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Abstract

Smart materials or shape memory alloys have a wide range of important
applications in our time, They are used in the medical field, the main parts
that are used in surgical operations by computers made of these materials,
because of unique properties of this kind of alloys where it can
automatically retrieve forms and accurately with the change of ambient
temperature or with the change of pressure imposed on it or a magnetic field
(or electric) Surrounding. Thus, it becomes possible for a specialist to give
the desired shape during the development of the alloy in the vicinity of a
temperature equal to the temperature of the human body and then pull this
alloy from the oven then in room temperature it will have the ingot form
would facilitate the introduction into the patient's body through the events of
wound smaller than if the process was conducted through regular, As in
modern operations to widen the arteries and directed by gravel from the
kidneys eliminate malignant tumors and other surgical procedures other. As
also used in manufacturing aircraft wings where the wing changes shape
with changing temperatures of the upper atmosphere. Also used in the very
small motor industry because of the ability of its molecules to interact with
the surrounding magnetic field or by changing the pressure imposed on it.
A new way for the evaluation of the Gibbs free energy for the shape
memory alloys at any point within the specimen at the end of the
transformation is developed.
In contrast with our previous model , which is limited in practice to
the whole specimen, this model is valid for length scales specified by
the a, b, ¢ for the parent and the emberio lattice and controlled by the
transformation matrices.
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1- Introduction

Shape memory alloys (SMA) (also
referred to as smart materials ,intelligent
materials ,adaptive materials or structronic
materials)[1] are materials which have
increasing range of engineering , aerospace, and
biomedical applications. Smart materials can
act as transducers and physical parameters
converters. Some of them can convert energy
from one form into another such as mechanical
energy (stress) into a change in length (strain) or
electrical energy (supplied electric field) to
electric displacement. Others convert the
thermal energy (change in temperature) into a
change in entropy and the magnetic energy
(supplied magnetic field ) to a magnetic flux.
The chemical energy (change in concentration)
may also be converted into a volumetric flux by
SMA’s.
Smart materials undergo solid to solid phase
transformations from Austenite to Martensite
.Mostly Austenite has cubic lattice structure
while  Martensite  phases  have lower
symmetries which may be (trigonal, tetragonal,
orthorhombic, or monoclinic) lattice structure. A
number of theoretical and experimental studies
has been concerned with this kind of
transformation [2-19].
A continuum theory which explains the
transformation strain in the microscopic scale,
was described by Bhattacharya[3]. The change
in symmetry (described by the changes in lattice
vectors) are its only input. Also his theory
discusses the energy of a specimen subjected to
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a deformation gradient Vy at a temperature 6,
according to the following equation:)

p = [©(Vy,0)dV ———————— (1)

where @ is called free energy density, and it
means the stored energy density which depends
on the lattice local distortion and measured by
the deformation gradient and the temperature.
Liang et. al. [8] constructed the transformation
strain matrices for the NiTi SMA with
2,=0.3015 nm for the Cubic (Austenite) lattice
while for Martensite monoclinic unit cell
a=0.289 nm, b=0.412 nm, ¢=0.4622nm, and
€=96.8°, where a, b, and c are the lattice
parameters and e is the angle between (b) and
(c) vectors of Martensite. Hane and Shield [9]
also studied the microstructure of the
transformation from Cubic to Monoclinic (in
NiTi) describing the transition by a uniform
expansion, shuffling of atoms and shear. In this
sense, they expressed the gradient of
deformation for the Cubic to Monoclinic
transformation in NiTi as:

T ycose O
Vy=/0 ysine 0|-————— (2)
0 0 W

where 7,W, y are the transformation stretches
given by

r=al/a,w=b/~2a,y=c/~2a ———(3)
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Lue etal. [6] suggested a micromechanical
model based on minimization of Gibbs free
energy for single crystal TiNiCu. They
calculated the free energy difference between
Austenite and Martensite phase and minimized
it with respect to spherical orientation angles
(e,@). They also put the strain matrices for all

the possible variants for the Ti 4at % Ni -10 at
% Cu ,SMA’s. Reynolds [15] and Kloucek and
Reynolds 2003[16] provided a mathematical
model to describe the thermodynamic behavior

Of SMA using the principles of mass
conservation which is :

Py =0

And the conservation of linear momentum
0.(p,u*) =Div(c) + pB——————- 4)

where u is the deformation, B represent external
body force ,oc is the stress tensor. They solved
the following partial differential equations:

po0 =DiV(p, 0,y + Ay*)+ p,B——(5)
P.C 0" = p,00,, w.r° +Tr(y°Ay®)
+ Div(K det(»)V ) + p,f —————— (6)

Where A is the symmetric viscous anisotropy
matrix.

After solving these two equations they reached
to the elastic strain energy formula:

v (7,0) =Wy (7)Cy (0) +
We (7)Cc (0) +WA()CA(0) = = ===~~~ (7

w(7,0) =Ca(OW,(7)+Cy (OW,, (7)
+C(OW (»)+C (0 -0Ind) —————~ )
Where y(y,60) is Helemoholtze free energy,

Wwu is the energy of Martensite, W, is the
energy of Austenite.

The prediction of the thermomechanical
behavior of (SMA)[ 2,3,4,5,6,20], and
magnetically actuated (SMA’s) [18,,21,22,23]
have attracted special attention ,in this respect
modeling of interatomic scale is of interest to
understand the behaviour of these alloys and its
phase stability .

The mathematical framework for modeling
phase transformations in the SMA’s is based on
Gibbs free energy AG absorbed by or emitted
from a spacemen subjected to a deformation
gradient Ay at a temperature #. According to
equation (1) we can say that

VG = j D(VyY,0)dV ———————— (9)
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As it is cleared from equation (1) we have:
O =D(y,0)

A new model for the evaluation of the Gibbs
free energy at any point at the specimen at the
end of the transformation is developed, the new
model based on our previous model in which
we calculated the rate of change of the free
energy per unit time AG during transformation

between Austenite and Martensite. Where
[24]:

AG = Ap(-Z)— A6 -C, (In0+1)-(10)
P

Where y is the deformation gradient
o = o(y,0) the stress tensor /area (Pa/m”)
P, the mass density (Kg/m3)

A the temperature difference (K°)
C, the heat capacity

€ the temperature (K°)

In contrast with our previous model ,in which
we calculate Gibbs free energy for the whole
transformation from the beginning to the end
,this new model is valid in calculating @ the
stored energy density for a length scales
specified by the a, b, ¢ for the lattice and
controlled by the transformation matrices. By
minimizing AG from equation (9), we minimize
the bulk energy of the considered structure, as a
function of the deformation tensor, and
temperature AG(y,6), also one can apply this

procedure at the measoscale specially when we
know that equation (10), applied on both the
macroscale and the measoscale.

Precise definition of the free energy is highly
important task to account for the movement of
the atoms rows with respect to the other without
breaking any chemical bonds (dislocation
movement).

In this paper we construct a mathematical model
for the free energy of the phase transformation
in SMA materials ,the free energy that depends
on the local distortion in the lattice measured by
the deformation gradient (») and the temperature

().

2- Mathematical Problem

Transitions between solid phases involve
relatively large amounts of energy specially in
the case of SMAs. These materials produce
thermal energy when they are bent or subjected
to a suitable stress. They also change their
crystal shape under certain applied conditions.
Through evaluating this shape change, one can
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calculate the free energy density ,because the
mathematical framework of modeling phase
combination in shape memory materials is based
on the solution of the variational problem with
respect to a frame indifferential nonconvex free
energy function ®(Vy,8), see equation (1).

By differentiating equation (9), an expression
for the stored energy function can be obtained,.

3-Mathematical Tools

The elastic energy required to deform a
lattice from its reference type identified by a
bounded domain Q(R’) by U:Q — R’ is
given as :

AG =ch(DU)dx ------------- (11)

where U represents the deformation gradients:
i

ou
DU = (- 7) (12)

The energy change in an isothermal quasistatic
deformation is characterized as follows:

Firstly, we suppose that AE — min [2]
where

AE = AW + AD® e (13)

AW s the total work increament supplied to
the deformed body ,and A® is the increament
in potential energy of the loading device
(assumed conserved).

The Cauchy-Born rule implies that the stored
energy density is the energy per unit reference
volume required to perform an affine
deformation X — F, [21, 24].

Also, suppose that this stored energy is invariant
under rigid transformation (frame indifference)
,and under changes that correspond lattice
invariant rotations [3].
OQF)=d(F) VvV QeSOQ3)
O(FR)=®d(F) V RePeS0OQ3)
where P is the point group for the lattice which
reflects the symmetry properties, So: It is
convenient to normalize @ such that
(min @ = 0), then the set
K={F:®(F)=0}

contains exactly the zero -—energy affine
deformation of the lattice.

Physically, it is essential to know the reason
behind having® = 0.

This kind of transformation is diffusionless the
lattice-distortive  phase transformation, i.e,
during the transformation the atoms of highly
ordered crystal are rearranged in a coordinated
manner leading to the formation of a new
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crystalline phase [24]. This might be attributed
to the expectation that this kind of
transformation is totally an energy-related
process where the potential energy is treated as
a negative quantity. An analogy is put forward
when a mechanical system with gravitational
potential energy and kinetic energy might be
adequate for understanding the implications of
the negative energy concept.

It seems logical to choose the zero potential
energy such that the free particles at rest have
zero energy and a bounded particle at rest has
negative potential energy.

a;ﬁ;W but if the mareble
tblewithzero L temarcblenow  stopped at the

hanical hpsmrﬂleedge bottom of the
i adnlsdwn i e e
energyﬂm ;t;l(hb;p;emm potential energy wﬁee
20 it negauve
st 5 il oy 6 g g n'
potential cOcTRy finetice enesgy thetoll  bound state.
B0 yechanical nerpywil
still be zero

the forces between SMAS particles
hold them together from solid to
another solid state .this means they
have -ve potential energy with
respect to the previous state .
and the -ve potential energy exceeds
the +ve kinetic energy so that they
will go to the most stable phase
Then if @ ., =0, Then the set k consists of one

or several disjoint copies of SO(3)

K =SO@Ul-—————— Um--—-(14)

Using equation 3
For cubic to monoclinic transformation ,the
strain matrices [2]

a o0 €

U=|0 a e|l-—————- (15a),
e € pf
a o6 -—€

U,=|d a -e|l-———- (15b)
-e —e f
a -0 -—€

U,=|-6 a € |-——————— (15¢),»
-e € f
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a -0 €

U,=|-0 a -—-e|———(15d)
e —-e pf
a € 0

U,=le B e|----(15¢),
0 € «
a —€ O

U=|-€¢ S -—-e|-———(151)
0 —-€ «
a —€ -0

U,=|-¢ B e |-——-159),
-0 € «a
a € -0

Ug=| €¢ S -e|-—-(15h)
-0 —-€ «a
p e €

U,=le a J|-—---(151),
e 0 «
p —-e —«€

U,=l-€ a o |-———(15))
-€ 0 «
p —-€ €

U,=|-€ a -0|-—-(15k),
e -0 «
p € -«

U,=l € a -0|-—-(15])
- -0 «a

Where a, B, €, and & can be written as follows

x(y +tsin(e))

oz:l +Ww (16)
2 \/12 + y* +2rysin(e)
1 (7 + ysin(e

PR (237 N—
2\/7 + ¥~ +2zysin(e)

L Ty cos(e)
V2 \/z' + y* + 2zysin(e)

(18)

Iragi Journal of Science, Vol.51, No.2, 2010, PP.301-307

1 y(x +rsin(e))
2 \/rz + y* + 2zysin(e)

By substituting equation(14) in (16), (17), (18),
and (19) we get:

2

5= — W--~(19)

¢ ac sin(e)
gl f : b --(20)
2 ¢ * W2ac . 2\530
5 +—2 ———sin(e)
a,’ 2a, a,’
GO N
_ 2, 23/ L b D
a’ ¢’ f 2ac 242a,
2 T 2 sin(e)
a, 2a, a0
ac
cos(e)
. N — 22)
2 2
\/2‘32 T 2‘53 sin(e)
a, 2a, a,
¢ +Lsin(e)
s__ 28,/ b (23)
2\/a2 Cz+ 2ac © 242a,
aOZ 2a02 02

If we take one row from any transformation
matrix, for example, the first row which
represents the forces acting along the x-axis

: sin€)

C

_IZaufz b .

2la’ ¢’ .
\/q)2 +T# + aoz Sll’le)

8,

the first term represents the strain along the x-
direction for compression or stretching (@, ) and
to be transformed to (@), while the second and
the third terms from the above equation are the
strain forces applied to change the angle
between a and b, and the angle between a and
¢ respectively.
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And to find the energy required to transform
a,to @ we substitute o, in equation 8, and

differentiate it with respect to x , to get ¢, .and

differentiate it with respect to y to get ¢y and

¢,

Results

1- We can estimate the contributions of the
energy by understanding the length variation
and the fine geometry of the microstructure.
If we have the a, b, ¢ for any lattice crystal
undergoing martensitic transformation, and
the kind of this transformation, we can get ©.

Where @ = ¢, + ¢y +@, + ¢ang,e ----(25)

For example, in cubic to monoclinic
transformation ( for example NiTi alloy):

Figure a: cubic NiTi lattice (Austenite phase)

Figure b: monoclinic NiTi lattice
(Martensite phase).

=21
¢ . =4.12x10"-A-Z +M.Z2

1.952 x10 2
+7.

Where A is a constant and equal to :

A=1L1x107-8 +454x10"- +59x10°-a-c~(27)

4, =A (28)
* 18
¢ :5.85><102°+A—1'86/_\%' X -(29)
w1 (21
_%.x.Z~(9.07><10'18~Z+5.9><1016'X)

Now, assume that the effective force in
compressing or stretching the parameter a
along the x-axis is the force resulting from
the x-direction.(we ignore the other)

And after simplifying the above equation for
#.and made the same calculation in the case
of ¢ and ¢, we find that

é, = (0.3141e — 21)Joul
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2- in addition to that there is @ange Which is the
energy required to change the angle of the
lattice.

3-by calculating the energy of the
transformation from the simple consepts in
physics (throw calculating the number of
lattices in one gram . estimating that the total
energy for NiTi transformation is 6 Joul/gram
(experimentally) [24]. we find that

¢=4.24¢ - 21Joul

Conclusions
1- The stored energy density function can be
described as follows:

O = ¢x +¢y +¢z +¢ang|e
2- ¢y is the energy required to compress a, to be
a along the x-axis andg, is the energy
required stretches ag_to reach b along the y-
axis. ¢, is the energy required also stretches

3y to reach c along the z-axis.
Here, if we apply the values of a, b, and ¢ at any
time during transformation of x, y, and z
positions, the total energy required for or
emitted from NiTi lattice at the end of the

transformation may be deduced.
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