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Abstract 

     In this paper, first, the Golomb’s postulates are generalized to construct a good 
mathematical base, and then generalize the binary standard randomness tests to be 
suitable to be applied on digital sequences. This paper includes some tables describe 
the tests results of the digital sequences generated from some digital generators, like 
the Multiplicative Cyclic Group System (MCGS) generator. 
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 الخلاصة

وتحويرها لتلائم ثم تم تعميم الاختبارات الثنائية العشوائية  Golombفي هذا البحث تم تعميم بديهيات      

في هذا البحث تم عرض نتائج الاختبارات للمتتابعات الرقمية المولدة من بعض . اختبار المتتابعات الرقمية

  .ائية مثل مولد الزمرة الضربية الدوارةالمولدات العشو

  
1. Introduction 

In general, any sequence generated from any 
generator considered a statistical experiment, for 
this reason the randomness tests called 
statistical random tests. Since they are 
statistical experiments then the proof of that the 
sequence is random is called probabilistic 
proof, that means when the generated sequence 
is random in high ratio for all experiments, then 
we can judge that the sequence is random, and 
vice versa. The randomness judgment done by 
two conditions [1]: 

1. The length of the tested sequence must be as 
high as possible. 

2. The number of repeating the test 
(experiments) must be as high as possible. 

Now we will introduce some relevant basic 
concepts. 
Cryptography is the study of principles and 
techniques by which information can be 
concealed in ciphertexts and later revealed by 
legitimates users employing the secret key, but 
in which it is either impossible or 
computationally infeasible for an unauthorized 
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person to do so. Cryptanalysis is the science 
(and art) of recovering information from 
ciphertexts without knowledge of the key. Both 
terms are subordinate to the more general term 
Cryptology. The cryptography concerned in 
Encryption and Decryption processes. Figure 1 
demonstrates the relation between these 
concepts [2].  

 
In stream ciphers, the message units are bits, and the 
key is usual produced by a random bit generator. 
The plaintext is encrypted on a bit-by-bit basis. 
The key is fed into random bit generator to create a 
long sequence of binary signals. This “key-stream” k 
is then mixed with plaintext m, usually by a bit wise 
XOR (Exclusive-OR modulo 2 addition) to produce 
the ciphertext stream, using the same random bit 
generator and seed. Stream ciphers are generally 
faster than block ciphers in hardware, and have less 
complex hardware circuitry. They are also more 
appropriate, and in some cases mandatory (e.g., in 
some telecommunications applications), when 
buffering is limited or when characters must be 
individually processed as they are received [3]. 
A feedback shift register is made up of two parts: a 
shift register and a feedback function. The shift 
register is a sequence of bits, (the length of a shift 
register is figured in bits). Each time a bit is needed; 
all of the bits in the shift register are shifted 1 bit to 
the right [4]. Cryptographers have liked stream 
ciphers made up of shift registers. We will only touch 
on the mathematical theory. Solomon Golomb [5], an 
NSA mathematician, wrote a book with Selmers 
results and some of his own [6]. The simplest kind of 
feedback shift register is a Linear Feedback Shift 
Register (LFSR). The feedback function is simply 
the XOR of certain bits in the register. 
Universal tests were presented by Schrift and Shamir 
in 1993 [7] for verifying the assumed properties of a 
pseudorandom generator whose output sequences 
were not necessarily uniformly distributed. 

Gustafson et al. in 1994 [12] describe a computer 
package which implements various statistical tests 
for assessing the strength of a pseudorandom bit 
generator. 
In 1996, Gustafson [13] considered alternative 
statistics for the runs test and the autocorrelation test. 
Gustafson, Dawson, and Golić [14] proposed a new 
repetition test which measures the number of 
repetitions of l-bit blocks. The test requires a count of 
the number of patterns repeated, but does not require 
the frequency of each pattern. 

2. Randomness  
For our purposes, a sequence generator is 

pseudo-random if it has this property: It looks 
random. This means that it passes all the 
statistical tests of randomness that we can find 
[7, 8]. 
Definition (1): A random bit generator is a 

device or algorithm which outputs a 
sequence of statistically independent and 
unbiased binary digits.  

Remark (1): (random bits vs. random numbers) 
A random bit generator can be used to 
generate (uniformly distributed) random 
numbers. For example, a random integer 
in the interval [0,n] can be obtained by 
generating a random bit sequence of 
length log2|n+1| bits, and converting it to 
an integer; if the resulting integer exceeds 
n, one option is to discard it and generate 
a new random bit sequence.  

Definition (2): A Pseudo Random Bit Generator 
(PRBG) is a deterministic algorithm 
which, given a truly random binary 
sequence of length k, outputs a binary 
sequence of length L , k which “appears” 
to be random. The input to the PRBG is 
called the seed, while the output of the 
PRBG is called a pseudorandom bit 
sequence.  

Remark (2): The χ2 (chi-square) distribution 
can be used to compare the goodness-of-
fit of the observed frequencies of events to 
their expected frequencies under a 
hypothesized distribution. The χ2 
distribution with υ degrees of freedom 
arises in practice when the squares of υ 
independent random variables having 
standard normal distributions are summed 
[13]. 

3. Golomb′s Concept of Randomness  
Definition (3): Let S be a periodic sequence of 

period N. Golomb′s randomness 
postulates are the following[3]: 

Cryptology 

Cryptography Cryptanalysis 

Encryption 
 Process 

Decryption 
 Process 

Fig. 1: Cryptology branches 
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R1: In the cycle SN of S, the number of 1′s 
differs from the number of 0′s by at most 1.  

R2: In the cycle SN at least half the runs have 
length 1, at least one-fourth have length 2, at 
least one-eighth have length 3, etc., as long 
as the number of runs so indicated exceeds 
1. Moreover, for each of these lengths, there 
are (almost) equally many gaps and blocks.  

R3: The autocorrelation function C(t) is two-
valued. That is for some integer K: 

N.C(t)=∑
−

=
+ −⋅−

1N

0i
tii )1s2()1s2( =

⎩
⎨
⎧

−≤≤
=

1Nt0,K
0t,N

 

Definition (4): A binary sequence which 
satisfies Golomb′s randomness postulates 
is called a pseudo-noise sequence or a pn-
sequence. 

Pseudo-noise sequences arise in practice as 
output sequences of maximum-length linear 
feedback shift registers. 

4. Generalize the Golomb's Postulates 
     We showed before that the Golomb's postulates 
are applied on binary sequences. In this section we 
try to generalize these postulates in order to be 
suitable to be applied on digital sequences. We can 
define the digital sequence which is satisfied the new 
generalized postulates, as Pseudo Random Digital 
Sequence (PRDS). 
Let S be a sequence has m distinct digits (0..m-
1) with period P. Let ij be the digit j of S, s.t. 
0≤ij≤m-1, j=0, 1,… ,. In the next subsections we 
will introduce the new digital postulates. 

4.1 Digital Frequency Postulate 
     Its obvious that if the frequency Ni of each 
distinct digit i is approximate to other 
frequencies, then the digital sequence is satisfies 
this postulate, so must be: 
N0≈N1≈…≈Nn-1  
Statistically, Ni represents the observed number 
occurrence of digit i, 0≤i≤m-1. 
The expected number of occurrence is: 

 E*
F= m

P     …(1) 

Then, Ni≈ E*
F, ∀i 

Where P is the period of the sequence. 

4.2 Digital Run Postulate 
     The digital run here can be defined as the 
number of similar digits which are lie between 
two different digits. Now we can depend on 
mathematical deduction to deduce the two new 
conditions of run postulates: 

The number (Rij) of kind i runs with length j is 
approximately equal to 1/m of the number of 
runs of length j-1; Rij≈(1/m)Rij-1, where 2≤j≤Mi, 
Mi denotes the length of maximum run of kind i. 
The all kinds of runs of length j are approximate 
to each other, s.t. R0j≈R1j≈…≈Rm-1,j, where 
1≤j≤Mi, its obvious that: 

∑
=

iM

1j
ijR.j =Ni,0≤i≤m-1   …(2) 

Rij≈ERj,∀i, where ERj is the expected number of 
the runs with length j which can be calculated 
from the next theorem. 
Theorem (1): Let S be a sequence satisfies the 

run postulate, then the expected number of 
runs with length j is: 

 ERj= 2j

2

m
)1m(P

+

− ,1≤j≤M, where 

M=max(M0,M1,…,Mm-1). 
Proof 
From equation (2), and Ni≈ E*

F, then 

E*
F=

m
P

=ER1+2ER2+…+M.ERM=∑
=

⋅
M

1j
RjEj  …(3) 

And since Ri2=
m
R 1i then ER2= m

E 1R , since S 

satisfies the runs postulate, so in general, 

ERj= 1j
1R

m
E

− , 2≤j≤M   …(4) 

substitute equation (3) in equation (4), we get: 

m
P

=∑
=

−

⋅M

1j
1j

1R

m
Ej

=mER1∑
=

M

1j
jm

j   …(5) 

By using the ratio test: 

as M→∞ then S′= ∑
=

∞→

M

1j
jj m

jlim =∑
∞

=1j
jm

j is 

convergence series. 

ρ=
j

1j

j u
u

lim +

∞→
=

j
m

m
1jlim

j

1jj
⋅

+
++∞→

=

j
1jlim

m
1

j

+
+∞→

=
m
1  

So that ρ<1 since m≥2 
For S′ we have, 

s1=
m
1  

s2=
m
1 + 2m

2
, so 

sM=
m
1 + 2m

2
+…+ Mm

M                        …(6) 
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m
1 sM= 2m

1
+ 3m

2
+…+ 1Mm

M
+  …(7) 

Subtract equation (7) from (6) 

sM−
m
1 sM=

m
1 + 2m

1
+…+

Mm
1 -

1Mm
M

+
 

sM(
m

1m −
)=∑

=

M

1k
km

1
-

1Mm
M

+
=

m
1 (∑

=
−

M

1k
1km

1
-

Mm
M ), 

then 

sM=
1m

1
−

(∑
=

−

n

1k
1km

1
-

Mm
M ) 

let n→∞, the series 

S′=
∞→M

lim sM=
1m

1
−

(∑
∞

=
−

1k
1km

1
-

∞→M
lim

Mm
M )…(8) 

Notice that 
∞→M

lim
Mm

M =
∞→M

lim M⋅
∞→M

lim
Mm

1 = 

∞→M
lim M.0 = 0 

Since the series is∑
∞

=
−

1k
1km

1
 geometric series 

with a=1 and r=
m
1 [4], and 

since |r|=
m
1 <1 because m≥2, then the series is 

convergence series and the sum 

S=∑
∞

=
−

1k
1km

1
=

r1
a
−

=
m/11

1
−

=
1m

m
−

 …(9) 

substitute equation (9) in equation (8) 

S′=
1m

1
−

.
1m

m
−

= 2)1m(
m
−

  …(10) 

Substitute equation (10) in equation (5) we get: 

m
P

=m.ER1. 2)1m(
m
−

 

∴ ER1= 3

2

m
)1m(P −

= 31

2

m
)1m(P

+

−  

In general, and by using the mathematical 
induction, we have 

ERj= 2j

2

m
)1m(P

+

−
, where 1≤j≤M 

Theorem (2): The expected number of total 
number E*

R of runs of any kind i, where 

0≤i≤m-1  is E*
R= 2

)1(
m
mP −

. 

Proof 

E*
R= 3

2

m
)1m(P −

+ 4

2

m
)1m(P −

+…+ 2M

2

m
)1m(P

+

−

= 3

2

m
)1m(P −
∑
=

−

M

1j
1jm

1
   …(11) 

The series ∑
=

−

M

1j
1jm

1
is geometric convergence 

series as M→∞, then 

∑
∞

=
−

1j
1jm

1
=

1m
m
−

   …(12) 

 
Using equation (12) in (11), we get: 

E*
R= 3

2

m
)1m(P −

.
1m

m
−

= 2m
)1m(P −

 

By using theorem (2) we can estimate the 
expected number E*

SR of sum of E*
R of sum of 

all runs by: 

E*
SR=∑

−

=

1m

0i

*
RE =m. 2m

)1m(P −
=

m
)1m(P −

 

Notice that E*
SR=P−

m
P

=P−E*
F 

4.3 Digital Auto correlation Postulate 
As mentioned before, that this postulate 

found to specify that if the tested digital 
sequence has a repetition with itself. Let N0(τ) 
denotes the number of similar digits in S after 
shifting it by τ, let N1(τ) denotes the number of 
distinct digits in S after shifting it by τ, where 
1≤τ≤P-1, s.t. 

N0(τ)=#{si=si+τ :∀1≤i≤P} 
N1(τ)=#{si≠si+τ :∀1≤i≤P},  
s.t. 1≤τ≤P-1. 
Where N0(τ)+N1(τ)=P-τ. 

The probability of similarity of one digit from n 
digits is 1/m, then the expected number of 

similarity is E*
0= m

P τ−
, and expected number of 

difference is: 

E*
1=

m
)1m()P( −⋅τ−

=(P-τ)-E*
0. 

5. Evolving the Digital Randomness Test 
In this section we will reformulate the three 

main testing laws to be suitable to apply on 
digital sequence. We called the new digital 
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randomness tests by the Main Digital Standard 
Randomness Tests (MDSRT).  
Let S be the digital sequence, which want to be 
tested, with length L has the element(s) i, ranged 
0≤i≤m-1. 

5.1 Digital Frequency Test 
     Let Ni represents the observed number of 
occurrence of digit i, where 0≤i≤m-1, and the 
expected number of occurrence of digit i is 

E*
F=

m
L

, then: 

TF=∑
−

=

−1m

0i
*
F

2*
Fi

E
)EN(

=∑
−

=

−1m

0i

2
i

mL
)mLN(

 …(13) 

With freedom degree υ=m-1. 
The following Lemma (1) gives more simple 
formula for TF of frequency test using formula 
(13). 
 
Lemma (1): For frequency test of digital 

sequence S, T= LN
L
m 1m

0i

2
i −∑

−

=

. 

Proof:  

T=∑
−

=

−1m

0i

2
i

mL
)mLN(

=

)
m
LN

m
L2N(

L
m 1m

0i
2

21m

0i
i

1m

0i

2
i ∑∑∑

−

=

−

=

−

=

+− =

LL2N
L
m 1m

0i

2
i +−∑

−

=

 

∴T= ∑
−

=

−⋅
1m

0i

2
i LN

L
m

           …(14) 

5.2 Digital Run Test 
     Let Rij represents the observed number of 
runs of kind i with length j, and let ERj be the 
expected number of runs of any kind with length 
j, then 

TRi=∑
=

−iM

1j Rj

2
Rjij

E
)ER(

=∑
=

−⋅

−⋅

+

+−i

2j

2

2j

2
M

1j
m

)1m(L

2
m

)1m(L
ij )R(

, 

0≤i≤m-1    …(15) 

With freedom degree υi=Mi-1. 
Formula (15) can be reformulated in another 
face: 
 

Ri= 2

M

0j
ij

M

0j

2
ij

j2

m
)1m(LR2Rm)

1m
m(

L
1 ii −

+−⋅⋅
−

⋅ ∑∑
==

..(16) 

5.3 Digital Auto correlation Test 
     Let N0(τ) and N1(τ) represent the number of 
similar and distinct digits of the sequence S 
respectively, after shifting it by τ, then the 
expected number of similarity and difference 
respectively are: 

E0(τ)= m
L τ−

 and E1(τ)= m
)L()1m( τ−⋅−

, the 

following lemma proofs that Chi square of auto 
correlation test for the digital sequence S is: 

TA(τ)=
)L)(1m(
))L()(mN( 2

0

τ−−
τ−−τ

  …(17) 

With freedom degree υ=1. 
Lemma (2): The Chi square of auto correlation 

test for the digital sequence S shifted by τ 
is: 

TA(τ)=
)L)(1m(
))L()(mN( 2

0

τ−−
τ−−τ

. 

Proof: for simplicity, let n=m-1, then m=n+1, 
L′=L-τ, N0=N0(τ) and N1=N1(τ). 

TA(τ)=
( ) ( )( )

( )∑
=

−1

0 1

2
11

i E
EN
τ

ττ
=

m
L

2
m
L

0 )N(
′

′−
+

m
Ln

2
m
Ln

1 )N(
′

′−
 

=
m
Ln

2
m
Ln

1
2

m
L

0 )N()N(n
′

′′ −+−
=

m
Ln

m
L2

m
L2

1m
L

m
L

0
2
0 2

2

2

2 nn2NnnN2nN
′

′′′′ +−++−
(18) 

Since N1=L′-N0, then 

-2n L′(N0+N1)=-2nL′2   …(19) 

And 

2
2

2
2

Ln
m
Ln

m
Ln ′=

′
+

′
   …(20) 

And 

m(nN0
2+N1

2)=m2N0
2+mL′2+2mN0L′ …(21) 
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adding equation (19) to (20) and adding the 
result to (21), then substitute the final result in 
(18) using the fact that m-n=1, we get: 

TA(τ)=
Ln

)LmN(
Ln

LLmN2Nm 2
0

2
0

2
0

2

′
′−

=
′

′+′−
 

∴TA(τ)=
)L)(1m(
))L()(mN( 2

0

τ−−
τ−−τ

  

      
Remark (3): In the Lemma (1) and (2) note that 

we have no need to calculate the expected 
value of any sample in the three tests, so 
we don’t need the equations (13) and (15) 
any more. 

6. Implementation of MDSRT on Digital 
Sequences 
In this section we will show how we can 

applied the MDSRT on arbitrarily sequence with 
30 digits length, using the new statistic digital 
laws. Let the sequence S consists of the 
following digits: 
 S=''102311033321000121221301112301''. 
Its obvious that m=4. 
1. Frequency test: the following table shows the 

frequency values Ni: 
i 0 1 2 3 

Ni 7 11 6 6 
By using formula (14) we get: 

TF=
30
4

(49+121+36+36)-30=2.266 

This value compared with T0=7.81 where υ=3. 
The sequence S passes this test. 
2.Run test: the following table shows the run 

values Rij: 
 i Runs (Rij) 
j  0 1 2 3 

L
en

gt
h 1 4 6 4 3 

2 0 1 1 0 

3 1 1 0 1 

M0=3, M1=3, M2=2, M3=3 and M=3, by using 
formula (17) we get: 

T*
0=0.059(4(16)+42(0)+43(1))-

2(4+0+1)+5.625=3.366 

This value compared with T0=5.99 at υ0=2. 

Using the same formula, we find: 

T*
R1=2.841 compared with T1=5.99 at υ1=2. 

T*
R2=0.345 compared with T2=3.84 at υ2=1. 

T*
R3=3.525 compared with T3=5.99 at υ3=2. 

Since T*
Ri ≤ TRi ∀i, then the sequence S passes 

this test. 

1.Auto correlation test: first, let us shift the 
sequence S by one shift (τ=1), then: 

1 0 2 3 1 1 0 3 3 3 2 1 0 0 0 1 

 

1 0 2 3 1 1 0 3 3 3 2 1 0 0 0 

→ 2 1 2 2 1 3 0 1 1 1 2 3 0 1 

→ 1 2 1 2 2 1 3 0 1 1 1 2 3 0 

We notice that there are 8 similar digits (shaded 
cells), so N0(1)=8, and by using formula (17), 
then: 

 TA(1)=
)29(3

)29)8(4( 2−
=0.103 

So we can find the other N0(τ) by the following 
table: 
τ 1 2 3 4 5 6 7 

N0(τ) 8 5 3 5 6 9 4 
TA(τ) 0.1 0.76 2.78 0.46 0.01 2.0 0.71
τ 8 9 10 11 12 13 14 

N0(τ) 6 5 4 3 5 4 5 
TA(τ) 0.06 0.02 0.27 0.86 0.07 0.02 0.33
τ 15 16 17 18 19 20 21 

N0(τ) 2 5 2 4 3 4 2 
TA(τ) 0.56 0.86 1.26 1.78 0.76 1.2 0.33
τ 22 23 24 25 26 27 28 

N0(τ) 1 1 4 2 0 1 0 
TA(τ) 0.0 0.43 2.0 3.27 0.0 1.0 0.68

Notice that 0.016≤TA(τ)≤3.266, for 1≤τ≤29, 
compare all values of TA(τ) with TA(τ)=3.84, 
where υ=1. So S passes the test. 
7. Testing the Digital Sequences 

Generated from MCGS 
     The sequences generated from MCG system 
mentioned in [14] is being tested for binary 
randomness test (m=2) only. In this paper we 
can test these sequences by using the MDSRT.  
Now we will test three different digital 
sequences for m=3, 5 and 7, with different 
length L=2000, 5000 and 8000 digits 
respectively. All these sequences are generated 
from different linear MCGS's (CF is XOR 
function) have the initial keys described in 
table 1. 
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Table 1: the Three MCGS's initial key. 

MCGS n qi α1i α2i ki m 

1 2 101 
997 

2 
7 

8 
855 

1 
1 3 

2 3 
199 
1103 
3607 

3 
5 
5 

44 
125 
3125 

1 
1 
1 

5 

3 5 

149 
509 
1051 
1301 
2003 

2 
2 
7 
2 
5 

8 
8 

567 
8 

125 

1 
1 
1 
1 
1 

7 

The three following tables (table 2, 3 and 4) are 
show the randomness test results of the three 
digital sequences mentioned above by using 
MDSRT. 

Table 2: MDSRT results of MCGS output with 
L=2000 for m=3. 

Test T* Value υ Pass Value T0

Freq. 2.428 2 6.01 

Run 
6.971 
7.229 
6.63 

6 
6 
5 

12.31 
12.31 
10.97 

A.C. 
No# of fail values 
0.0≤T(τ)≤14.238 

0.05% for 500 shift 
1 3.81 

 
Table 3: MDSRT results of MCGS output with 

L=5000 for m=5. 
Test T* Value υ Pass Value T0

Freq. 2.294 4 9.52 

Run 

1.4 
3.49 
5.73 
6.62 
10.99 

3 
4 
4 
3 
4 

7.84 
9.52 
9.52 
7.84 
9.52 

A.C. 
No# of fail value 
0.0≤T(τ)≤9.465 

0.07% for 500 shift 
1 3.81 

 
Table 4: MDSRT results of MCGS output with 

L=8000 for m=7. 

Test T* Value υ Pass 
Value T0 

Freq. 6.992 6 12.309 

Run 

2.997 
3.458 
7.088 
5.982 
6.283 
1.823 
3.429 

4 
3 
4 
3 
3 
3 
3 

9.52 
7.84 
9.52 
7.84 
7.84 
7.84 
7.84 

A.C. 
No# of fail values 
0.0≤T(τ)≤15.899 

0.068% for 500 shift
1 3.81 

8. Comparison Study of MDSRT Results 
between MCGS and Other Generators 

     In this section we try to make a comparison 
study between MCGS and other generators, for 
digital sequences with L=5000 and m=10 for the 
compared generators. Of course, the 1st 
generator is the MCGS number two which is 
mentioned in table 1 of the previous section. The 
2nd is the binary LFSR with length 31 and the 3rd 
stage tapping as a connection function, in order 
to get digital sequences, we have to choose 4 
bits from four different positions from the 
LFSR. The four bits transformed to hex, if we 
take mod 10, we get a digital sequences with 
m=10. Table 5 show the MDSRT results of 
digital sequences generated from MCGS and 
LFSR. 

Table 5: MDSRT results of DS generated from 
MCGS and LFSR. 

Test MCGS LFSR 
T* υ T0 T* υ T0 

Freq 4.05 9 16.9 402.6 9 16.9

Run

1.30 
0.93 
1.88 
1.99 
2.86 
0.99 
0.42 
2.78 
1.04 
3.30 

2 
2 
3 
2 
2 
2 
2 
2 
3 
2 

6.01 
7.84 
7.84 
6.01 
6.01 
6.01 
6.01 
6.01 
7.84 
6.01 

39.28 
39.06 
27.22 
7.49 

29.42 
18.39 
51.60 
34.47 
48.51 
58.17 

2 
2 
4 
2 
3 
2 
2 
1 
2 
2 

6.01
6.01
9.52
6.01
7.84
6.01
6.01
3.81
6.01
6.01

A.C.
500 
shift

fail values 
0.0≤T≤5.4

0.06%  
1 3.81 

fail values 
4.04≤T≤16.6 

44.5% 
1 3.81

     In the same comparison study we can show 
that the Random Number Generator (RNG) 
which found by Mitchell [15], it’s a digital 
generator (m=10 only) with good random 
sequence, but it has low complexity, with period 
less or equal q-1 for some primes. We expect 
that the choices of the primes will drop to 35% 
in order to gain period equal q-1, while the 
choices of MCGS still open to all primes. 
Table 6 shows the period of some primes for 
RNG system with frequencies of the sequence 
digits. 
Lets now take q=997 to generate 996-digits 
sequence (using α1=7, α2=885 and k=1) to 
compare with same q for RNG in table 7 
calculating the Standard Deviation, of the 
frequency of sequence digits, from the average. 
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Table 6: periods of RNG primes and frequencies 

of sequences digits. 
Primes Period Frequencies 

0 1 2 3 4 
991 495 55 54 59 45 45 
997 166 29 14 18 15 11 
1003 464 52 36 52 60 36 
1013 253 26 29 29 22 20 
1019 1018 103 102 102 102 102 

Primes Period 5 6 7 8 9 
991 495 52 52 39 46 48 
997 166 11 14 18 13 23 
1003 464 53 32 39 55 49 
1013 253 26 29 26 25 31 
1019 1018 102 101 101 102 101 

Table 7: Standard deviation of the sequences 
digits from the average. 

Gen. Per. (L) Frequencies 

 0 1 2 3 4 
MCGS 996 99 100 100 100 99
RNG 166 29 14 18 15 11
Gen. Per. (L) 5 6 7 8 9 SD

MCGS 996 100 99 100 100 100 0.5
RNG 166 11 14 18 13 23 5.7

 
9. Conclusions and Future Works 
    This work concludes the following aspects: 
1. It’s obvious that we can use the MDSRT to 

estimate the randomness of binary 
sequence. 

2. In digital auto correlation test, we can 
applied another method to estimate T(τ), 
the new method applied by adding (mod 
(m)) for the shifted sequence by τ with the 
origin sequence S, we get a new sequence 
S′ with length L-τ and the expected mean 

of occurrence of digit i is E*
F=

m
L τ−

, then 

applying the digital frequency test using the 
following equation: 

T(τ)=∑
−

=
τ−

τ−−τ1m

0i m
L

2
m

L
i ))(N(

= )L()(N
L
m 1m

0i

2
i τ−−τ

τ− ∑
−

=

 

Where Ni(τ) is the frequency of the digit I 
in the sequence S′. 

3. We have to generalize more randomness 
tests, like serial, Poker,…etc. to be applied 
on digital tests, in order to estimate the real 
randomness of the sequence. 
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