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Abstract.

This paper aims present the main concepts of e*S—supplement submodules,
weak e*S—supplement submodules, e*S—supplemented modules, weakly e*S—
supplemented modules, cofinitely e*S—supplemented modules, and @e*S—
supplemented modules, as popularization of the concepts of supplement
submodules, weakly supplement submodules, supplemented modules, weakly
supplemented modules, cofinitely supplemented modules, and @-supplemented
modules respectively. We will prove some characteristics of these concepts.
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1. Introduction

In this paper W will be a unitary left R-module, and R is any ring with identity.
Notationally, a submodule T of an R-module W is considered small, which is well known.
Note that, T << W, if for each submodule of W, T + L =W, then L=W, [1] and [2]. A nonzero
submodule T of W is considered essential if and only if, for every submodule L of W, L = {0}
whenever T N L = {0}. Here, we denote T <, W, where W is known as the essential
extension of T [2] and [3].
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A new submodule type was created by Baanoon in [4] and it is a generalization of an
essential submodule called ex-essential as follows. For any non-zero cosingular submodule B
of W, if A N B # 0, we say that A is an e*-essential submodule in W. Denoted by A <., W.
This is the definition of the singular submodule: Z(W) = {m € W: ann(m) <,R}. If Z(W) =
W, then W is called a singular module and if Z(W) = 0, W is called non-singular by [5]. We
generalized Z(W) to Z,.(W), by applying an e* essential submodule. Now, let W be a
module define Z,,(W) = {n € W: ann(n) <., R}, W is called an e* singular module if
Zo(W) =W, and W is called e* non-singular module if Z,,(W) =0, [6].

In [6], the generalization of small submodule known as e*S—small submodule is
introduced by A. Kabban and W. Khalid. A submodule T of W is called an e*S—small

submodule of W (signified by T <. W) if whenever W = T + H, with Z,.(—) = -
implies that W = H. A nonzero module W is called an e*S—hollow if every proper submodule
of W is e*S—small, [6].

LetHSDCW,if % < % , then H is called a coessential submodule of D in W [7] [8]. For a

generalization of the coessential submodule, we present the following as the e*S-coessential

submodule in [6]. Let W and D be R—modules, and H € W, such that D € H € W, then D is

called an e*S—coessential submodule of H in W (denoted by D S,,5 e H in W) if %

Kess %. A submodule T of W is coclosed submodule of W (denoted by T S.. W) if

whenever % < % implies that T = L, see [9] [10] [11]. Based on this idea, we may provide
the following idea. Let W be an R—module and H be submodule of W. We say that H is an

e*S—coclosed submodule of W (denoted by H Se.5 (W) if whenever T Se.s e H, (i€, %

Kexs %) implies that T =H, [6].

As in [12] [13] [14] [15] [16]we will use e*S—small submodules to present a new
generalization of supplement submodules, weak supplement submodules, supplemented
modules, weakly supplemented modules, cofinitely supplemented modules, and @-
supplemented modules. Namely of e*S—supplement submodules, weak e*S—supplement
submodules, e*S—supplemented modules, weakly e*S—supplemented modules, cofinitely
e*S—supplemented modules, and @e*S—supplemented respectively. We prove the main
characteristics of these concepts.

2. e*-Singular Supplement Submodules.

A generalization of supplement submodules with certain characteristics is shown in this
section. Remember that a sub-module T of a module W is called a supplement of a sub-
module B in W, if W=T+ B and T N B is small in T [17] [8]. And in this section, we
introduce a generalization of supplemented modules. We also show some properties of these
generalized submodules. Recall that W is called a supplemented module if each sub-module
of W has a supplement in W [17] and [8].

Firstly, we need to list basic properties of the concept of an e*S—small [6].

Lemma 2.1: [6] Let W be any R—module, so.
) IfD € C € W. Then C Ke,s W if and only if D Ke.s W and — Keus

2) Let D and C be submodules of W. Then D + C Kg,g W if and only if D <, W and C
Koxg W.
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3) Let N;,N5, ..., N, € W. Then Z}Ll Nj Kes.s Wifand only if Ny Ke,s W,V j=1,2, ...,
n.

4) Let T € X be submodules of W. If T <, X, then T <g,5 W.

5)Let f: W — D be a homomorphisim. If T <g,s W, then f(T) <e.s D.

6) Let W=T,; @ T, be an R—module and H; € T; , H, € T,. Then H;® H; K¢e,s T; @ T, if
and only if H; <e,s Tj and H, <. T5.

Lemma 2.2: [6] Let W be any R-module, and let two submodules H and L of W. If Z, (%)
W w., W

= then Ze. G0) =

The notion of an e*S—small submodule leads to the following:

Definition 2.3: Let T and H be submodules of an R-module W. If W = T + H and TN
H <e.sT, then T is called e*-singular supplement of H in W (in brief e*S—supplement). If
each asubmodule of W has e*S—supplement, then W is called e*S—supplemented module.

It easy to show the following Lemma.

Lemma 2.4: For any R—module W, let T and D be asubmodules of W. Then T is an e*S—
supplement of D in W if and only if for each S € T with Ze*(%) = —Z ,and W=S +D
implies T=S.

Proof: =) Since W=T+Dand TN D Ke,s T, for SC€ T with W=S + D, we have T=W N
T=(S+D)NT=S+(TND),since TND Ke.s T with Z,.(x) =, thus T=S.

<) Clare.

Examples and Remarks 2.5:

1) Every supplemented module is an e*S—supplemented. Conversely need not be accurate
since an e*S—small need not be a small submodule, [6].

2) In the Z-module Z,, the sub-module (4} is not an e*S—supplement of (2), since (4) +
(2) = (2) # Zy;.

3) If W is a uniform cosingular R—module, then supplemented and e*S—supplemented
modules coincide. In particular, the Q as Z—module is a uniform cosingular, not supplemented
module ([8] P.238). So, Q as Z-module is no e*S—supplemented.

4) For any R-module W, the submodule {0} is the e*S—supplement of W and W is the e*S—
supplement of {0} in W.

5) Every semi-simple module is e*S—supplemented. In particular, the Z—module Zg is e*S—
supplemented.

6) The e*S—supplement submodule need not be existing. For example, the Z-module Z, a
submodule 2Z has no an e*S—supplement submodule, since {0} the only e*S—small of Z.

7) The e*S—supplement is not commute. For example, in Z,, as Z-module, the submodule
(2) has an e*S—supplement (3). But (2) is not an e*S—supplement of (3), since (2) N (3) =
(6) and (6) is not an e*S—small in (2). Because (6) + (4) = (2) and Ze*(% = %, but
(2) # (4).

8) If M = A @ B, then A is e*S—supplement of B and B is an e*S—supplement of A. For
example, Zg as Z-module (3) is e*S—supplement of (2) and (2) is e*S—supplement of (3).

9) The Z as Z-module isn’t an e*S—supplemented, since the submodule 2Z has no e*S—
supplement submodule. See (6).

10) Every e*S—hollow module is e*S—supplemented.
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To see that let W be e*S—hollow, and T be a submodule of W. If W = T, so T has e*S—
supplement {0}. If T is a proper submodule of W. Hence, T is e*S—Small submodule of W.
Since T+W=Wand TNW =T <, W, so T has e*S—supplement. Therefore, W is e*S—
supplemented.

11) The convers of (10) isn’t accurate in general, for example Zg as Z—module.

Proposition 2.6: Let H and Y be submodules of a module W suchthat Y € H € W. If Y is an
e*S—supplement in W, then Y is an e*S—supplement in H.

Proof: Since Y is an e*S—supplement in W, there exists K a submodule of W, where Y + K =
W and Y N K <g,s Y. The submodule H=HNW = Hn (Y + K) and by the Modular law,
H =Y+ (HnK). Hence, Y is an e*S—supplement of HN K in H, since YN (HNK) =Y N
K «Ke.s Y. Therefore, Y is an e*S—supplement in H.

Proposition 2.7: Let D and Y be sub-modules of a module W such that D C Y € W. If Y is
an e*S—supplement in W, then % is an e*S—supplement in %.
Proof: Since Y is an e*S—supplement in W, there exists K € W, suchthat Y + K=Wand Y n

K Ke.sY. Now, w_onK_X + KD and X2 X0 (&+D) _D+(¥n k) , by Modular law
D D D D 5 D(Y o D_ )

since Y N K Ke.sY, by Lemma 2.1 (1), we have that * <<e*S . Therefore, — > is an

e*S—supplement of % n %.

Proposition 2.8: For any R—module W, let Y be an e*S—hollow submodule of W. Then Y is
an e*S—supplement of each proper sub-module H of W such that W =Y + H.

Proof: Let H be a proper submodule of W such that W =Y + H. So, YN H is a proper
submodule of Yif YN H =Y. Hence, Y € H and W = H, which contradicts. Now, since Y is
an e*S—hollow, thus HN'Y is an e*S—small in Y. Therefore, Y is an e*S—supplement of H in
W.

Proposition 2.9: For any R—module W, let T, H be sub-modules of W such that H is an e*S—
supplement of T in W. If W =Y + H, for some submodule Y of T, then H is an e*S—
supplement of Y in W.

Proof: Assume that W =Y + H, for some submodule Y of T and H is an e*S—supplement of T
in W. So, wehave W=T+H,and TN H Kg,s H. Since YE T, so YN HE T N H K,.s H,
by Lemma 2.1, Y N H K,s H, and W =Y + H. Therefore, H is an e*S—supplement of Y in
W.

Proposition 2.10: For any R—module W, let H, T be sub-modules of W, and T be an e*S—
supplement of H in W if C <g,s W, then T is an e*S—supplement of H + C.

Proof: Let T+ (H+ C) =W, toshow TN (H+ C) Keus T, let T N (H + C) + X =T, with
Zeu(50) =~ W=T+(H+C)=Tn (H+C)+X+H+C)=X+H+C)=(H+X)+C,
T+(H+C)+X T+(H+X) _ T T

)— Y , since Y = = = b
H+X H+X H+X H+X (H+X) = TnH+X) X+HNT) Y

to show Zg.(=—

Second Isomorphism and Modular law. Since Ze*(%) = %, then we get Ze*(m) =

,since C Kgos W, then W=H+ X, but W=H + T, and X

w
———, hence Ze*( ) =
X+(HNT) > H+X H+X ’

C T and Z,, (7) = 7, then T = X, by Lemma 2.4.
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Proposition 2.11: For any R—module W, let X, T be sub-modules of W. If T is an e*S—
supplement of X in W, then TL;L is an e*S—supplement of —)]f in —V: ,for L € X.

Proof: Since T is an e*S—supplement of X in W. Then W = X + T and X N T Keug T, for L ©
T+L,  (XNT)+L

X,wehave X N (T+L)=(XNT)+L, by Modular Law, and = N ( ) 9 , since
X N T Keus T, it follows that oD+l Kexs T:L Now, % = % = LL + % .

T+L . w
Therefore, Q18 e*S—supplement of —L in -

Proposition 2.12: For any R—module W, let T be an e*S—supplement of C in W, K € T, then
K<Kexs Wifand only if K <g,g T.

Proof: =) Let K +Y = T with Ze,(<-) ==~ but T+ C =W and T N C Ke.s T, then W = (K

+Y) + C, hence W = K + (Y + C) to show Zg,(—— Y+C) = Yvrc since YVJYC = T?‘({:S) =~
T _ T

Tn(Y+C)  Y+(TNnC)

, by Modular law and Second Isomorphlsm Theorem. Since Z, (l) =

T 3 T
Y+(TnC))_ Y+(TnC) ’ vic ) = vic o but K Le.s W, then

W=Y+C,sinceW=T+C,Y S Tand Ze*(T) = 7, then by Lemma 2.4, T=Y.
& Clearly by Lemma 2.1.

%, then we get Z.( , hence Ze*(

Proposition 2.13: For any R—module W, let V be an e*S—supplement of U in W, and H, T be
sub-modules of V. Then T is e*S—supplement of H in V if and only if T is e*S—supplement of
H+UinW.

Proof: =) Let T be an e*S— supplement ofH inV,thenV=T+Hand T N H K. T. Let (H

+U)+L=W for L € T with Z¢.( — )—— Now, H + L € V. Since HVL = T+£:;:L) =
T = T , by Modular law and Second Isomorphism Theorem, and Z,(— ) l

Tn (H+L) L+(HnT)
and because V i1s e*S—

then we get Ze.( hence Zg.(——

L+(HnT))_ L+(HNT)’ H+L)_ H+L’
supplement of U in W, then W=V + U and by Lemma 2.4, H+L=V. Since L € Tand T is
an e*S—supplement of Hin V, then T = L.
<) Let T be an e*S—supplement of H+ U in W. Then T+ (U + H)=W and T n (U + H)
KessT.Let T+ H=V,toprove T N H Ke.s T, since TN H S TN (U+ H) Keus T, then T N
H «<e.s T, hence T is an e*S—supplement of H in V.

For any R—module W, let V and T be sub-modules of W. We said T and V are mutual e*S—
supplements, if T is an e*S—supplement of V in W and V is e*S—supplement of T in W.

Corollary 2.14: For any R—module W, let V, B be mutual e*S—supplements in W. L be e*S—
supplement of U in V, and H be an e*S—supplement of T in B, then L + H is an e*S—
supplement of T + U in W.

Proof: Since V=U + L and B is e*S—supplement of V in W, then by proposition 2.13, H is
e*S—supplement of U+ L+ T in W and then (U+ L+ T) N H <e.g H, since B=T+ H and V
is e*S—supplement of B in W, then by proposition 2.13, L is e*S—supplement of U + T + H in
Wand then (U+ T+ H) N L K¢, L, because V=U+L,B=T+H,and W=V + B, then
wehave W=U+L+T+H=U+T+L+H,then(U+T)N(L+H)SLNU+T+H)+H
N(U+T+L)<Ke.s L+ H, hence L + H is e*S—supplement of T + U in W.

Proposition 2.15: For any R—module W, let T, V be submodules of W, then the following
statements are equivalent.
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1) Vis an e*S—supplement of T in W;

2) W =T + V and for every proper sub-module X of V with Ze*(%) = % ,then W # T + X,
Proof: (1)=(2) Assume that V is an e*S—supplement of T in W and suppose that W =T + X,
where X is a proper sub-module of V such that Ze*(%) = % . Then by Modular law, V=V N

W=Vn((T+X)=X+(TNYV).Since V is an e*S—supplement of T in W and Ze*(%) = % ,
then V = X, which is a contradiction. Thus W # T + X.

(2)=(1) Suppose that W = V + T. To show that V is an e*S—supplement of T in W, it is
sufficient to show that V N T K,,s V, let C be a submodule of V such that V=(T n V) + C,
with Ze*(%) = % . If C is a proper sub-module of V, then by our assumption W # T + C. But

W=T+V=T+(TnV)+C=T+ C, which is a contradiction. Thus, V is an e*S—
supplement of T in W.

Proposition 2.16: For any R—module W, let T, V and C be submodules of W. If T is an e*S—
supplement of V in W, and V is an e*S—supplement of C in W, then V is an e*S—supplement
of Tin W.

Proof: Let W=T+V=V+C, TNV Keus Tand VN C Ke,g V. To prove that T N V K¢,g
V. Let D be a sub-module of V such that V= (T N V) + D, with Ze*(%) = % .Since W=V +
C=(TNV)+D+Cand TNV Leus T, then T NV K5 W. Note that, —— = -5
v v . : V..V
VADiG  DivnG’ by Second Isomorphism and Modular law. Since Ze,( s ) ~ then we
v -_V Wy W -
get Ze*(D+(Vn C)) = rwng hence Ze.( D+C) ol and T NV Keg W, then W=D + C.
Now, V=VnNnW=vVvn(D+C)=D+ (VN C), by Modular law. But V N C K,s V, and

Ze*(%) = % , therefore V = D. Thus, V is an e*S—supplement of T in W.
Now, we will present a few properties of e*S—supplemented modules.

Proposition 2.17: Let A and B be submodules of W such that A is an e*S—supplemented
module. If A + B has an e*S—supplement in W then B does.

Proof: Let D be an e*S—supplement submodule of A+ B in W. Then (A+ B) + D =W and D
N (A + B) Ke.s D. Since A is an e*S—supplemented module, (D + B) N A is a submodule of
A. Hence, there exists Y € Asuchthat D+ B)NA+Y=Aand(D+B)NnANY=(D+B)
NY Kess Y. Thus, we have D+ B+ Y =W, and (D + B) NY Kg.s Y, that is Y is an e*S—
supplement of D + B in W. Next, we will show that D + Y is an e*S—supplement of B in W,
itis clear that (D + Y) + B =W, so it suffices to show that (D + Y) N B Ke,s D + Y, since Y +
BSA+B,byLemma2.1,DN(Y+B)S DN (A+B) <Keis D. Thus, D+Y)NBES DN
Y+B)+Y N (D+B) Kexs D+ Y. Hence, (D +Y) N B Ke.g D +Y. Therefore, B has an
e*S—supplement in W.

Remember that a fully invariant submodule D of W is defined as follows: g (D) € D, for
each g € End (W) and W is called duo module if each submodule of W is a fully invariant.
W is called distributive module if for every D, V and U are submodule of W, then D N (V +
U)=(DnV)+(DnU)[8]

Proposition 2.18: Let W be an e*S—supplemented module and let T is a fully invariant of W,
then % is an e*S—supplemented.

K w K W . .
Proof: Let — & —— to prove — has e*S—supplement in - K € W, since W is e*S—

supplemented, then there exists Y € W such that W=K + Y, and K N Y <,,s Y. Now, % =
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K+ ¥ =£+ Y+T,to prove —— N~ Keug —=—, let (7- N —=—) + — = ———, with
T T VT Y+"¥ Kn(Y+T) T+(KnY) TT(K YT) v

;*g )— , to prove - = %0 - - , then TY+TT=

s dT+(KnY)+V Y + T, since TSV, then (K N Y)+ V=Y +T, but Z.(—— ) =

Y+T,andKﬂY<<e*sY§Y+T,thenKnY<<e*sY+T,thereforeV—Y+Tand - =

Y+T

—

Corollary 2.19: The homomorphic image of an e*S—supplemented module is an e*S-
supplemented.

Proof: Since every homomorphic image is isomorphic a quotient module.

Remark 2.20: The convers of proposition 2.18, need not be accurate in general. For example,

= = Z¢ as a Z-module is an e*S—suplemented module. But the Z-module Z isn’t e*S—

supplemented module. See, Examples and remarks 2.5.

Proposition 2.21: Let W = W; @ W,, be aduo module, then W;and W, are e*S—supplemented
modules if and only if W is an e*S—supplemented.

Proof: =) Let H € W, since W = W;+ W, + H, trivially has an e*S—supplement in W. By
Proposition 2.17, then W, + H has an e*S—supplement in W, by Proposition 2.17, again, H
has an e*S—supplement in W. So, W is an e*S—supplemented module.

1S an

)W, = %, since W is an e*S—supplemented module, by proposition 2.18, -

e*S—supplemented module. Thus, by corollary 2.19, W, is an e*S—supplemented module.
Similarity W; is an e*S—supplemented module.

Corollary 2.22: Let W =@}, W;. Wis an e*S—supplemented module if and only if
W;, W,, ..., W, are e*S—supplemented modules.
Corollary 2.23: Let W; @ W, = W be aduo module, H and V are sub-modules of W;, if H is
an e*S—supplement of V in Wy, then H @ W, is an e*S—supplement of V in W.
Proof: Let H be an e*S—supplement submodule of V in Wy, then W, =H +Vand H N V
Kess H, since W=W,®&W,, then W=MH+ V) & W,, hence W=V +(H & W,) but (H D
W,)NnV=HSW,)NnW; NV=HNV K,,s H And by Lemma 2.1, then HNV <.,s H ®
W,, hence H @ W, is an e*S—supplement of V in W.

The following explain the relation between e*S—supplemented modules and e*S—coessential
submodules.

Proposition 2.24: Let T, V and X be sub-modules of a distributive R—-module W. If T is an
e*S—supplement of V in W and V is an e*S—supplement of X in W with T € X, then T
ge*s_ce X in W.

Proof: Assume that T is an e*S—supplement of V in W, and V is an e*S—supplement of X in
W with T € X. To show that T Ceus ce X in W, let 7 ==+ =, with Ze, () =~ then W =
X +Y. So, by Modular law, Y=Y NW=YN(T+V)=T+(YNV).Hence, W=X+Y=X
+T+(YNV)= X+(YnV) andV=VNW=VnNX+Y). Hence, V=(V N X)+((VNY).

To show Ze.( —— {av). )= vhy , by Second Isomorphism Theorem, —— VoY _W , where T ©
Y. But Z.,(— ) = —, hence Ze*(VnY) =vny

vaY Y Y
Y, since Y = T + (Y NV),thenY=T+V=W.Thus T S.,5 ce X1n W.

and (VN X) Keus V,then V=Y NV, so0V C
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3. Weak e*-singular Supplement Submodules.

Now, we present one generalization of weak supplement submodules, and we show some
of its properties. Recall that a submodule A of an R-module W is called a weak supplement of
a submodule B in W, if W =A + B and A N B is small in W, [8]. As well as we introduce the
generalization of weakly supplemented modules with some properties. Recall that when
every sub-module of an R-module W has a weak supplement, then W called weakly
supplemented, [8].

Definition 3.1: Let B and T be submodules of the R-module W. If W=T+Band T N B K.s
W, then T is called a weak e*S—supplement of B in W. A module W is called weakly e*S—
supplemented if each asubmodule of W has a weak e*S—supplement in W.

Examples and Remarks 3.2:

1) If W is a uniform cosingular R—module, then weakly supplemented and weakly e*S—
supplemented modules coincide.

2) Every e*S—supplemented is a weakly e*S—supplemented module. The converse need not
be accurate in general. For example, the Q as Z—module is a uniform cosingular which is
weakly supplemented ([8] P.238). From (1), the Z—module Q is weakly e*S—supplemented.
But not e*S—supplemented.

3) In Z;, as Z-module, the submodule (4} is not a weakly e*S—supplement of (2) in Z, since
(4) +(2) = (2) # Zy,.

4) Z as Z-module isn’t a weakly e*S—supplemented, since 2Z has no an e*S—supplement
(weak e*S—supplement) submodule. See Examples and remarks 2.5 (9).

5) Every e*S—supplement submodule is a weak e*S—supplement. The converse need not be
accurate in general. For example, in Z;, as Z-module, the submodule (2) is a weak e*S—
supplement of (3) while (2) is not e*S—supplement of (3) in Z;,. Since (2) N (3) = (6) and
(6) + (3) = (2), and ze*(% - % ,but () # (2). Thus, (6) is not e*S—small in (2).
Proposition 3.3: Let T, B be two submodules of W, and let T be a weakly e*S—supplemented
module. If T + B has a weak e*S—supplement in W then B does.

Proof: By assumption there exists N € W, suchthat N+ (B+T)=W,and NN (B + T) Ke.s
W, since T is weakly e*S—supplemented module there exists D € T, such that (N +B) N T +
D=Tand (N +B) N D Kgs T, thus B+ N+ D =W, and (N + B) N D <, T, and by
Lemma 2.1, (N + B) N D <.s W, that is D is a weak e*S—supplement of N + B in W, we
will show that N + D is a weak e*S—supplement of B in W, it is clear that (N + D) + B=W,
so it enough to show that (N + D) N B <, W. Since (N+D)NBES NN (T+B)+(N+B)n
D Kess W, then (N + D) N B K. W. Therefore, N + D is a weak e*S—supplement of B in
W.

Corollary 3.4: Let W =T;+ T,, if T; and T, are a weakly e*S—supplemented modules then
W is a weakly e*S—supplemented.

Proof: Let D be asubmodule of W. Since T;+ T,+ D = W, trivially has weak e*S—supplement
in W. By Proposition 3.3, T, + D has a weak e*S—supplement in W. And again, by
proposition 3.3, D has aweak e*S—supplement in W. So, W is aweakly e*S—supplemented.

Proposition 3.5: Let W be a weakly e*S—supplemented module and Y € D € W, if Y Kg.s
W implies that Y <e.s D, then D is an e*S—supplement submodule of W.
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Proof: Assume that W is a weakly e*S—supplemented. So, W=D + L, L € W and D n
L<e.s W. By our assumption we get D N L<,,s D. Hence, D is an e*S—supplement of L in
W.

Proposition 3.6: Let W be a weakly e*S—supplemented module then for every T, B € W,
with T + B =W, there exists a weak e*S—supplement K of T in W with K € B.

Proof: Suppose T, B € W, with W =T + B. Since W is weakly e*S—supplemented, T N B has
a weak e*S—supplement D in W. In this case W = (TN B) + D and (T N B)N D Kq.s W.
Since W=T+B,andB=(TNnB)+(BND),then W=T+(TNnB)+(BND)=T+ BN
D). Let K=BND. Then W=T+Kand TNK=TnNB ND K,.s W. Hence, K is a weak
e*S—supplement of T in W with K € B.

Proposition 3.7: For any R—module W, let T is a weak e*S—supplement of V in W. Then for
Lcy, % is a weak e*S—supplement of lL in —V: .

Proof: Since T is aweak e*S—supplement of Vin W. Then W=V + Tand V N T Kg,s W, for
w V+T \ T+L T+L, _ (VNT)+L

LcV NOW,TZ — = + d—n ( ) o , by Modular law, and
since VN T Ke,g W, then gnh+L Kexs ﬂ Therefore i - L is a weak e*S— —supplement of
V. W
— in—.

L L

Corollary 3.8: Let A and B be submodules of R—module W, with A € B. If A and B have the
same weak e*S—supplement submodule in W, then A is an e*S—coessential submodule of B.
Proof: Clearly by Proposition 2.24, and Examples and remarks 3.2 (2).

Corollary 3.9: Epimorphic image of a weakly e*S—supplemented module is a weakly e*S—
supplemented module.

Proof: It follows from Corollary 2.19, and Examples and remarks 3.2 (2).

Corollary 3.10: Let W be aweakly e*S—supplemented module and a submodule D of W, then
% is a weakly e*S—supplemented module.
Proof: Clearly by Proposition 2.18, and Examples and remarks 3.2 (2).

Proposition 3.11: Let T be a submodule of an R—module W. Consider the following
statement

1) T is e*S—supplement submodule of W;

2) T is e*S—coclosed in W;

3) For every submodule Y of T, if Y <¢,s W, then Y <g,g T.

Then (1) = (2) = (3). If W is weakly e*S—supplemented, then (3) = (1).

Proof: (1) = (2) Let T, be an e*S—supplement of B in W then W=T + B and T n B <ess T.

To prove that T is an e*S— coclosed assume that Ze*( ) = l and — <<e*S for some
W T | B+Y wo_ T+(B+Y) ~ T

submodule Y of T. Since W =T + B, + We have vy By S TaG

T w w
YHTnB) ° , since Ze*( ) = —, then Ze*(B Y) = m But — v Less >
implies thatW B +Y Notthat T=TNnW=Tn(B +Y) Y+(TNB).ButTNB Keus T
and Ze*( ) =—, therefore T =Y. Thus, T is an e*S—coclosed.
2)=03) Suppose that T is an e*S—coclosed in W and Y <g,s W, let T =Y + D, with Ze*(%)
= % . Since T is an e*S—coclosed in W, it is sufficient to show that % Kexs % , let % = %
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+ 2 with Ze, () =, then W=T+B=Y +D+B=Y + B. But Y «e,s W and Zc.(~-)

= %, therefore W = B.

(3) = (1) Since W is weakly e*S—supplemented, there exists a submodule D of W such that
W=T+Dand TN D Keigs W.By 3) TN D Kegus T. Thus, T is an e*S—supplement
submodule of W.

4. Cofinitely e*-singular Supplemented and @e*-singular Supplemented Modules.
It is known that a sub-module B of W is called cofinite if % is finitely generated. We

present one generalization of cofinitly supplement modules, as well as showing some of its
properties. Recall that for any R—module W. If each cofinite sub-module of W owns a
supplement in W, it is called a cofinitly supplemented [8]. Recall that if each sub-module of
an R-module W owns a supplement, which is a direct summand of W, it is called -
supplemented module. [18]. We introduce the generalization of @-supplemented module
with some properties.

Definition 4.1: An R—module W is called cofinitely e*S—supplemented (briefly cof e*S—
supplemented) if each cofinite submodule of W has an e*S—supplement in W.

Examples and Remarks 4.2:

1) Zg as Z—module is cof e*S—supplemented module.

2) Z as Z—module isn’t cof e*S—supplemented. Because 2Z is a cofinite submodule of Z
which has no e*S—supplement. By Examples and remarks 2.5 (9).

3) Clearly that every e*S—supplemented module is cof e*S—supplemented. The converse isn’t
accurate in general. For example, the Z-module Q is cof e*S—supplemented, since the only
cofinite submodule of Q, is Q which has an e*S—supplement, but Q we know that isn’t e*S—
supplemented.

The following proposition gives a condition under which the e*S—supplemented module and
cof e*S—supplemented are equivalent.

Proposition 4.3: Let W be a finitely generated R—module. Then W is an e*S—supplemented if
and only is W is cof e*S—supplemented.
Proof: Assum that W is cof e*S—supplemented to show that W is an e*S—supplemented. Let

T be asubmodule of W, since W is finitely generated then % is finitely generated, hence T is

cofinite sub-module of W. But W is cof e*S—supplemented, hence T has e*S—supplement in
W. Thus, W is e*S—supplemented. The converse is clear by Example and remarks 4.2 (3).
Next, we present certain cof e*S—supplemented module properties.

Proposition 4.4: Let W be a cof e*S—supplemented, and let T be a submodule of W, then %

is cof e*S—supplemented. for each fully invariant submodule T of W.
Proof: By the same arguments of Proposition 2.18.

The converse of Proposition 4.4, is not accurate in general, for example, the Z as Z-module.
s_Zz = Ze 1s cof e*S—supplemented but Z isn’t cof e*S—supplemented.

Corollary 4.5: Let W be a cof e*S—supplemented, then any direct summand of W is cof e*S—
supplemented.

We need the following standard lemma. To show that arbitrary sum of cof e*S—supplemented
is cof e*S—supplemented.
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Lemma 4.6: Let K, B be sub-modules of a module W such that K is cof e*S—supplemented,

B is cofinite in W and K + B has an e*S—supplement T in W. Then K N (B + T) has an e*S—

supplement V in K. Moreover, V + T is an e*S—supplement of B in W.

Proof: Let T be an e*S—supplement of K + Bin W. Thus W=T+ (K+B)and T n (K + B)
w

K K+(B+T) w B C
= = —— = 437, which is fintely generated, hence K N (B
Kn(B+T) B+T B+T -

+ T) is cofinite in K. But K is cof e*S—supplemented. A submoduleV of K exists. Such that V
is an e*S—supplement of KN (B+ T) in K. Thus K=V +[KN(B+T)Jand VN [K N (B +
T)]=V N (B +T) Kess V. Now, to show that T + V is an e*S—supplement of B in W, we have
W=T+K+B=T+V+[KnNn(B+T)]+B=T+V + B, one can easily show that B n (T +
VIC[TNn(B+V)]+[VN(B+T)] KessV + T. Therefore, V + T is an e*S—supplement of B
in W.

Kexs T. Now,

Proposition 4.7: Arbitrary sum of cof e*S—supplemented modules is cof e*S—supplemented.
Proof: Assume that {W;};c; isa family of cof e*S—supplemented modules, and let W =
e Wi. Let T, be a cofinite submodule of W, so W =T+ W;; + ... + W;,, for some n € N, i
€ 1. Since T is cofinite in W and W has a zero e*S—supplement. Appling Lemma 4.6, we see
by induction that T has an e*S—supplement in W. Thus, W is cof e*S—supplemented module.

Definition 4.8: An R-module W is called @e*S—supplemented module if each submodule
of W has an e*S—supplement which is a direct summand of W.

Examples and Remarks 4.9:

1) Every semisimple is @e*S—supplemented. For example, Zg as Z—module.

2) Z as Z—module isn’t Pe*S—supplemented.

3) Obviously, that every @e*S—supplemented is e*S—supplemented.

4) Every @—supplemented is @e*S—supplemented.

An R—module W is said to have property (D3), if there are direct summands W; and W,
ofW with W, + W, =W, implies W; N W, is also adirect summand of W [19] [17].

Proposition 4.10: Let W be a @e*S—supplemented module with D3 property. Then every
direct summand of W is a @@e*S—supplemented module.

Proof: Let W be a @e*S—supplemented with D3 property and let V be a direct summand of
W. To show that V is a @e*S—supplemented, let T, be a submodule of V. Then there exists a
direct summand N of W such that N is an e*S—supplement of T in W, then W=T+ Nand T
N N Keis N. But T € V, therefore W =V + N. Since V and N are direct summand of W and
W=V +N, then V N N is a direct summand of W and hence it is a direct summand of V. By
modularity, we have VA W=V N (T+N)=T+(VNAN). Notthat TN (VN N)=TNN
Kess N. But, V N N is a direct summand of W, therefore by Proposition13,[6]. T N N Kg,s V
N N, thus V is @e*S—supplemented module.

Proposition 4.11: Let W be @e*S—supplemented module and B be a fully invariant
submodule of W. If B is a direct summand of W, then B is @e*S—supplemented.

Proof: Let a direct summand T of W and Y be a submodule of T. Since W is @e*S—
supplemented, there exists a direct summand V of W, suchthat W=Y +Vand Y NV Ka,s V
and W=V X, XSWWehave T=TNW=TNVAX)=(TNV)D (TnN X). If we
show that T N V is e*S—supplement of Y in T, then we complete the proof. By modularity, we
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have T=TNW=TN(Y+V)=Y+(TNV).Now, Y NV K, V. Because T N V is a direct
summand of W, we obtain Y N 'V <,.,s T N V. Hence, T N V is an e*S—supplement of Y in B.
So, it implies that T is @e*S—supplemented.

The following theorem shows that the direct sum of @e*S—supplemented modules is Pe*S—
supplemented.

Theorem 4.12: Let W = W, @ W, . If W; and W, be @e*S—supplemented modules, then W
is @e*S—supplemented module.

Proof: Let B be any sub-module of W. Since W, is @e*S—supplemented module, W; n (W,
+ B) has an e*S—supplement Y in W, , then we have W, = [W; n (W, + B)] + Y and W; N
(W, +B)YNY =W, +B) NY Ke.s Y such that Y is adirect summand of W;. Claim that Y is
an e*S—supplement of W, + B in W. Since W; = [W; n (W, + B)] + Y, then W=W, + W, =
WinW,+B)]+Y+W,=Y+B+W,and (W, + B) N Y <es Y, hence Y is an e*S—
supplement of W, + B in W. Now, since W, N (B +Y) € W, and W, is @e*S—supplemented,
then W, N (B + Y) has an e*S—supplement X in W, and X is a direct summand of W, , then
wehave W, =X @K, KW, W,=[W,n(B+Y)]|+Xand W, n(B+Y)NX=(B+Y)
NX Keys X.SinceW=W,+B+Y=[W,Nn(B+Y)+X]+(B+Y)=X+B+Yand Y N
X+B)cYN[X+[W,n(B+Y)]|+B]SYN (W, +B)Keyus Yand W, N(B+Y) N X =
(B+Y) N X Ke4s X. One can easily show that BN (Y+X) S [YN(X+B)]|+[XN(B+Y)]
Kexs Y + X. So, Y + X is e*S—supplement of Bin W. Thus, W is @e*S—supplemented.

Corollary 4.13: Any finite direct sum of @e*S—supplemented modules are @e*S—
supplemented.

Proof: By induction.

Recall that if M; and M, be R-module. Then called M; is M,—projective if for each
submodule A of M, and any homomorphism f: M; — % , there is a homomorphism g : M,

— M, such that mo g =f, where 7 : M, — % is the natural epimorphosis, see [20].

Mj
x
M, — My
T A

M;and M,are say to be relatively projective if M; is M,—projective and M, is M;—projective,
see [20].

Lemma 4.14: Let M =S @ T = N + T where S is T-projective. Then M = K @ T where K
CN.

Proof: See ([20] Lemma 4.47).
Theorem 4.15: Let W;(1 < i < n) be relatively projective, any finite collection modules. The

module W=W, @ W, & ... ® W, is a @e*S—supplemented module if and only if W; is
@De*S—supplemented module for all (1 < i < n).
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Proof: The necessity part is proved in Theorem 4.12.

Conversely, it is enough to prove that W; is @e*S—supplemented. Let S be any submodule of
W, . Then there exists a direct summand B of W such that W =S + B and S N B «,.g B. Not
that W =S + B = W, + B. By lemma 4.14, there exists a submodule K of B such that W = W;
@ K. Now,B=BNnW=Bn (W, & K)y=K& (Bn W), then (B N W) is a direct summand
of W and hence it is a direct summand of W; . Now, we have W; =W, N W=W,; N (S+B) =
S+BnNW;),andSNBNW; =SNB K, B, then S N BN W, <. BN W,. Therefore B
N W; is e*S—supplement of S in W; which is adirect summand. Thus W, is @e*S—
supplemented.

Proposition 4.16: Let W be @e*S—supplemented nonzero module and let S be a fully
invariant submodule of W. Then the factor module % is a @e*S—supplemented.

Proof: To show that % is @e*S—supplemented, let % be any submodule of % Since W is
@e*S—supplemented module, there exists a direct summand D of W such that W =B + D, B

N D Keis Dand W=D @ A, A © W. By Proposition 2.11, D+S

S
D+S . . w
1s adirect summand of - Thus,

. B .
is e*S—supplement of —~ in

%. Since S is a fully invariant submodule of W, then

% is @e*S—supplemented.

Corollary 4.17: Let W be a @e*S—supplemented duo module. Then each factor module of W
is a @e*S—supplemented module.

Theorem 4.18: Let W be a module such that W = W, @ W, is a direct sum of sub-modules
W; and W,. Then W, is a @e*S—supplemented module if and only if there exists a direct

summand X of Wsuchthat X € W, ,W =T+ X and T N X Ke.s X, for every submodule WL

1

w
of —.
wy

Proof: =) Let Wi be any submodule of % Since W, N T € W, and W, is @e*S—
1 1

supplemented, then T N W, has e*S—supplement say X in W,, where X @ K=W,, W, = (T
NW,)+Xand TN W,NX=TN X Ke.s X. Clearly, X is a direct summand of W and W =
Wy +W,=W;, +(TnW,)+ X< W, +T+ X. But W; €T, therefore W =T + X. So, we
obtain a result.

T ®W,

<) Let T be a submodule of W,. Consider the submodule
1

there exists a direct summand X of W suchthat X € W, , W= (T+ W;) + X and (T + W;) N
X Kess X Since Wy, =Wo, NW=W, N[(T+W)+X]=X+[(T+W) N W,]=X+T+
(W; n W;) = X + T, by Modular law, and since T N X € (T + W;) N X Ke.s X, then X is
e*S—supplement of T in W, . Thus W, is @e*S—supplemented.

of = By our hypothesis
wy

Proposition 4.19: Let W be a @e*S—supplemented module. Then W = W; @ W, , where
Zew(W) Kews Wy and Z,(Wp) =W, .

Proof: Since Z,.(W) € W, and W is @e*S—supplemented module, then there exists W, such
that W = W, @ W, for some submodule W, of W, W= Z,. (W) + W; and Z,.(W) N W; Ke.s
Wy.But Z,,(W;) = Zo. (W) N W) Keus W;. Since Z, (W) = Z,.(W;) & Z,.(W,), then W =

. w w Zex(W1)+(Zes (W) + Wy)
+ = = =
Ze*(Wl) @ Ze*(WZ) Wl’ Wlth Ze*(Ze*(WZ) + Wl) Ze*(WZ) + W1 (Ze*(WZ) + Wl)
Zex(Wy) Zes(W1) _

TN e W WD~ ZotWe) 0 = Z,.(0) by Second Isomorphism Theorem. So, W =
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ZE*(Wz) @ Wl' But by Modular laW, WZ = W2 nw= WZ ] (ZE*(Wz) @ Wl) = Ze*(Wz)
Thus, we get the result.

Theorem 4.20: For an R—module W with (D3) the following statements are equivalent.

1) Every direct summand of W is @e*S—supplemented;

2) W is @e*S—supplemented;

3)W=W,®&W, , where W; is @e*S—supplemented with Z,,(W;) <e.s Wi and W, is
@e*S—supplemented with Z,,(W,) = W,.

Proof: (1 = 2) Clear by the Definition.

(2 = 1) By Proposition 4.10.

(2 = 3) By Proposition 4.19.

(3 = 2) By Theorem 4.12.

5. Conclusions.

We confirm the following outcomes:

1) Every supplemented module is e*S—supplemented.

2) The image homomorphism of the e*S—supplemented module is e*S—supplemented.

3) If W is a uniform cosingular R-module, then weakly supplemented and weakly e*S—
supplemented modules coincide.

4) Every e*S—supplemented module is cof e*S—supplemented.

5) A random sum of cof e*S—supplemented modules are cof e*S—supplemented.

6) Every e*S—hollow modules are @e*S—supplemented.

7) Any finite direct sum of @e*S—supplemented modules are Pe*S—supplemented.

8) Many properties have been presented of an e*S—supplemented, weak e*S—supplemented,
cof e*S—supplemented and @e*S—supplemented modules.
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