritﬁm structure [37]

The goal of the selection process is to exclude the sicker, older, and less valuable
gazelles from the population while retaining the healthier, more vigorous members of the
population as premium choices.

3.2.1 Territorial Solitary Males

Mountain gazelles are herd animals, including males and females with offspring. By the time
they reach adulthood, the male mountain gazelles in their adolescent years possess the
strength necessary to assert their dominance and complete their life cycle. The recently
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matured males now reside in a remote, isolated place. Males battle violently and jostle each
other with their horns during the courting or mating season, while adults attempt to defend
their domains, and the youngsters strive for possession of the females [35]. One can use
Equation (15) to ascertain the adult male's territory.

TSM = male; — |(ri; X BH —ri, X X(t)) X F| X Cof,, (15)

The term "male;" in this context denotes the optimal worldwide solution that represents the
adult male's position vector. The random numbers ri; and ri, can be interpreted as either 1 or
2. The young male herd's coefficient vector is denoted by BH. It is roughly represented by:

BH = X,q X |11| + Mp, X [13],7a = {[g] N} (16)

ra={[3] .-} (17)

A young male is represented by the random solution X,, in the interval of ra. Random
numbers between 0 and 1 make up r; and r,. N is the total number of herd gazelles, and

With:

M,,, is the average number of randomly chosen search agents [g]
Equation (18) is used to evaluate F in Equation (15).

2
F =N,(D —2-1 —) 18
1(D) X exp ( ter x (Maxlter ) (18)

N; is a random number drawn from the standard distribution in accordance with the problem
dimensions [37]. The numbers Iter and MaxIter represent the number of iterations that are
now in progress and total, respectively.

Moreover, as expressed in Equation (19), the coefficient vector Cof,that was first randomly
picked is updated in each iteration to improve the search capacity.

(a+1)+r;,
a X N,(D),
Cofr = 74(D),
N3(D) X Ny(D)? x cos((ry X 2) X N5(D))

(19)

In the interval [0, 1], the numbers rand, r3, and 1, are selected at random. Furthermore,
N,, N3, and N, are fixed at random based on the issue dimensions and the normal range [29].
The expression for the parameter a is:

-1
= —1+ Iter X (—) 20
a +lter Maxlter (20)

3.2.2  Maternity Herds

Maternity herds, which produce young, powerful male gazelles to ensure the herd's
survival, are the most crucial members in the life cycle of all animals. Equation (21) shows
that male gazelles play a major role in the birth of young males who are trying to catch
female gazelles [34].

MH = (BH + Cofllr) + (riz X maleg — 1iy X Xpang) X Cofi,  (21)

According to Equation (16), when assessing the impact factor vector (BH) for young
males, the coefficient vectors (Cof,, and Cofs,) are chosen at random using Equation (19).
For the current repeat, the adult male designated as maleg is the global solution, and rand is

448



Kadhum and Khamees Iraqi Journal of Science, 2026, Vol. 67, No. 1, pp: 440-456

the vector location of a randomly selected gazelle. If not, ri; and ri, are arbitrary integers of
1 or2.

3.2.3  Bachelor Male Herds

Based on their living circumstances, mountain deer typically have a lifespan of eight years.
For males, the breeding process starts at 18 months, and for females, it starts at 12 months.
The breeding season usually begins at the first signs of winter. In accordance with
sociobiology and zoology, male mountain gazelles reproduce by copulating with multiple
females, a behavior known as polygamy, just like many other mammals. The female typically
gives birth in April or May once a year. Females pick carefully among the available males in
the herd, while males try to entice females and compete with them for mating. In this setting,
the establishment of mating relationships is significantly influenced by male dominance [38].
As they get older, juvenile male gazelles start to seize control of new areas, fiercely defend
them, and make mating attempts with females. Equation (22), to accomplish these goals,
shows an increase in violent behavior between the two male groups during this critical
moment.

BMH = (X(t) — D) + (ris X male; — rig X BH) X Cof, (22)

The gazelle vector's position is defined by X (t) during every iteration. As previously stated,
male is the best answer when ris and rig are arbitrarily chosen to be 1 or 2. Furthermore, a
randomly chosen coefficient vector is denoted by Cof,. Equation (23) is used to establish D
[29].

D = (|X(®)| + |maleg|) X (2 %15 —1) (23)
In this case, 1 is a randomly selected number from the range [0, 1].

3.2.4 Migration to Search for Food

Because they are most active in the early morning and late afternoon, mountain deer spend
most of the night sleeping and most of the day awake. These deer are herbivores that graze on
grass, leaves, or small shrubs. They are also highly territorial within groups of three to eight .
Typically, herds of deer cover enormous distances in search of food and grazing, using their
considerable speed for jumping, running, and sprinting as advantages. One of the most
significant traits imposed by their habitat is their ability to go extended periods of time
without drinking water since they have access to fresh herbs, dew drops, new shoots, and
low-lying tree branches, particularly in areas where the acacia tree grows [38]. Equation (24)
represents the behavior of mountain gazelles mathematically as follows:

MSF = (ub —1lb) X r; +1b (24)

In this case, b is the lower limit and ub is the upper limit of the optimization problem that is
being tackled. A random number with a range of [0, 1] is called 7.

Applying the four methods mentioned above guarantees the creation of fresh generations of
mountain gazelles, assuming that every generation is equivalent to a repetition. At the end of
each era, the addition of a new era to the overall population is also taken into consideration
for the classification of all mountain gazelles. The classification is done in ascending order
based on the caliber of the answers since the dominant adult male gazelle in the area is
regarded as the best gazelle. It is true that only gazelles deemed more cost-effective and
promising are retained in the population, with weaker or older individuals being culled [37].
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4. WSN Localization Problem Formulation

The problem of localization for wireless sensor network nodes may be defined as a single
hop range-based distribution strategy, which involves estimating the target (unknown)
nodes'(X,Y) position with the help of the main nodes' coordinates (x,y), which act as the
location of the known nodes. Because main nodes come with GPS units, they can figure out
where they are on their own. Because GPS is so expensive, the majority of WSN nodes are
not outfitted with it. The steps used are shown below to calculate the coordinates of the N
target (unknown) nodes.
Step 1: Within communication range (R), randomly establish M anchor nodes and N
unknown nodes. Anchor nodes use positional awareness to tell their neighbors their
coordinates. The node that settles at the conclusion of each cycle is referred to as the
reference node, and it serves as the anchor node.
Step 2: A node is deemed localized if 3 or more main (anchor) nodes are present inside the
range of its connection.
Step 3: Assign (x,y) to the target node's coordinates and d; to the separation between both
of target (unknown) and ith anchor (main) node.

di = (x—x)% + (= ¥)? (25)

Step 4: The localization problem's error is minimized by formulating the optimization
problem. The localization problem's objective function is expressed as:

1 2
f(xy) = min <Z (Va=x)2+ o -»)?) ) (26)
i=1

Where M denotes main nodes that are inside the target node's transmission range.

Step 5: After determining each unknown localized node (N}), the total error of localization
is computed as the mean square of the difference between the predestined and the real
coordinates node x;, y;, fori =1,2,3,... N:

L

1
B = ) W~ X7 + 00— 1) 7)
i=1

Step 6: Go back to step 2 and repeat through 5 till no more nodes can be located or until all
unknown/target nodes have been localized.

5. Experimental Analysis

This section compares the performance of the proposed WSN method with two other
algorithms (PSO and GWO) in terms of localization error, calculation time, and number of
localization nodes The strategy is assessed under different situations. The calculation of
various algorithms was performed using MATLAB R2021b on Intel Core (TM) 15 CPU,
Windows10 operating system, and 8 GB RAM. The parameters of the shipping point values
are shown in Table 1.

Table 1: The setting of the parameters.

The Parameters The Values
The target (unknown) nodes differ on Y:5_, k = 25
The main (anchor) nodes differ with increase k=k+5
Range of transmission 30 meters
Space of work 100 meters x 100 meters

For the PSO scheme, the initial values of w4, = 0.9, Wy, =0.2, c1 = ¢c2 = 2 were
recommended for faster convergence after experimental tests. The parameter a for GWO
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reduces linearly in the interval [2 to 0], and the parameter C linearly increases from 0 to 2
sand 1y, 1, are random vectors in [0, 1]. For MGO, r; is a value chosen randomly between 0
and 1.

6. The general framework

In terms of achieving an accurate node localization in WSN, the proposed system is
performed in six scenarios where in each scenario, the number of main(anchor) nodes and
target or unknown node is different. The number of main nodes is 10, and the target is 25
nodes in the first scenario then it is updated in each scenario five nodes is added to the main
node, and 25 nodes are added to the target node until the number of main nodes become 35
and target node become 150 in the sixth scenario. After the environment becomes ready, the
PSO, GWO, COA, and MGO algorithms are performed separately in this space. These
algorithms are performed in a number of iterations (25,50,75, and 100). Each algorithm is
performed ten times, and the average of the result is taken to compare the results of each
algorithm. Figure (3) Represents the flow chart of the proposed WSN Localization system.

Create Workspace (100x100)
meters

v

Generate Nodes In 6 Scenarios

v

Ifi<=6

Yes
y

Set Transmission Range For
Main Nodes (30 meter)

v

Apply Bio-Inspired Algorithms

Run Algorithm With Iterations
(25,50,75,100)

!

Compute Localization Error,
Time, Number of Correct
Localized Nodes N

!

Iterations
Complete ?
Yes
- Algorithms
Complete ?
Yes

Go To Next Scenario

End

Figure 4: General framework of the proposed WSN Localization System.
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7. The comparison between schemes.

In this part, MGO and the other swarm schemes have been examined regarding the
number of localization nodes, the time of computation, and the error of localization under
various conditions. Table 2 displays the outcomes of the various methods that were obtained.

Table 1- Compression of the various localization schemes’' results.

No. | No. PSO GWO COA MGO
of of No.
targe | anc | of ~ o | o
t hor | iterat | § E, N, § E, N, § E; N, § E;
node | no ion 2 2 2 2
s des

25 | 22 | 16 | 0.039 | 24 0.015 | 24 | 27 | 0.015 | 24 | 23 | 0.015
50 | 22 | 22 10034 | 24 | 19 |0015| 24 | 51 | 0.015| 24 | 44 | 0.015
25 10 175 | 24 | 30 | 0.006 | 24 | 28 | 0.015| 24 | 87 | 0.015 | 24 | 67 | 0.015
100 | 21 | 40 | 0.058 | 24 | 36 | 0.015| 24 | 114 | 0.015 | 24 | 89 | 0.015
25 | 46 | 21 | 0.008 | 47 | 20 | 0.011 | 47 | 70 | 0.011 | 47 | 29 | 0.011
50 | 49 | 43 | 0.008 | 47 | 40 | 0.011 | 47 | 196 | 0.011 | 47 | 57 | 0.011
50 151 75 | 48 | 73 | 0.013 | 47 | 71 | 0.011 | 47 | 299 | 0.011 | 47 | 88 | 0.011
100 | 49 | 104 | 0.007 | 47 | 75 | 0.011 | 47 | 310 | 0.011 | 47 | 128 | 0.011
25 | 74 | 36 | 0.004 | 74 | 52 | 0.008 | 74 | 304 | 0.008 | 74 | 42 | 0.008
50 | 75 | 79 | 0.014 | 74 | 104 | 0.008 | 74 | 555 | 0.008 | 74 | 83 | 0.008
75 | 72 | 46 | 0.014 | 74 | 144 | 0.008 | 74 | 614 | 0.008 | 74 | 120 | 0.008
100 | 74 | 206 | 0.011 | 74 | 194 | 0.008 | 74 | 806 | 0.008 | 74 | 161 | 0.008
25 | 99 | 44 | 0.004 | 100 | 62 | 0.001 | 100 | 284 | 0.001 | 100 | 46 | 0.001
50 | 100 | 181 | 0.005 | 100 | 87 | 0.001 | 100 | 140 | 0.001 | 100 | 96 | 0.001
100 25| 75 | 100 | 281 | 0.006 | 100 | 87 | 0.001 | 100 | 118 | 0.001 | 100 | 137 | 0.001
100 | 99 | 380 | 0.006 | 100 | 172 | 0.001 | 100 | 184 | 0.001 | 100 | 168 | 0.001
25 | 123 | 51 | 0.007 | 122 | 46 | 0.002 | 122 | 630 | 0.002 | 122 | 54 | 0.002
50 | 125 93 | 0.002 | 122 92 | 0.002 | 122 | 124 | 0.002 | 122 | 113 | 0.002
75 | 123 [ 162 | 0.002 | 122 | 153 | 0.002 | 122 | 212 | 0.002 | 122 | 158 | 0.002
100 | 125 | 215 | 0.002 | 122 | 326 | 0.002 | 122 | 277 | 0.002 | 122 | 214 | 0.002
25 | 150 | 69 | 0.005 | 150 | 73 | 0.005 | 150 | 105 | 0.005 | 150 | 79 | 0.005
50 | 150 | 141 | 0.005 | 150 | 135 | 0.005 | 150 | 191 | 0.005 | 150 | 157 | 0.005
150 351 75 | 150 | 234 | 0.002 | 150 | 204 | 0.005 | 150 | 321 | 0.005 | 150 | 239 | 0.005
100 | 150 | 315 | 0.003 | 150 | 217 | 0.005 | 150 | 382 | 0.005 | 150 | 317 | 0.005

]

75 20

125 30

It is shown that for all localization strategies, in all cases (the number of the unknown
(target) nodes and the number of the main (anchors) nodes), increasing in iteration leads to a
reduction in localization error, but an increase in the number of localizations and computation
time. This seems to cover the goal, as more iterations equal more calculations and take longer
to complete. On the contrary, the greater the number of actions, the more likely we are to
reach a better solution. As a result, there are more localized nodes, and the localization error
value that explains the location error (E;) for the relation between these main and unknown
nodes. However, as the number of targets and anchors increases, it turns out that MGO
outperforms COA, PSO, and GWO in this area. Regarding the computation time, it was
observed that increasing the number for both target (unknown) and anchor (main) nodes
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increases the time of computing for the whole localization’s schemes. However, compared
with COA, PSO and GWO, the MGO's computation time is better. The next three figures
show schematic diagrams of experiments conducted at different scales.

The graphical representations of mean localization error
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Figure 5: The mean localization error of the localization algorithms across many
deployments of wireless sensor networks.

The graphical representations of time
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Figure 6: The computation time of various algorithms in various Wireless Sensor Network
configurations.
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The graphical representations of f nodes that localized
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Figure 7: The number of located nodes in various Wireless Sensor Network installations
using various localization techniques.

8. Conclusion

Accurate node localization is a significant challenge in Wireless Sensor Networks
(WSNs), as precise positioning is essential for optimizing network performance, conserving
energy, and ensuring reliable communication. Existing localization techniques often face
limitations due to high localization errors, computational demands, and the inability to adapt
efficiently in varying network conditions. Addressing these issues, this study introduced a
novel hybrid localization method that integrates the Mountain Gazelle Optimizer (MGO) and
Crayfish Optimization Algorithm (COA), two bioinspired algorithms with strong exploration
and exploitation capabilities.
The proposed method leverages the distinct behavioral strategies of MGO and COA to
optimize node positioning by reducing localization errors and enhancing computational
efficiency. By accurately estimating the positions of unknown nodes using anchor nodes, the
MGO-based approach minimizes computational time while increasing localization precision.
Comparative experiments demonstrated that the proposed MGO and COA algorithms
outperform traditional approaches, such as Particle Swarm Optimization (PSO) and Grey
Wolf Optimizer (GWO), across various network deployment scenarios. This improvement
not only reduces localization error but also optimizes resource utilization, making it a highly
effective solution for diverse WSN applications.
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