
Kabban and Hasan                               Iraqi Journal of Science, 2025, Vol. 66, No. 12, pp: 5660- 5674 

                                                             DOI: 10.24996/ijs.2025.66.12.32 
 

___________________________ 
 Email: alikuban5@gmail.com 

5660 

 
On e*_Singular Supplement Submodules 

 

Ali A. Kabban, Wasan K. Hasan  

Department of Mathematics, University of Baghdad, College of Science, Baghdad, Iraq 

 

  Received: 21/9/2024        Accepted: 8/12/2024         Published: 30/12/2025        

 
Abstract. 

     This paper aims present the main concepts of e*S–supplement submodules, 

weak e*S–supplement submodules, e*S–supplemented modules, weakly e*S–

supplemented modules, cofinitely e*S–supplemented modules, and ⊕e*S–

supplemented modules, as popularization of the concepts of supplement 

submodules, weakly supplement submodules, supplemented modules, weakly 

supplemented modules, cofinitely supplemented modules, and ⊕-supplemented 

modules respectively. We will prove some characteristics of these concepts. 

 

Key words: e*S–supplement submodule, weak e*S–supplement submodule, e*S–

supplemented module, weakly e*S–supplemented module, ⊕e*S–supplemented 
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 *eالمفردة من النمط   جزئية المكملةالمقاسات الحول 
 

 علي عبد عطية كبان، وسن خالد حسن

 قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق 
 

 الخلاصة 
النمط        من  التكميلية  الجزئية  للمقاسات  الرئيسية  المفاهيم  تقديم  إلى  الورقة  والمقاسات  e*Sتهدف هذه   ،

التكميلية النمط    الجزئية  من  وال e*S الضعيفة  النمط    التكميلية  مقاسات ،  والe*S من  التكميلية    مقاسات، 
المقاسات التكميلية التجميعية    ، و e*S المحددة من النمط    التكميلية   مقاسات ، والe*S من النمط    الضعيفة 

النمط   العلى  تعميم  ك ،  e*Sمن  وال  جزئية ال  مقاساتمفاهيم  ،  الضعيفة  ة يليكمتال   جزئية ال   مقاساتالتكميلية، 
واليلي كمتال  مقاساتوال والالضعيفة   ةيليكمتال  مقاساتة،  والالمحددة  ة يلي كمتال  مقاسات،  ة  ي ليكمتال  مقاسات، 

 .التوالي. وسوف نثبت بعض خصائص هذه المفاهيم   التجميعية، على
 

1. Introduction 

     In this paper W will be a unitary left R-module, and R is any ring with identity. 

Notationally, a submodule T of an R-module W is considered small, which is well known. 

Note that, T ≪ W, if for each submodule of W, T + L = W, then L = W, [1] and [2]. A nonzero 

submodule T of W is considered essential if and only if, for every submodule L of W, L = {0} 

whenever T ∩ L = {0}. Here, we denote T ≤𝑒 W, where W is known as the essential 

extension of T [2] and [3].  
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      A new submodule type was created by Baanoon in [4] and it is a generalization of an 

essential submodule called e∗-essential as follows. For any non-zero cosingular submodule B 

of W, if A ∩ B ≠ 0, we say that A is an e*-essential submodule in W. Denoted by A ≤𝑒∗ W. 

This is the definition of the singular submodule: Z(W) = {m ∈ W: ann(m) ≤𝑒R}. If Z(W) = 

W, then W is called a singular module and if Z(W) = 0, W is called non-singular by [5]. We 

generalized Z(W) to 𝑍𝑒∗(W), by applying an e*_essential submodule. Now, let W be a 

module define 𝑍𝑒∗(W) = {n ∈ W: ann(n) ≤𝑒∗ R}, W is called an e*_singular module if 

𝑍𝑒∗(W) = W, and W is called e*_non-singular module if  𝑍𝑒∗(W) = 0, [6]. 

 

      In [6], the generalization of small submodule known as e*S–small submodule is 

introduced by A. Kabban and W. Khalid. A submodule T of W is called an e*S–small 

submodule of W (signified by T  ≪𝒆∗𝑺 W) if whenever W = T + H, with 𝑍𝑒∗(
  W  

H
) = 

  W  

H
 

implies that W = H. A nonzero module W is called an e*S–hollow if every proper submodule 

of W is e*S–small, [6].   

Let H ⊆ D ⊆ W, if 
 D 

H
 ≪ 

 W 

H
 , then H is called a coessential submodule of D in W [7] [8]. For a 

generalization of the coessential submodule, we present the following as the e*S-coessential 

submodule in [6]. Let W and D be R–modules, and H ⊆ W, such that D ⊆ H ⊆ W, then D is 

called an e*S–coessential submodule of H in W (denoted by D ⊆e∗S_ce H in W) if  
H 

D 
 

≪𝒆∗𝑺  
W 

D 
. A submodule T of W is coclosed submodule of W (denoted by T ⊆𝑐𝑐 W) if 

whenever 
 T 

L
 ≪ 

 W 

L
 implies that T = L, see [9] [10] [11]. Based on this idea, we may provide 

the following idea. Let W be an R–module and H be submodule of W. We say that H is an 

e*S–coclosed submodule of W (denoted by H ⊆e∗S_ccW) if whenever T ⊆e∗S_ce H, (i.e., 
  H   

T 
 

≪𝒆∗𝑺
W 

 T 
) implies that T = H, [6]. 

 

     As in [12] [13] [14] [15] [16]we will use e*S–small submodules to present a new 

generalization of supplement submodules, weak supplement submodules, supplemented 

modules, weakly supplemented modules, cofinitely supplemented modules, and ⊕-

supplemented modules. Namely of e*S–supplement submodules, weak e*S–supplement 

submodules, e*S–supplemented modules, weakly e*S–supplemented modules, cofinitely 

e*S–supplemented modules, and ⊕e*S–supplemented respectively. We prove the main 

characteristics of these concepts. 

 

2. e*-Singular Supplement Submodules. 

     A generalization of supplement submodules with certain characteristics is shown in this 

section. Remember that a sub-module T of a module W is called a supplement of a sub-

module B in W, if W = T + B and T ∩ B is small in T [17] [8]. And in this section, we 

introduce a generalization of supplemented modules. We also show some properties of these 

generalized submodules. Recall that W is called a supplemented module if each sub-module 

of W has a supplement in W [17] and [8]. 

 

   Firstly, we need to list basic properties of the concept of an e*S–small [6]. 

 

Lemma 2.1: [6] Let W be any R–module, so. 

1) If D ⊆ C ⊆ W. Then C ≪𝐞∗𝐒 W if and only if D ≪𝐞∗𝐒 W and 
  C  

D
 ≪𝐞∗𝐒 

  W   

D
. 

2) Let D and C be submodules of W. Then D + C ≪𝐞∗𝐒 W if and only if D ≪𝐞∗𝐒 W and C 

≪𝐞∗𝐒 W. 
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3) Let  N1 , N2 , …, Nn ⊆ W. Then ∑ Nj 
n
j=1 ≪𝐞∗𝐒 W if and only if Nj ≪𝐞∗𝐒 W, ∀ j = 1, 2, …, 

n. 

4) Let T ⊆ X be submodules of W. If T ≪𝐞∗𝐒 X, then T ≪𝐞∗𝐒 W. 

5) Let f : W ⟶  D  be a homomorphisim. If T ≪𝐞∗𝐒 W, then f (T) ≪𝐞∗𝐒 D. 

6) Let W = T1 ⨁ T2 be an R–module and  H1 ⊆ T1 , H2 ⊆ T2. Then  H1⨁ H2 ≪𝐞∗𝐒 T1 ⨁ T2 if 

and only if H1 ≪𝐞∗𝐒 T1 and  H2 ≪𝐞∗𝐒 T2. 

 

Lemma 2.2: [6] Let W be any R-module, and let two submodules H and L of W. If Ze∗(
  W  

H
) 

= 
  W  

H
 then Ze∗(

  W  

L+H
) = 

  W  

L+H
. 

   The notion of an e*S–small submodule leads to the following: 

 

Definition 2.3: Let T and H be submodules of an R-module W. If W = T + H and T ∩
H ≪𝐞∗𝐒T, then T is called e*-singular supplement of H in W (in brief e*S–supplement). If 

each asubmodule of W has e*S–supplement, then W is called e*S–supplemented module. 

It easy to show the following Lemma. 

 

Lemma 2.4: For any R–module W, let T and D be asubmodules of W. Then T is an e*S–

supplement of D in W if and only if for each S ⊆ T with 𝑍𝑒∗(
  T  

S
) = 

  T 

  S 
 , and W = S + D 

implies T = S. 

Proof: ⇒) Since W = T + D and T ∩ D ≪𝐞∗𝐒 T, for S ⊆ T with W = S + D, we have T = W ∩ 

T = (S + D) ∩ T = S + (T ∩ D), since T ∩ D ≪𝐞∗𝐒 T with 𝑍𝑒∗(
  T  

S
) = 

  T 

  S 
 , thus T = S. 

⇐) Clare. 

 

Examples and Remarks 2.5: 

1) Every supplemented module is an e*S–supplemented. Conversely need not be accurate 

since an e*S–small need not be a small submodule, [6]. 

2) In the Z–module Z12, the sub-module 〈4̅〉 is not an e*S–supplement of 〈2̅〉, since 〈4̅〉 +
〈2̅〉 = 〈2̅〉 ≠ Z12. 

3) If W is a uniform cosingular R–module, then supplemented and e*S–supplemented 

modules coincide. In particular, the Q as Z–module is a uniform cosingular, not supplemented 

module ([8] P.238). So, Q as Z–module is no e*S–supplemented. 

4) For any R–module W, the submodule {0} is the e*S–supplement of W and W is the e*S–

supplement of {0} in W.  

5) Every semi-simple module is e*S–supplemented. In particular, the Z–module Z6 is e*S–

supplemented. 

6) The e*S–supplement submodule need not be existing. For example, the Z–module Z, a 

submodule 2Z has no an e*S–supplement submodule, since {0} the only e*S–small of Z. 

7) The e*S–supplement is not commute. For example, in Z24 as Z–module, the submodule 

〈2̅〉 has an e*S–supplement 〈3̅〉. But 〈2̅〉 is not an e*S–supplement of 〈3̅〉, since 〈2̅〉 ∩ 〈3̅〉 =

〈6̅〉 and 〈6̅〉 is not an e*S–small in 〈2̅〉. Because 〈6̅〉 + 〈4̅〉 = 〈2̅〉 and 𝑍𝑒∗(
  〈2̅〉  

〈4̅〉
) ≅ 

  〈2̅〉  

〈4̅〉
, but 

〈2̅〉 ≠ 〈4̅〉. 
8) If M = A ⨁ B, then A is e*S–supplement of B and B is an e*S–supplement of A. For 

example, Z6 as Z–module 〈3̅〉 is e*S–supplement of 〈2̅〉 and 〈2̅〉 is e*S–supplement of 〈3̅〉. 
9) The Z as Z–module isn’t an e*S–supplemented, since the submodule 2Z has no e*S–

supplement submodule. See (6). 

10) Every e*S–hollow module is e*S–supplemented.  
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To see that let W be e*S–hollow, and T be a submodule of W. If W = T, so T has e*S–

supplement {0}. If T is a proper submodule of W. Hence, T is e*S–Small submodule of W. 

Since T + W = W and T ∩ W = T ≪𝐞∗𝐒 W, so T has e*S–supplement. Therefore, W is e*S–

supplemented.  

11) The convers of (10) isn’t accurate in general, for example Z6 as Z–module. 

 

Proposition 2.6: Let H and Y be submodules of a module W such that Y ⊆ H ⊆ W. If Y is an 

e*S–supplement in W, then Y is an e*S–supplement in H.  

Proof: Since Y is an e*S–supplement in W, there exists K a submodule of W, where Y + K =
W and Y ∩ K ≪𝐞∗𝐒 Y. The submodule H = H ∩ W = H ∩ (Y + K) and by the Modular law, 

H = Y + (H ∩ K). Hence, Y is an e*S–supplement of H ∩ K in H, since Y ∩ (H ∩ K) = Y ∩
K ≪𝐞∗𝐒 Y. Therefore, Y is an e*S–supplement in H. 

 

Proposition 2.7: Let D and Y be sub-modules of a module W such that D ⊆ Y ⊆ W. If Y is 

an e*S–supplement in W, then 
 Y 

D
 is an e*S–supplement in 

 W 

D
. 

Proof: Since Y is an e*S–supplement in W, there exists K ⊆ W, such that Y + K = W and Y ∩

K ≪𝐞∗𝐒Y. Now, 
W

D
=

Y+K

D
=

Y

D
+

K+D

D
 and 

 Y 

D
∩

K+D

D
=

Y ∩ (K+D)

D
=

D+(Y ∩ K)

D
, by Modular law 

since Y ∩ K ≪𝐞∗𝐒Y, by Lemma 2.1 (1), we have that  
D+(Y ∩ K)

D
≪𝐞∗𝐒

Y

D
. Therefore, 

 Y 

D
 is an 

e*S–supplement of  
K+D

D
 in 

 W 

D
. 

 

Proposition 2.8: For any R–module W, let Y be an e*S–hollow submodule of W. Then Y is 

an e*S–supplement of each proper sub-module H of W such that W = Y + H. 

Proof: Let H be a proper submodule of W such that W = Y + H. So, Y ∩ H is a proper 

submodule of Y if Y ∩ H = Y. Hence, Y ⊆ H and W = H, which contradicts. Now, since Y is 

an e*S–hollow, thus H ∩ Y is an e*S–small in Y. Therefore, Y is an e*S–supplement of H in 

W. 

 

Proposition 2.9: For any R–module W, let T, H be sub-modules of W such that H is an e*S–

supplement of T in W. If W = Y + H, for some submodule Y of T, then H is an e*S–

supplement of Y in W. 

Proof: Assume that W = Y + H, for some submodule Y of T and H is an e*S–supplement of T 

in W. So, we have W = T + H, and T ∩ H ≪𝐞∗𝐒 H. Since Y ⊆ T, so Y ∩ H ⊆ T ∩ H ≪𝐞∗𝐒 H, 

by Lemma 2.1, Y ∩ H ≪𝐞∗𝐒 H, and W = Y + H. Therefore, H is an e*S–supplement of Y in 

W. 

 

Proposition 2.10: For any R–module W, let H, T be sub-modules of W, and T be an e*S–

supplement of H in W if C ≪𝐞∗𝐒 W, then T is an e*S–supplement of H + C. 

Proof: Let T + (H + C) = W, to show T ∩ (H + C) ≪𝐞∗𝐒 T, let T ∩ (H + C) + X = T, with 

Ze∗(
  T  

X
) = 

  T  

X
, W = T + (H + C) = T ∩ (H + C) + X + (H + C) = X + (H + C) = (H + X) + C, 

to show Ze∗(
  W  

H+X
) = 

  W 

  H+X 
 , since  

  W 

  H+X 
 = 

  T+( H+C )+X 

  H+X 
 = 

  T+(H+X) 

 (H+X)
 ≅ 

  T 

 T ∩ (H+X) 
 = 

  T 

X+(H ∩ T)
, by 

Second Isomorphism and Modular law. Since Ze∗(
  T  

X
) = 

  T  

X
, then we get Ze∗(

  T 

 X+(H ∩ T) 
) = 

  T 

  X+(H ∩ T) 
 , hence Ze∗(

  W 

  H+X 
) = 

  W 

  H+X 
 , since C ≪𝐞∗𝐒 W, then W = H + X, but W = H + T, and X 

⊆ T and Ze∗(
  T  

X
) = 

  T  

X
, then T = X, by Lemma 2.4. 
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Proposition 2.11: For any R–module W, let X, T be sub-modules of W. If T is an e*S–

supplement of X in W, then 
T + L 

L 
 is an e*S–supplement of 

  X 

  L 
 in 

  W 

  L 
 , for L ⊆ X. 

Proof: Since T is an e*S–supplement of X in W. Then W = X + T and X ∩ T ≪𝐞∗𝐒 T, for L ⊆ 

X, we have X ∩ (T + L) = (X ∩ T) + L, by Modular Law, and 
  X  

  L  
∩ ( 

T+L 

L 
) = 

(X ∩ T) + L   

L 
, since 

X ∩ T ≪𝐞∗𝐒 T, it follows that  
(X ∩ T) + L   

L 
 ≪𝐞∗𝐒

T + L 

L 
 . Now,  

 W  

L 
 =   

X +T 

L 
 =  

  X  

  L 
  +  

 T+L 

L 
 . 

Therefore,   
T + L 

L 
  is e*S–supplement of  

  X 

  L 
  in 

  W 

  L 
. 

 

Proposition 2.12: For any R–module W, let T be an e*S–supplement of C in W, K ⊆ T, then 

K≪𝐞∗𝐒 W if and only if K ≪𝐞∗𝐒 T.  

Proof: ⇒) Let K + Y = T with Ze∗(
  T  

Y
) = 

  T  

Y
, but T + C = W and T ∩ C ≪𝐞∗𝐒 T, then W = (K 

+ Y) + C, hence W = K + (Y + C) to show Ze∗(
  W 

  Y+C 
) = 

  W 

  Y+C 
 , since 

  W 

  Y+C 
 = 

  T+( Y+C ) 

  ( Y+C ) 
 ≅ 

  T 

  T ∩ ( Y+C ) 
 = 

  T 

  Y+( T ∩ C ) 
 , by Modular law and Second Isomorphism Theorem. Since Ze∗(

  T  

Y
) = 

  T  

Y
, then we get Ze∗(

  T 

 Y+( T ∩ C ) 
) = 

  T 

  Y+( T ∩ C ) 
 , hence Ze∗(

  W 

  Y+C 
 ) = 

  W 

  Y+C 
 , but  K ≪𝐞∗𝐒 W, then 

W = Y + C, since W = T + C, Y ⊆ T and Ze∗(
  T  

Y
) = 

  T  

Y
, then by Lemma 2.4, T = Y. 

⇐ Clearly by Lemma 2.1. 

 

Proposition 2.13: For any R–module W, let V be an e*S–supplement of U in W, and H, T be 

sub-modules of V. Then T is e*S–supplement of H in V if and only if T is e*S–supplement of 

H + U in W. 

Proof: ⇒) Let T be an e*S–supplement of H in V, then V = T + H and T ∩ H ≪𝐞∗𝐒 T. Let (H 

+ U) + L = W for L ⊆ T with Ze∗( 
 T 

  L 
 ) = 

  T 

  L 
 . Now, H + L ⊆ V. Since  

  V 

  H+L 
 = 

  T+( H+L ) 

  H+L 
 ≅ 

  T 

  T∩ ( H+L ) 
 = 

  T 

  L+( H ∩ T ) 
, by Modular law and Second Isomorphism Theorem, and Ze∗(

 T 

  L 
) = 

  T 

  L 
, 

then we get Ze∗(
  T 

  L+( H ∩ T ) 
) = 

  T 

  L+( H ∩ T ) 
, hence Ze∗(

  V 

  H+L 
) = 

  V 

  H+L 
, and because V is e*S–

supplement of U in W, then W = V + U and by Lemma 2.4, H + L = V. Since L ⊆ T and T is 

an e*S–supplement of H in V, then T = L. 

⇐) Let T be an e*S–supplement of H + U in W. Then T + (U + H) = W and T ∩ (U + H) 

≪𝐞∗𝐒T. Let T + H = V, to prove T ∩ H ≪𝐞∗𝐒 T, since T ∩ H ⊆ T ∩ (U + H) ≪𝐞∗𝐒 T, then T ∩ 

H ≪𝐞∗𝐒 T, hence T is an e*S–supplement of H in V. 

    For any R–module W, let V and T be sub-modules of W. We said T and V are mutual e*S–

supplements, if T is an e*S–supplement of V in W and V is e*S–supplement of T in W. 

 

Corollary 2.14: For any R–module W, let V, B be mutual e*S–supplements in W. L be e*S–

supplement of U in V, and H be an e*S–supplement of T in B, then L + H is an e*S–

supplement of T + U in W. 

Proof: Since V = U + L and B is e*S–supplement of V in W, then by proposition 2.13, H is 

e*S–supplement of U + L + T in W and then (U + L + T) ∩ H ≪𝐞∗𝐒 H, since B = T + H and V 

is e*S–supplement of B in W, then by proposition 2.13, L is e*S–supplement of U + T + H in 

W and then (U + T + H) ∩ L ≪𝐞∗𝐒 L, because V = U + L , B = T + H , and W = V + B, then 

we have W = U + L + T + H = U + T + L + H, then (U + T) ∩ (L + H) ⊆ L ∩ (U + T + H) + H 

∩ (U + T + L) ≪𝐞∗𝐒 L + H, hence L + H is e*S–supplement of T + U in W. 

 

Proposition 2.15: For any R–module W, let T, V be submodules of W, then the following 

statements are equivalent. 
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1) V is an e*S–supplement of T in W; 

2) W = T + V and for every proper sub-module X of V with Ze∗(
  V   

X
) = 

 V 

X
 , then W ≠ T + X. 

Proof: (1)⇒(2) Assume that V is an e*S–supplement of T in W and suppose that W = T + X, 

where X is a proper sub-module of V such that Ze∗(
  V   

X
) = 

 V 

X
 . Then by Modular law, V = V ∩ 

W = V ∩ (T + X) = X + (T ∩ V). Since V is an e*S–supplement of T in W and Ze∗(
  V   

X
) = 

 V 

X
 , 

then V = X, which is a contradiction. Thus W ≠ T + X. 

(2)⇒(1) Suppose that W = V + T. To show that V is an e*S–supplement of T in W, it is 

sufficient to show that V ∩ T ≪𝐞∗𝐒 V, let C be a submodule of V such that V = (T ∩ V) + C, 

with Ze∗(
  V   

C
) = 

 V 

C
 . If C is a proper sub-module of V, then by our assumption W ≠ T + C.  But 

W = T + V = T + (T ∩ V) + C = T + C, which is a contradiction. Thus, V is an e*S–

supplement of T in W. 

 

Proposition 2.16: For any R–module W, let T, V and C be submodules of W. If T is an e*S–

supplement of V in W, and V is an e*S–supplement of C in W, then V is an e*S–supplement 

of T in W. 

Proof: Let W = T + V = V + C, T ∩ V ≪𝐞∗𝐒 T and V ∩ C ≪𝐞∗𝐒 V. To prove that T ∩ V ≪𝐞∗𝐒 

V. Let D be a sub-module of V such that V = (T ∩ V) + D, with Ze∗(
  V   

D
) = 

 V 

D
 . Since W = V + 

C = (T ∩ V) + D + C, and T ∩ V ≪𝐞∗𝐒 T, then T ∩ V ≪𝐞∗𝐒 W. Note that,  
W

D+C
 = 

V+(D+C)

D+C
 ≅ 

V

V ∩ (D+C)
 = 

V

D+(V ∩ C)
 , by Second Isomorphism and Modular law. Since Ze∗(

  V   

D
) = 

  V  

D
, then we 

get Ze∗(
  V   

D+(V ∩ C)
) = 

 V 

D+(V ∩ C)
 , hence Ze∗( 

  W   

D+C
) = 

 W 

D+C
 , and T ∩ V ≪𝐞∗𝐒 W, then W = D + C. 

Now, V = V ∩ W = V ∩ (D + C) = D + (V ∩ C), by Modular law. But V ∩ C ≪𝐞∗𝐒 V, and 

Ze∗(
  V   

D
) = 

 V 

D
 , therefore V = D. Thus, V is an e*S–supplement of T in W. 

   Now, we will present a few properties of e*S–supplemented modules. 

 

Proposition 2.17: Let A and B be submodules of W such that A is an e*S–supplemented 

module. If A + B has an e*S–supplement in W then B does. 

Proof: Let D be an e*S–supplement submodule of A + B in W. Then (A + B) + D = W and D 

∩ (A + B) ≪𝐞∗𝐒 D. Since A is an e*S–supplemented module, (D + B) ∩ A is a submodule of 

A. Hence, there exists Y ⊆ A such that (D + B) ∩ A + Y = A and (D + B) ∩ A ∩ Y = (D + B) 

∩ Y ≪𝐞∗𝐒 Y. Thus, we have D + B + Y = W, and (D + B) ∩Y ≪𝐞∗𝐒 Y, that is Y is an e*S–

supplement of D + B in W. Next, we will show that D + Y is an e*S–supplement of B in W, 

itis clear that (D + Y) + B = W, so it suffices to show that (D + Y) ∩ B ≪𝐞∗𝐒 D + Y, since Y + 

B ⊆ A + B, by Lemma 2.1, D ∩ (Y + B) ⊆ D ∩ (A + B) ≪𝐞∗𝐒 D. Thus, (D + Y) ∩ B ⊆ D ∩ 

(Y + B) + Y ∩ (D + B) ≪𝐞∗𝐒 D + Y. Hence, (D + Y) ∩ B ≪𝐞∗𝐒 D + Y. Therefore, B has an 

e*S–supplement in W. 

  Remember that a fully invariant submodule D of W is defined as follows: g (D) ⊆ D, for 

each g ∈ End (W) and W is called duo module if each submodule of W is a fully invariant. 

W is called distributive module if for every D, V and U are submodule of W, then D ∩ (V + 

U) = (D ∩ V) + (D ∩ U) [8]. 

 

Proposition 2.18: Let W be an e*S–supplemented module and let T is a fully invariant of W, 

then 
  W  

T
 is an e*S–supplemented. 

Proof: Let 
  K   

T
⊆ 

  W  

T
, to prove 

  K  

T
 has e*S–supplement in 

  W  

T
 , K ⊆ W, since W is e*S–

supplemented, then there exists Y ⊆ W such that W = K + Y, and K ∩ Y ≪𝐞∗𝐒 Y. Now, 
  W  

T
 = 
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  K + Y  

T
 = 

  K  

T
 + 

  Y+T  

T
, to prove 

  K  

T
 ∩ 

  Y+T  

T
 ≪𝐞∗𝐒 

  Y+T  

T
, let (

  K  

T
 ∩ 

  Y+T  

T
) + 

  V  

T
 = 

  Y + T  

T
, with 

Ze∗(
  Y+T  

V
) = 

  Y+T  

V
 , to prove  

  V  

T
 = 

  Y+T  

T
, so  

K ∩ (Y + T) 

T
 = 

T + (K ∩ Y) 

T
 , then  

T+(K ∩ Y) 

T
 + 

  V  

T
 = 

  Y+T  

T
, and T + (K ∩ Y) + V = Y + T, since T ⊆ V, then (K ∩ Y) + V = Y + T, but Ze∗(

  Y+T  

V
 ) = 

  Y+T  

V
, and K ∩ Y ≪𝐞∗𝐒 Y ⊆ Y + T, then K ∩ Y ≪𝐞∗𝐒 Y + T, therefore V = Y + T and  

  V  

T
 = 

  Y+T  

T
. 

 

Corollary 2.19: The homomorphic image  of an e*S–supplemented module is an e*S-

supplemented.  

Proof: Since every homomorphic image is isomorphic a quotient module. 

Remark 2.20: The convers of proposition 2.18, need not be accurate in general. For example, 
Z

6Z
≅ Z6 as a Z–module is an e*S–suplemented module. But the Z–module Z isn’t e*S–

supplemented module. See, Examples and remarks 2.5. 
 

Proposition  2.21:  Let W = W1⨁ W2 be aduo module, then W1and W2 are e*S–supplemented 

modules if and only if W is an e*S–supplemented. 

Proof: ⇒) Let H ⊆ W, since W = W1+ W2 + H, trivially has an e*S–supplement in W. By 

Proposition 2.17, then W2 + H has an e*S–supplement in W, by Proposition 2.17, again, H 

has an e*S–supplement in W. So, W is an e*S–supplemented module. 

⇐) W2 ≅ 
 W 

   W1 
, since W is an e*S–supplemented module, by proposition 2.18, 

  W 

    W1 
 is an 

e*S–supplemented module. Thus, by corollary 2.19, W2 is an e*S–supplemented module. 

Similarity W1 is an e*S–supplemented module. 

 

Corollary 2.22: Let W = ⊕𝑖=1
n W𝑖. Wis an e*S–supplemented module if and only if 

W1, W2, … , Wn are e*S–supplemented modules. 

Corollary 2.23: Let W1 ⨁ W2 = W be aduo module, H and V are sub-modules of W1, if H is 

an e*S–supplement of V in W1, then H ⨁ W2 is an e*S–supplement of V in W. 

Proof: Let H be an e*S–supplement submodule of V in W1, then W1 = H + V and H ∩ V 

≪𝐞∗𝐒 H, since W = W1⨁ W2, then W = (H + V) ⨁ W2, hence  W = V + (H ⨁ W2) but (H ⨁ 

W2) ∩ V = (H ⨁ W2) ∩ W1 ∩ V = H ∩ V ≪𝐞∗𝐒 H. And by Lemma 2.1, then H ∩ V ≪𝐞∗𝐒 H ⨁ 

W2, hence H ⨁ W2 is an e*S–supplement of V in W. 

  The following explain the relation between e*S–supplemented modules and e*S–coessential 

submodules. 

 

Proposition 2.24: Let T, V and X be sub-modules of a distributive R–module W. If T is an 

e*S–supplement of V in W and V is an e*S–supplement of X in W with T ⊆ X, then T 

⊆e∗S_ce X in W. 

Proof: Assume that T is an e*S–supplement of V in W, and V is an e*S–supplement of X in 

W with T ⊆ X. To show that T ⊆e∗S_ce X in W, let 
W

T
 = 

X

T
 + 

Y

T
 , with Ze∗(

  W  

Y
) = 

  W  

Y
, then W = 

X + Y.  So, by Modular law, Y = Y ∩ W = Y ∩ (T + V) = T + (Y ∩ V). Hence, W = X + Y = X 

+ T + (Y ∩ V) = X + (Y ∩ V), and V = V ∩ W = V ∩ (X + Y). Hence, V = (V ∩ X) + (V ∩Y). 

To show Ze∗( 
V

V ∩ Y
 ) = 

V

V ∩ Y
 , by Second Isomorphism Theorem, 

V

V ∩ Y
 ≅ 

V+Y

Y
 = 

W

Y
 , where T ⊆ 

Y. But Ze∗(
  W  

Y
) = 

  W  

Y
, hence Ze∗( 

V

V ∩ Y
 ) = 

V

V ∩ Y
 , and (V ∩ X) ≪𝐞∗𝐒 V, then V = Y ∩ V, so V ⊆ 

Y, since Y = T + (Y ∩ V), then Y = T + V = W. Thus T ⊆e∗S_ce X in W. 
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3. Weak e*-singular Supplement Submodules. 

     Now, we present one generalization of weak supplement submodules, and we show some 

of its properties. Recall that a submodule A of an R-module W is called a weak supplement of 

a submodule B in W, if W = A + B and A ∩ B is small in W, [8]. As well as we introduce the 

generalization of weakly supplemented modules with some properties. Recall that when 

every sub-module of an R-module W has a weak supplement, then W called weakly 

supplemented, [8]. 

 

Definition 3.1: Let B and T be submodules of the R-module W. If W = T + B and T ∩ B ≪𝐞∗𝐒 

W, then T is called a weak e*S–supplement of B in W. A module W is called weakly e*S–

supplemented if each asubmodule of W has a weak e*S–supplement in W. 

 

Examples and Remarks 3.2: 

1) If W is a uniform cosingular R–module, then weakly supplemented and weakly e*S–

supplemented modules coincide. 

2) Every e*S–supplemented is a weakly e*S–supplemented module. The converse need not 

be accurate in general. For example, the Q as Z–module is a uniform cosingular which is 

weakly supplemented ([8] P.238). From (1), the Z–module Q is weakly e*S–supplemented. 

But not e*S–supplemented. 

3) In Z12 as Z–module, the submodule 〈4̅〉 is not a weakly e*S–supplement of 〈2̅〉 in Z12 since 

〈4̅〉 + 〈2̅〉 = 〈2̅〉  ≠ Z12. 

4) Z as Z–module isn’t a weakly e*S–supplemented, since 2Z has no an e*S–supplement 

(weak e*S–supplement) submodule. See Examples and remarks 2.5 (9). 

5) Every e*S–supplement submodule is a weak e*S–supplement. The converse need not be 

accurate in general. For example, in Z12 as Z–module, the submodule 〈2̅〉 is a weak e*S–

supplement of 〈3̅〉 while 〈2̅〉 is not e*S–supplement of 〈3̅〉 in Z12. Since 〈2̅〉 ∩ 〈3̅〉 = 〈6̅〉 and 

〈6̅〉 + 〈4̅〉 = 〈2̅〉, and Ze∗(
 〈2̅〉 

〈4̅〉
) = 

 〈2̅〉 

〈4̅〉
 , but 〈4̅〉 ≠ 〈2̅〉. Thus, 〈6̅〉  is not e*S–small in 〈2̅〉. 

 

Proposition 3.3: Let T, B be two submodules of W, and let T be a weakly e*S–supplemented 

module. If T + B has a weak e*S–supplement in W then B does. 

Proof: By assumption there exists N ⊆ W, such that N + (B + T) = W, and N ∩ (B + T) ≪𝐞∗𝐒 

W, since T is weakly e*S–supplemented module there exists D ⊆ T, such that (N + B) ∩ T + 

D = T and (N + B) ∩ D ≪𝐞∗𝐒 T, thus B + N + D = W, and (N + B) ∩ D ≪𝐞∗𝐒 T, and by 

Lemma 2.1, (N + B) ∩ D ≪𝐞∗𝐒 W, that is D is a weak e*S–supplement of  N + B in W, we 

will show that  N + D is a weak e*S–supplement of  B in W, it is clear that (N + D) + B = W, 

so it enough to show that (N + D) ∩ B ≪𝐞∗𝐒 W. Since (N + D) ∩ B ⊆ N ∩ (T+ B) + (N + B) ∩
 D ≪𝐞∗𝐒 W, then (N + D) ∩ B ≪𝐞∗𝐒 W. Therefore, N + D is a weak e*S–supplement of B in 

W. 

 

Corollary 3.4: Let W = T1+ T2, if  T1 and T2 are a weakly e*S–supplemented modules then 

W is a weakly e*S–supplemented. 

Proof: Let D be asubmodule of W. Since T1+ T2+ D = W, trivially has weak e*S–supplement 

in W. By Proposition 3.3, T2 + D has a weak e*S–supplement in W. And again, by 

proposition 3.3, D has aweak e*S–supplement in W. So, W is aweakly e*S–supplemented. 

 

Proposition 3.5: Let W be a weakly e*S–supplemented module and Y ⊆ D ⊆ W, if Y ≪𝐞∗𝐒 

W implies that Y ≪𝐞∗𝐒 D, then D is an e*S–supplement submodule of W. 
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Proof: Assume that W is a weakly e*S–supplemented. So, W = D + L, L ⊆ W and D ∩ 

L≪𝐞∗𝐒 W. By our assumption we get D ∩ L≪𝐞∗𝐒 D. Hence, D is an e*S–supplement of L in 

W. 

 

Proposition 3.6: Let W be a weakly e*S–supplemented module then for every T, B ⊆ W, 

with T + B =W, there exists a weak e*S–supplement K of T in W with K ⊆ B. 

Proof: Suppose T, B ⊆ W, with W = T + B. Since W is weakly e*S–supplemented, T ∩ B has 

a weak e*S–supplement D in W. In this case W = (T ∩ B) + D and (T ∩ B) ∩ D ≪𝐞∗𝐒 W. 

Since W = T + B, and B = (T ∩ B) + (B ∩ D), then W = T + (T ∩ B) + (B ∩ D) = T + (B ∩ 

D). Let K = B ∩ D. Then W = T + K and T ∩ K = T ∩ B ∩ D ≪𝐞∗𝐒 W. Hence, K is a weak 

e*S–supplement of T in W with K ⊆ B. 

 

Proposition 3.7: For any R–module W, let T is a weak e*S–supplement of V in W. Then for 

L ⊆ V,  
T + L 

L 
 is a weak e*S–supplement of 

  V  

  L 
  in 

  W 

  L 
 . 

Proof: Since T is aweak e*S–supplement of V in W. Then W = V + T and V ∩ T ≪𝐞∗𝐒 W, for 

L ⊆ V. Now, 
W  

L 
 =   

V +T 

L 
 =  

  V  

  L 
  + 

 T + L 

L 
  and 

  V  

  L 
∩ ( 

T +L 

L 
) = 

(V ∩ T) + L  

L 
 , by Modular law, and 

since V ∩ T ≪𝐞∗𝐒 W, then 
(V ∩ T) + L   

L 
 ≪𝐞∗𝐒

W 

L 
 . Therefore, 

T + L 

L 
 is a weak e*S–supplement of  

  V  

  L 
  in 

  W 

  L 
 . 

 

Corollary 3.8: Let A and B be submodules of R–module W, with A ⊆ B. If A and B have the 

same weak e*S–supplement submodule in W, then A is an e*S–coessential submodule of B. 

Proof: Clearly by Proposition 2.24, and Examples and remarks 3.2 (2). 

Corollary 3.9: Epimorphic image of a weakly e*S–supplemented module is a weakly e*S–

supplemented module. 

Proof:  It follows from Corollary 2.19, and Examples and remarks 3.2 (2). 

 

Corollary 3.10: Let W be aweakly e*S–supplemented module and a submodule D of W, then 
W

D
 is a weakly e*S–supplemented module. 

Proof: Clearly by Proposition 2.18, and Examples and remarks 3.2 (2). 

 

Proposition 3.11: Let T be a submodule of an R–module W. Consider the following 

statement  

1) T is e*S–supplement submodule of W; 

2) T is e*S–coclosed in W; 

3) For every submodule Y of T, if Y ≪𝐞∗𝐒 W, then Y ≪𝐞∗𝐒 T. 

Then (1) ⇒ (2) ⇒ (3). If W is weakly e*S–supplemented, then (3) ⇒ (1). 

Proof: (1) ⇒ (2) Let T, be an e*S–supplement of B in W, then W = T + B and T ∩ B ≪𝐞∗𝐒 T. 

To prove that T is an e*S–coclosed, assume that Ze∗(
  T  

Y
) = 

  T  

Y
 and 

  T  

Y
 ≪𝐞∗𝐒 

  W  

Y
 for some 

submodule Y of T. Since W = T + B, 
  W  

Y
 = 

  T  

Y
 + 

  B+Y  

Y
 . We have 

  W  

B+Y
 = 

  T+(B+Y)  

B+Y
 ≅ 

  T  

T ∩(B+Y)
 = 

  T  

Y+(T ∩B)
 , since Ze∗(

  T  

Y
) = 

  T  

Y
, then Ze∗(

  W  

B+Y
) = 

  W  

B+Y
 . But 

  T  

Y
 ≪𝐞∗𝐒 

  W  

Y
 so 

  W  

Y
 = 

  B+Y  

Y
 which 

implies that W = B + Y. Not that, T = T ∩ W = T ∩ (B + Y) = Y + (T ∩ B). But T ∩ B ≪𝐞∗𝐒 T 

and Ze∗(
  T  

Y
) = 

  T  

Y
 , therefore T = Y. Thus, T is an e*S–coclosed. 

(2) ⇒ (3) Suppose that T is an e*S–coclosed in W and Y ≪𝐞∗𝐒 W, let T = Y + D, with Ze∗(
  T  

D
) 

= 
  T  

D
 . Since T is an e*S–coclosed in W, it is sufficient to show that 

  T  

D
 ≪𝐞∗𝐒 

  W  

D
 , let 

  W  

D
 = 

  T  

D
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+ 
 B 

D
 with Ze∗(

  W  

B
) = 

  W  

B
 , then W = T + B = Y + D + B = Y + B. But Y ≪𝐞∗𝐒 W and Ze∗(

  W  

B
) 

= 
  W  

B
, therefore W = B. 

(3) ⇒ (1) Since W is weakly e*S–supplemented, there exists a submodule D of W such that 

W = T + D and T ∩ D ≪𝐞∗𝐒 W. By (3) T ∩ D ≪𝐞∗𝐒 T. Thus, T is an e*S–supplement 

submodule of W. 

 

4. Cofinitely e*-singular Supplemented and ⊕e*-singular Supplemented Modules. 

     It is known that a sub-module B of W is called cofinite if 
  W  

B
 is finitely generated. We 

present one generalization of cofinitly supplement modules, as well as showing some of its 

properties. Recall that for any R–module W. If each cofinite sub-module of W owns a 

supplement in W, it is called a cofinitly supplemented [8]. Recall that if each sub-module of 

an R-module W owns a supplement, which is a direct summand of W, it is called ⊕-

supplemented module. [18]. We introduce the generalization of ⊕-supplemented module 

with some properties. 

 

Definition 4.1: An R–module W is called cofinitely e*S–supplemented (briefly cof e*S–

supplemented) if each cofinite submodule of W has an e*S–supplement in W. 

Examples and Remarks 4.2: 

1) Z6 as Z–module is cof e*S–supplemented module. 

2) Z as Z–module isn’t cof e*S–supplemented. Because 2Z is a cofinite submodule of Z 

which has no e*S–supplement. By Examples and remarks 2.5 (9). 

3) Clearly that every e*S–supplemented module is cof e*S–supplemented. The converse isn’t 

accurate in general. For example, the Z–module Q is cof e*S–supplemented, since the only 

cofinite submodule of Q, is Q which has an e*S–supplement, but Q we know that isn’t e*S–

supplemented. 

The following proposition gives a condition under which the e*S–supplemented module and 

cof e*S–supplemented are equivalent.  

 

Proposition 4.3: Let W be a finitely generated R–module. Then W is an e*S–supplemented if 

and only is W is cof e*S–supplemented. 

Proof: Assum that W is cof e*S–supplemented to show that W is an e*S–supplemented. Let 

T be asubmodule of W, since W is finitely generated then 
  W 

 T
 is finitely generated, hence T is 

cofinite sub-module of W. But W is cof e*S–supplemented, hence T has e*S–supplement in 

W. Thus, W is e*S–supplemented. The converse is clear by Example and remarks 4.2 (3). 

   Next, we present certain cof e*S–supplemented module properties. 

 

Proposition 4.4: Let W be a cof e*S–supplemented, and let T be a submodule of W, then 
 W 

T
 

is cof e*S–supplemented. for each fully invariant submodule T of W. 

Proof: By the same arguments of Proposition 2.18. 

The converse of Proposition 4.4, is not accurate in general, for example, the Z as Z-module. 
 Z 

6Z
 ≅  Z6 is cof e*S–supplemented but Z isn’t cof e*S–supplemented. 

 

Corollary 4.5: Let W be a cof e*S–supplemented, then any direct summand of W is cof e*S–

supplemented. 

We need the following standard lemma. To show that arbitrary sum of cof e*S–supplemented 

is cof e*S–supplemented. 
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Lemma 4.6: Let K, B be sub-modules of a module W such that K is cof e*S–supplemented, 

B is cofinite in W and K + B has an e*S–supplement T in W. Then K ∩ (B + T) has an e*S–

supplement V in K. Moreover, V + T is an e*S–supplement of B in W. 

Proof: Let T be an e*S–supplement of K + B in W. Thus W = T + (K + B) and T ∩ (K + B) 

≪𝐞∗𝐒 T. Now, 
K

K ∩(B+T)
 ≅  

K+(B+T)

B+T
=  

W

B+T
 ≅  

 W 

B
B+T

B

 , which is fintely generated, hence K ∩ (B 

+ T) is cofinite in K. But K is cof e*S–supplemented. A submoduleV of K exists. Such that V 

is an e*S–supplement of K∩ (B + T) in K. Thus K = V + [K ∩ (B + T)] and V ∩ [K ∩ (B + 

T)] = V ∩ (B + T) ≪𝐞∗𝐒 V. Now, to show that T + V is an e*S–supplement of B in W, we have 

W = T + K + B = T + V + [K ∩ (B + T)] + B = T + V + B, one can easily show that B ∩ (T + 

V) ⊆ [T ∩ (B + V)] + [V ∩ (B + T)] ≪𝐞∗𝐒V + T. Therefore, V + T is an e*S–supplement of B 

in W. 

 

 

Proposition 4.7: Arbitrary sum of cof e*S–supplemented modules is cof e*S–supplemented. 

Proof: Assume that {𝑊𝑖}𝑖∈I isa family of cof e*S–supplemented modules, and let W = 
∑ 𝑊𝑖𝑖∈𝐼 . Let T, be a cofinite submodule of W, so W = T + 𝑊𝑖1 + … + 𝑊𝑖𝑛 for some n ∈ N, 𝑖𝑘 

∈ I. Since T is cofinite in W and W has a zero e*S–supplement. Appling Lemma 4.6, we see 

by induction that T has an e*S–supplement in W. Thus, W is cof e*S–supplemented module. 

 

Definition 4.8: An R-module W is called ⊕e*S–supplemented module if each submodule 

of W has an e*S–supplement which is a direct summand of W. 

Examples and Remarks 4.9: 

1) Every semisimple is ⊕e*S–supplemented. For example, Z6 as Z–module. 

2) Z as Z–module isn’t ⊕e*S–supplemented. 

3) Obviously, that every ⊕e*S–supplemented is e*S–supplemented. 

4) Every ⊕–supplemented is ⊕e*S–supplemented. 

 

   An R–module W is said to have property (D3), if there are direct summands 𝑊1 and 𝑊2 

ofW with 𝑊1 + 𝑊2 = W, implies 𝑊1 ∩ 𝑊2 is also adirect summand of W [19] [17]. 

 

Proposition 4.10: Let W be a ⊕e*S–supplemented module with D3 property. Then every 

direct summand of W is a ⊕e*S–supplemented module. 

Proof: Let W be a ⊕e*S–supplemented with D3 property and let V be a direct summand of 

W. To show that V is a ⊕e*S–supplemented, let T, be a submodule of V. Then there exists a 

direct summand N of W such that N is an e*S–supplement of T in W, then W = T + N and T 

∩ N ≪𝐞∗𝐒 N. But T ⊆ V, therefore W = V + N. Since V and N are direct summand of W and 

W = V + N, then V ∩ N is a direct summand of W and hence it is a direct summand of V. By 

modularity, we have V ∩ W = V ∩ (T + N) = T + (V ∩ N). Not that T ∩ (V ∩ N) = T ∩ N 

≪𝐞∗𝐒 N. But, V ∩ N is a direct summand of W, therefore by Proposition13,[6]. T ∩ N ≪𝐞∗𝐒 V 

∩ N, thus V is ⊕e*S–supplemented module. 

 

Proposition 4.11: Let W be ⊕e*S–supplemented module and B be a fully invariant 

submodule of W. If B is a direct summand of W, then B is ⊕e*S–supplemented. 

 

Proof: Let a direct summand T of W and Y be a submodule of T. Since W is ⊕e*S–

supplemented, there exists a direct summand V of W, such that W = Y + V and Y ∩ V ≪𝐞∗𝐒 V 

and W = V ⨁ X, X ⊆ W. We have T = T ∩ W = T ∩ (V ⨁ X) = (T ∩ V) ⨁ (T ∩ X). If we 

show that T ∩ V is e*S–supplement of Y in T, then we complete the proof. By modularity, we 
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have T = T ∩ W = T ∩ (Y + V) = Y + (T ∩ V). Now, Y ∩ V ≪𝐞∗𝐒 V. Because T ∩ V is a direct 

summand of W, we obtain Y ∩ V ≪𝐞∗𝐒 T ∩ V. Hence, T ∩ V is an e*S–supplement of Y in B. 

So, it implies that T is ⊕e*S–supplemented. 

The following theorem shows that the direct sum of ⊕e*S–supplemented modules is ⊕e*S–

supplemented. 

 

Theorem 4.12: Let W = 𝑊1 ⨁ 𝑊2 . If 𝑊1 and 𝑊2 be ⊕e*S–supplemented modules, then W 

is ⊕e*S–supplemented module. 

 

Proof: Let B be any sub-module of W. Since 𝑊1 is ⊕e*S–supplemented module, 𝑊1 ∩ (𝑊2 

+ B) has an e*S–supplement Y in 𝑊1 , then we have 𝑊1 = [𝑊1 ∩ (𝑊2 + B)] + Y and 𝑊1 ∩ 

(𝑊2 + B) ∩ Y = (𝑊2 + B) ∩ Y ≪𝐞∗𝐒 Y such that Y is adirect summand of 𝑊1. Claim that Y is 

an e*S–supplement of 𝑊2 + B in W. Since 𝑊1 = [𝑊1 ∩ (𝑊2 + B)] + Y, then W = 𝑊1 + 𝑊2 = 

[𝑊1 ∩ (𝑊2 + B)] + Y + 𝑊2 = Y + B + 𝑊2 and (𝑊2 + B) ∩ Y ≪𝐞∗𝐒 Y, hence Y is an e*S–

supplement of 𝑊2 + B in W. Now, since 𝑊2 ∩ (B + Y) ⊆ 𝑊2 and 𝑊2 is ⊕e*S–supplemented, 

then 𝑊2 ∩ (B + Y) has an e*S–supplement X in 𝑊2 and X is a direct summand of 𝑊2 , then 

we have 𝑊2 = X ⨁ K, K ⊆ 𝑊2 , 𝑊2 = [𝑊2 ∩ (B + Y)] + X and 𝑊2 ∩ (B + Y) ∩ X = (B + Y) 

∩ X ≪𝐞∗𝐒 X. Since W = 𝑊2 + B + Y = [𝑊2 ∩ (B + Y) + X] + (B + Y) = X + B + Y and Y ∩ 

(X + B) ⊆ Y ∩ [ X + [𝑊2 ∩ (B + Y)] + B] ⊆ Y ∩ (𝑊2 + B) ≪𝐞∗𝐒 Y and 𝑊2 ∩ (B + Y) ∩ X = 

(B + Y) ∩ X ≪𝐞∗𝐒 X. One can easily show that B ∩ (Y + X) ⊆ [Y ∩ (X + B)] + [X ∩ (B + Y)] 

≪𝐞∗𝐒 Y + X. So, Y + X is e*S–supplement of Bin W. Thus, W is ⊕e*S–supplemented. 

 

Corollary 4.13: Any finite direct sum of ⊕e*S–supplemented modules are ⊕e*S–

supplemented. 

 

Proof: By induction. 

 

Recall that if 𝑀1 and 𝑀2 be R–module. Then called 𝑀1 is 𝑴𝟐–projective if for each 

submodule A of 𝑀2 and any homomorphism f : 𝑀1 ⟶ 
 𝑀2 

 𝐴  
 , there is a homomorphism 𝑔 : 𝑀1 

⟶ 𝑀2 such that 𝜋 ∘ 𝑔 = f , where π : 𝑀2 ⟶ 
 𝑀2 

 𝐴  
 is the natural epimorphosis, see [20]. 

 
𝑀1and 𝑀2are say to be relatively projective if 𝑀1 is 𝑀2–projective and 𝑀2 is 𝑀1–projective, 

see [20]. 

Lemma 4.14: Let M = S ⨁ T = N + T where S is T–projective. Then M = K ⨁ T where K 

⊆N. 

 

Proof: See ([20] Lemma 4.47). 

 

Theorem 4.15: Let 𝑊𝑖(1 ≤ i ≤ n) be relatively projective, any finite collection modules. The 

module W = 𝑊1 ⨁ 𝑊2 ⨁ … ⨁ 𝑊𝑛 is a ⊕e*S–supplemented module if and only if 𝑊𝑖 is 

⊕e*S–supplemented module for all (1 ≤ i ≤ n). 
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Proof: The necessity part is proved in Theorem 4.12. 

Conversely, it is enough to prove that 𝑊1 is ⊕e*S–supplemented. Let S be any submodule of 

𝑊1. Then there exists a direct summand B of W such that W = S + B and S ∩ B ≪𝐞∗𝐒 B. Not 

that W = S + B = 𝑊1 + B. By lemma 4.14, there exists a submodule K of B such that W = 𝑊1 

⨁ K. Now, B = B ∩ W = B ∩ (𝑊1 ⨁ K) = K ⨁ (B ∩ 𝑊1), then (B ∩ 𝑊1) is a direct summand 

of W and hence it is a direct summand of 𝑊1 . Now, we have 𝑊1 = 𝑊1 ∩ W = 𝑊1 ∩ (S + B) = 

S + (B ∩ 𝑊1), and S ∩ B ∩ 𝑊1 = S ∩ B ≪𝐞∗𝐒 B, then S ∩ B ∩ 𝑊1 ≪𝐞∗𝐒 B ∩ 𝑊1. Therefore B 

∩ 𝑊1 is e*S–supplement of S in 𝑊1 which is adirect summand. Thus 𝑊1 is ⊕e*S–

supplemented. 

 

Proposition 4.16: Let W be ⊕e*S–supplemented nonzero module and let S be a fully 

invariant submodule of W. Then the factor module 
  𝑊  

𝑆
 is a ⊕e*S–supplemented. 

Proof: To show that 
  𝑊  

𝑆
 is ⊕e*S–supplemented, let 

  𝐵  

𝑆
 be any submodule of 

  𝑊  

𝑆
. Since W is 

⊕e*S–supplemented module, there exists a direct summand D of W such that W = B + D, B 

∩ D ≪𝐞∗𝐒 D and W = D ⨁ A, A ⊆ W. By Proposition 2.11, 
  D+S  

S
 is e*S–supplement of 

  B  

S
 in 

  𝑊  

𝑆
. Since S is a fully invariant submodule of W, then 

  D+S  

S
 is adirect summand of 

  𝑊  

𝑆
 . Thus, 

  𝑊  

𝑆
 is ⊕e*S–supplemented. 

 

Corollary 4.17: Let W be a ⊕e*S–supplemented duo module. Then each factor module of W 

is a ⊕e*S–supplemented module. 

 

Theorem 4.18: Let W be a module such that W = 𝑊1 ⨁ 𝑊2 is a direct sum of sub-modules 

𝑊1 and 𝑊2. Then 𝑊2 is a ⊕e*S–supplemented module if and only if there exists a direct 

summand X of W such that X ⊆ 𝑊2 , W = T + X and T ∩ X ≪𝐞∗𝐒 X, for every submodule 
 𝑇 

𝑊1
 

of 
 𝑊 

𝑊1
 . 

Proof: ⇒) Let 
 𝑇 

𝑊1
 be any submodule of 

 𝑊 

𝑊1
. Since 𝑊2 ∩ T ⊆ 𝑊2 and 𝑊2 is ⊕e*S–

supplemented, then T ∩ 𝑊2 has e*S–supplement say X in 𝑊2, where X ⨁ K = 𝑊2, 𝑊2 = (T 

∩ 𝑊2) + X and T ∩ 𝑊2 ∩ X = T ∩ X ≪𝐞∗𝐒 X. Clearly, X is a direct summand of W and W = 

𝑊1 + 𝑊2 = 𝑊1 + (T ∩ 𝑊2) + X ⊆ 𝑊1 + T + X. But 𝑊1 ⊆ T, therefore W = T + X. So, we 

obtain a result. 

⇐) Let T be a submodule of  𝑊2. Consider the submodule 
𝑇 ⨁ 𝑊1

𝑊1
 of 

 𝑊 

𝑊1
. By our hypothesis 

there exists a direct summand X of W such that X ⊆ 𝑊2 , W = (T + 𝑊1) + X and (T + 𝑊1) ∩ 

X ≪𝐞∗𝐒 X. Since 𝑊2 = 𝑊2 ∩ W = 𝑊2 ∩ [(T + 𝑊1) + X] = X + [(T + 𝑊1) ∩ 𝑊2] = X + T + 

(𝑊1 ∩ 𝑊2) = X + T, by Modular law, and since T ∩ X ⊆ (T + 𝑊1) ∩ X ≪𝐞∗𝐒 X, then X is 

e*S–supplement of T in 𝑊2 . Thus 𝑊2 is ⊕e*S–supplemented. 

 

Proposition 4.19: Let W be a ⊕e*S–supplemented module. Then W = 𝑊1 ⨁ 𝑊2 , where 

𝑍𝑒∗(𝑊1) ≪𝐞∗𝐒 𝑊1 and 𝑍𝑒∗(𝑊2) = 𝑊2 . 

Proof: Since 𝑍𝑒∗(𝑊) ⊆ W, and W is ⊕e*S–supplemented module, then there exists 𝑊1 such 

that W = 𝑊1 ⨁ 𝑊2 for some submodule 𝑊2 of W, W = 𝑍𝑒∗(𝑊) + 𝑊1 and 𝑍𝑒∗(𝑊) ∩ 𝑊1 ≪𝐞∗𝐒 

𝑊1. But 𝑍𝑒∗(𝑊1) = 𝑍𝑒∗(𝑊) ∩ 𝑊1 ≪𝐞∗𝐒 𝑊1. Since 𝑍𝑒∗(𝑊) = 𝑍𝑒∗(𝑊1) ⨁ 𝑍𝑒∗(𝑊2), then W = 

𝑍𝑒∗(𝑊1) ⨁ 𝑍𝑒∗(𝑊2) + 𝑊1, with 𝑍𝑒∗(
𝑊

𝑍𝑒∗(𝑊2) + 𝑊1
) = 

𝑊

𝑍𝑒∗(𝑊2) + 𝑊1
 = 

𝑍𝑒∗(𝑊1)+(𝑍𝑒∗(𝑊2) + 𝑊1)

(𝑍𝑒∗(𝑊2) + 𝑊1)
 ≅ 

𝑍𝑒∗(𝑊1)

𝑍𝑒∗(𝑊1)∩(𝑍𝑒∗(𝑊2) + 𝑊1)
 = 

𝑍𝑒∗(𝑊1)

𝑍𝑒∗(𝑊1)
 = 0 = 𝑍𝑒∗(0) by Second Isomorphism Theorem. So, W = 
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𝑍𝑒∗(𝑊2) ⨁ 𝑊1. But by Modular law, 𝑊2 = 𝑊2 ∩ W = 𝑊2 ∩ (𝑍𝑒∗(𝑊2) ⨁ 𝑊1) = 𝑍𝑒∗(𝑊2). 

Thus, we get the result.  

 

Theorem 4.20: For an R–module W with (D3) the following statements are equivalent. 

1) Every direct summand of W is ⊕e*S–supplemented; 

2) W is ⊕e*S–supplemented; 

3) W = 𝑊1 ⨁ 𝑊2 , where 𝑊1 is ⊕e*S–supplemented with 𝑍𝑒∗(𝑊1) ≪𝐞∗𝐒 𝑊1 and 𝑊2 is 

⊕e*S–supplemented with 𝑍𝑒∗(𝑊2) = 𝑊2. 

Proof: (1 ⇒ 2) Clear by the Definition. 

(2 ⇒ 1) By Proposition 4.10. 

(2 ⇒ 3) By Proposition 4.19. 

(3 ⇒ 2) By Theorem 4.12. 

 

5. Conclusions. 

We confirm the following outcomes: 

1) Every supplemented module is e*S–supplemented. 

2) The image homomorphism of the e*S–supplemented module is e*S–supplemented.  

3) If W is a uniform cosingular R-module, then weakly supplemented and weakly e*S–

supplemented modules coincide. 

4) Every e*S–supplemented module is cof e*S–supplemented. 

5) A random sum of cof e*S–supplemented modules are cof e*S–supplemented. 

6) Every e*S–hollow modules are ⊕e*S–supplemented. 

7) Any finite direct sum of ⊕e*S–supplemented modules are ⊕e*S–supplemented. 

8) Many properties have been presented of an e*S–supplemented, weak e*S–supplemented, 

cof e*S–supplemented and ⊕e*S–supplemented modules. 
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