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Abstract 

     Through the application of a Dirichlet boundary condition and under an 

additional integral-type condition, the recovery of the time-dependent 

coefficient in a one -dimensional parabolic equation is investigated in this 

paper. When data is entered, the solution is affected to a precarious status 

during exposure to random errors and noise. The Crank-Nicolson finite 

difference approach is implemented for the direct solution of the problem, 

while nonlinear numerical optimization is employed for the inverse problem. 

lsqnonlin, the MATLAB routine optimization tool, is applied to compute the 

last problem. The Tikhonov regularization approach must be used to produce 

smooth, stable answers. The evaluation and comparison with their identical 

answers were performed by running the root mean square error formula. It 

conclude that, the numerical results are consistent and accurate.  

 

Keywords: Nonlinear minimization, Crank-Nicolson approach, Non-local 

integration condition, Dirichlet boundary conditions, Heat equation, Inverse 

problem.  
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  سلسة ومستقرة. تم إجراء التقييم والمقارنة مع    نتائج  لحصول علىيجب استخدام نهج تسوية تيخونوف ل
 .ثابتة ودقيقة كانت  النتائج العدديةو من خلال صيغة خطأ جذر معدل التربيعات . الحلول المظبوطة 

 
1. Introduction 

      Partial differential equations have played a leading role in various fields of science for 

many decades due to their importance in applications, including physics, engineering, and 

quantum chemistry. On the other hand, the role and importance of partial differential 

equations are evident in forming models of natural phenomena and establishing numerical 

methods for approximate solutions and their application to concrete fields of life [1-4]. In 

the last six decades of the previous century, inverse problems and their study have earned a 

growing prominence due to their importance in the crystallization of their mathematical 

models and their spacious framework of applications. These models have become essential 

in formulating physical problems in engineering and industry [5-7]. At the beginning of the 

millennium, the concept of inverse problems was expanded due to its broad role in 

important application areas and the reconstruction of unknown parameters [8-11]. Under 

Dirichlet boundary conditions, in addition to the integral overdetermination condition, the 

inverse problem of assigning the spreading coefficient in a 1-D parabolic heat equation was 

investigated in [12]. A new method has been developed in [13] for the first time, which 

involves the implementation of two algorithms in stages to recreate the time-dependent 

diffusion coefficient in a 1-D parabolic equation. For these unknown coefficients, the 

procedure for finding them is necessary to re-create the numerically balanced inverse 

problem in the one-dimensional time-dependent thermal equation.  𝑢𝑡 = 𝑘(𝑥, 𝑡)𝑢𝑥𝑥 +
𝑓(𝑥, 𝑡), [14]. In [15], a new formulation for the numerical solution of the inverse problem of 

the simultaneous determination of the time-dependent right-hand side and the fundamental 

coefficient in the parabolic equation.  In a similar method, the researchers tackled the 

problem of finding the unknown time- and space-dependent parameters in the right part of a 

2-D heat equation [16]. In [17], the authors address the inverse source problem for parabolic 

equations; they introduced and developed a new approach and implementation to solve the 

inverse problem for the nonlinear parameter. As well as finding the time-dependent diffusion 

coefficient of a one-dimensional inverse problem in the parabolic equation 
𝜕𝑤

𝜕𝜏
(𝑥, 𝜏) =

𝑘(𝜏)
      𝜕2𝑤 

   𝜕2𝑥     
(𝑥, 𝜏), was also investigated by employing the Crank-Nicholson technique [18]. 

In the same context, a numerical investigation was carried out using the approach previously 

mentioned in [18] in the heat equation to identify the time-dependent reaction coefficients 

through Stefan boundary conditions and thermal moments available from the supplementary 

data [19]. In these works [20, 21], a proposed method for calculating the parabolic thermal 

coefficients is followed in two inverse problems with a non-local boundary condition. In 

addition, the authors in [22, 23] considered concurrently determining two time-dependent 

parameters for a one-dimensional nonlinear IP. Furthermore, the numerical determination of 

the time-dependent heat conduction coefficients was studied by applying the Dirichlet 

boundary condition and the non-local heat flux as over-specification and initial boundary 

conditions in the two-dimensional heat equation. 𝑢𝑡 = 𝑎1(𝑡)𝑢𝑥𝑥 + 𝑎2(𝑡)𝑢𝑦𝑦 + 𝑓(𝑥, 𝑦, 𝑡), 

[24]. Also, by relying on Dirichlet boundary conditions and an over-specification condition 

of the integral kind for the 1-D parabolic equation, the time-dependent functions 𝑏1 =
𝑏1(𝑡), 𝑏2 = 𝑏2(𝑡)  were specified in [25], as well as finding the functions 

𝑢(𝑥, 𝜏), 𝑠(𝜏), 𝑎(𝜏), 𝑏(𝑥, 𝜏) in [26]. In [27], with the second-order 1-D parabolic equation, the 

non-local integration condition, and additional conditions, the reconstruction of the 

unknown time-dependent coefficients associated with the Neumann boundary condition is 

examined. Finding the time-dependent coefficient of a two-dimensional second-order 
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parabolic equation was considered under the mixed homogeneous boundary conditions in 

[28, 29]. Meanwhile, an inverse problem for a 2-D parabolic equation for reconstructing a 

time-dependent coefficient subject to non-local conditions has been dealt with in [30]. A 

non-local linear combination of heat flux overdetermination is employed to reconstruct the 

conductivity and temperature in the two-dimensional heat equation [31]. Huntul discussed in 

[32] the restoration of time-wise heat conduction coefficient, the free boundary of heat flux, 

and non-local integrated control as over-specification conditions in a two-dimensional 

parabolic equation. For the first time numerically and under overdetermination conditions, 

the inverse problem of recovering both the temperature 𝑢(𝑥, 𝑦, 𝑡) as well as the time-

dependent heat source 𝑓𝑖,𝑗(𝑡), 𝑖, 𝑗 = 0,1 a two-dimensional parabolic equation subject to a 

Neumann boundary condition was examined in [33]. This paper aims to find the numerical 

reconstruction for the time-wise coefficient in the total variable coefficient parabolic heat 

equation with integral mass/ heat specification condition as the overdetermination condition. 

The structure of this work is described below: 

The mathematical setting of a one-dimensional parabolic heat equation in Section 2 was 

introduced. In Section 3, the numerical solution of the direct problem (DP) (1) − (3) is 

introduced. In Section 4, the regularized minimization problem is presented, which is treated 

with the MATLAB implementation of lsqnonlin with the inverse problem (IP) solving 

technique (1) − (4) .In addition, the numerical results are discussed in Section 5. In Section 

6, the conclusions were provided. 

 

2.  Mathematical Statement of  (IP) 

     Under the region 𝛺𝑇 = {(𝑥, 𝑡): 0 < 𝑥 < ℎ, 0 < 𝑡 < 𝑇} , were concerned with the IP of 

identifying the anonymous timewise coefficient 𝑐(𝑡) That satisfies a one-dimensional 

parabolic equation alongside the unknown temperature 𝑢(𝑥, 𝑡). 

 

    𝑢𝑡 = 𝑎(𝑥, 𝑡)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑡)𝑢𝑥 + 𝑐(𝑡)𝑢 + 𝑓(𝑥, 𝑡) ,   (𝑥, 𝑡) ∈ 𝛺𝑇                                   (1) 

according to the initial condition  

𝑢(𝑥, 0) = 𝜔(𝑥),       𝑥 ∈ [0, ℎ] ,                                                                              ( 2 )     
 associated to the non-homogenous Dirichlet boundary conditions; 

𝑢(0, 𝑡) = ʍ3(𝑡) ,  𝑢(ℎ, 𝑡) = ʍ4(𝑡),  𝑡 ∈ [0, 𝑇],                                                   (3) 

Afterward, with an over-specified condition of the integral type. 

∫𝑢(𝑥, 𝑡)𝑑𝑥 = ʍ5(𝑡)

ℎ

0

,    𝑡 ∈ [0, 𝑇].                                                                                             (4)      

The compatibility conditions are fulfilled by the functions 𝜔(𝑥),ʍ3(𝑡), ʍ4(𝑡)  and ʍ5(𝑡)  

that are provided. The unique solvability of the investigated problem has been proved in 

[34]. However, no computational solution was performed on this, so this is the major 

purpose of the present work. 

 

Definition 2.1: [34] Assume the pair (𝑐(𝑡), 𝑢(𝑥, 𝑡)) ∈ 𝐶[0, 𝑇] × 𝐶2,1(𝛺𝑇)  be a solution to 

the IP (1) − (4) , when equation (1) and conditions (2) − (4) are met.  

The IP (1) − (4) have an existence and unique solvability illustrated in [34] and are as 

below: 

 

Theorem 2.2: [34] Assume the following conditions are satisfied: 

𝐵1)  ʍ𝑗 ∈ 𝐶1[0, 𝑇], 𝑗 = 3,5, 𝜔 ∈ 𝐶2[0, ℎ], 𝑎 ∈ 𝐶1,0(𝛺𝑇), 𝑏, 𝑓 ∈ 𝐻𝛼,0(𝛺𝑇); 

𝐵2)   𝑎(𝑥, 𝑡) > 0, (𝑥, 𝑡) ∈ 𝛺𝑇 , ʍ5(𝑡) ≠ 0, 𝑡 ∈ [0, 𝑇]; 
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𝐵3)  𝜔(0) = ʍ3(0),     𝜔(ℎ) = ʍ4(0), ∫ 𝜔(𝑥) = ʍ5
ℎ

0
(0),  

ʍ3
′ (0) = 𝑎(0,0)𝜔′′(0) + 𝑏(0,0)𝜔′(0) + 𝑐(0)𝜔(0) + 𝑓(0,0), 

ʍ4
′ (0) = 𝑎(ℎ, 0)𝜔′′(ℎ) + 𝑏(ℎ, 0)𝜔′(ℎ) + 𝑐(0)𝜔(ℎ) + 𝑓(ℎ, 0), 

where, 𝑐(0) =
1

ʍ5(0)
[ʍ5

′ (0) − ∫ (𝑎(𝑥, 0)𝜔′′ℎ

0
(𝑥) + 𝑏(𝑥, 0)𝜔′(𝑥) + 𝑓(𝑥, 0))𝑑𝑥]                (5) 

Afterwards, it can be identified by the number 0 < 𝑡0 ≤ 𝑇 , which is determined by the 

initial data, that the solution to the IP (1) − (4) exists for (𝑥, 𝑡) ∈ 𝛺𝑡0 . 

 

Theorem 2.3: [34] Suppose the below conditions are fulfilled. 

𝑎(𝑥, 𝑡) > 0, (𝑥, 0) ∈ 𝛺𝑇 , ʍ5(𝑡) ≠ 0, 𝑡 ∈ [0. 𝑇], and 𝑎, 𝑏 ∈ 𝐻𝛼,0(𝛺𝑇). The solution of the 

(IP) (1) − (4) is unique.  

 

3. Numerical technique for the direct problem (𝟏) − (𝟑) based on FDM. 

      Dealing with the DP boundary value problem represented by Equations (1) − (3) in this 

context. The functions 𝑎(𝑥, 𝑡), 𝑏(𝑥, 𝑡), 𝑐(𝑡), 𝜔(𝑥),ʍ3 (𝑡) , ʍ4(𝑡) and 𝑓(𝑥, 𝑡) are given, 

additionally, required to find the solution 𝑢(𝑥, 𝑡). Also, via employing the Crank-Nicholson 

FDM, which is second-order accurate in space and time,  the problem is solved as follows: a 

description of the discrete form of the DP (1) − (3). Slice the domain 𝛺𝑇 into two 

subintervals with positive numbers,  𝑀,𝑁  with equal step lengths ∆𝑥 and ∆𝑡 , at ∆𝑥 =
ℎ

𝑀
  

and ∆𝑡 =
𝑇

𝑁
 , respectively. Indicating 𝑢𝑖,𝑗 ≔ 𝑢(𝑥𝑖 , 𝑡𝑗) ,𝑎(𝑥𝑖, 𝑡𝑗) ≔ 𝑎𝑖,𝑗, 𝑏(𝑥𝑖 , 𝑡𝑗) ≔ 𝑏𝑖,𝑗, 

𝑐(𝑡𝑗) ≔ 𝑐𝑗, and 𝑓(𝑥𝑖, 𝑡𝑗) ≔ 𝑓𝑖,𝑗 where 𝑥𝑖 = 𝑖∆𝑥 ,𝑡𝑗 = 𝑗∆𝑡 , at each specific node (𝑖, 𝑗) for 

𝑖 = 0,𝑀 ,𝑗 = 0,𝑁 . 

To implement the Crank-Nicholson procedure, assume the right-hand side of the heat 

Equation (1)  as, 𝐺(𝑥, 𝑡, 𝑢, 𝑢𝑥, 𝑢𝑥𝑥) = 𝑎(𝑥, 𝑡)𝑢𝑥𝑥 + 𝑏(𝑥, 𝑡)𝑢𝑥 + 𝑐(𝑡)𝑢 + 𝑓(𝑥, 𝑡)  
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

∆𝑡
=

1

2
 (𝐺𝑖,𝑗+1 + 𝐺𝑖,𝑗),                                                                            (6) 

where, 

(
(−∆𝑡)𝑎𝑖,𝑗+1

2(∆𝑥)2
−

(∆𝑡)𝑏𝑖,𝑗+1

4∆𝑥
)𝑢𝑖+1,𝑗+1 + (1 + 

(∆𝑡)𝑎𝑖,𝑗+1

(∆𝑥)2
−

(∆𝑡)𝑐𝑗+1

2
)𝑢𝑖,𝑗+1

+ (−
(∆𝑡)𝑎𝑖,𝑗

2(∆𝑥)2
+

(∆𝑡)𝑏𝑖,𝑗

4∆𝑥
)𝑢𝑖−1,𝑗+1 

= (
(∆𝑡)𝑎𝑖,𝑗

2(∆𝑥)2
+

(∆𝑡)𝑏𝑖,𝑗

4∆𝑥
)𝑢𝑖+1,𝑗 + (1 − 

(∆𝑡)𝑎𝑖,𝑗

(∆𝑥)2
+

∆𝑡𝑐𝑗

2
)𝑢𝑖,𝑗 + (

(∆𝑡)𝑎𝑖,𝑗

2(∆𝑥)2
−

(∆𝑡)𝑏𝑖,𝑗

4∆𝑥
)𝑢𝑖−1,𝑗 

+
∆𝑡

2
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1).                                                                                                                    (7)                                                                                                                                                                                                                         

                                                                                                                                                                                             

Concerning the value of 𝑖 = 1, (𝑀 − 1) and 𝑗 = 0,𝑁, let  𝐴̃ , 𝐵̃ and 𝐶̃ as 

𝐴̃𝑖,𝑗 = (
∆𝑡𝑎𝑖,𝑗

2(∆𝑥)2
+

∆𝑡𝑏𝑖,𝑗

4∆𝑥
), 𝐵̃𝑖,𝑗 = (

−∆𝑡𝑎𝑖,𝑗

(∆𝑥)2
+

∆𝑡𝑐𝑗

2
), 𝐶̃𝑖,𝑗 = (

∆𝑡𝑎𝑖,𝑗

2(∆𝑥)2
−

∆𝑡𝑏𝑖,𝑗

4∆𝑥
).                   (8)   

By substituting Equation (8) in Equation (7) , obtaining 

−𝐴̃𝑖,𝑗+1𝑢𝑖+1,𝑗+1 + [1 − 𝐵̃𝑖,𝑗+1]𝑢𝑖,𝑗+1 − 𝐶̃𝑖,𝑗+1𝑢𝑖−1,𝑗+1 = 𝐴̃𝑖,𝑗𝑢𝑖+1,𝑗 + [1 + 𝐵̃𝑖,𝑗]𝑢𝑖,𝑗 +

𝐶̃𝑖,𝑗𝑢𝑖−1,𝑗 +
∆𝑡

2
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1).                                                                         (9) 

In Equations (2) and (3) , expressing the initial and boundary conditions as below. 

𝑢(𝑥𝑖, 0) = 𝜔(𝑥𝑖) , 𝑖 = 0,𝑀 ,     𝑢(0, 𝑡𝑗) = ʍ3(𝑡𝑗), 𝑢(𝑀, 𝑡𝑗) = ʍ4(𝑡𝑗),   𝑗 = 0,𝑁.  (10) 

 

     In the Equation (9) typically, the values are known on the right-hand side, while those 

are unknown on the left. After that, into 𝑀 quad intervals, the interval 𝑋 was partitioned. 

Then, for each, = 1,……… ,𝑀 − 1 ,   𝑗 = 0  at the initial time, doing the substitution in the 
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equation (9). Now, substituting the first part of the parabolic thermal equation with the 

temperature function represented by 𝑢𝑖,𝑗 and then substitute the second part with the 

temperature function represented by 𝑢𝑖,𝑗+1 into the right-hand side by relying on the given 

Dirichlet boundary conditions 𝑢0,1 = ʍ3(𝑡0), 𝑢𝑀,1 = ʍ4(𝑡0), calculating  𝑢0,𝑗+1 , 𝑢0,𝑗, 𝑢𝑀,𝑗 

and 𝑢𝑀,𝑗+1. The equation (9) yields a linear equation system (𝑀 − 1) × (𝑀 − 1) for the 

unknown values. As a linear equation system, the above difference equation can be re-

written as form:  

 

𝑾𝑢𝑗+1 = 𝑺𝑢𝑗 + 𝐹 ,                                                                                          (11) 

For which 𝑾 and 𝑺 are (𝑀 − 1) × (𝑀 − 1) and 

 𝑢𝑗+1 = (𝑢1,𝑗+1 𝑢2,𝑗+1, … . , 𝑢𝑀−1,𝑗+1)
𝑡𝑟 and 𝑢𝑗 = ( 𝑢1,𝑗, 𝑢2,𝑗, … . , 𝑢𝑀−1,𝑗)

𝑡𝑟 , are stated as 

below: 

𝑾 =

[
 
 
 
 
 
1 − 𝐵̃1,𝑗+1 −𝐴̃1,𝑗+1 0 0 0

−𝐶̃2,𝐽+1 1 − 𝐵̃2,𝑗+1 −𝐴̃2,𝑗+1 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 −𝐶̃𝑀−2,𝑗+1 1 − 𝐵̃𝑀−2,𝑗+1 −𝐴̃𝑀−2,𝑗

0 0 0 −𝐶̃𝑀−1,𝑗+1 1 − 𝐵̃𝑀−1,𝑗+1]
 
 
 
 
 

(𝑀−1)×(𝑀−1)

 

𝑺 =

[
 
 
 
 
 
1 + 𝐵̃1,𝑗 𝐴̃1,𝑗 0 0 0

𝐶̃2,𝑗 1 + 𝐵̃2,𝑗 𝐴̃2,𝑗 0 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 𝐶̃𝑀−2,𝑗 1 + 𝐵̃𝑀−2,𝑗 𝐴̃𝑀−2,𝑗

0 0 0 𝐶̃𝑀−1,𝑗 1 + 𝐵̃𝑀−1,𝑗]
 
 
 
 
 

(𝑀−1)×(𝑀−1)

 

𝐹 =

[
 
 
 
 
 
 
 
 
 
 𝐶̃1,𝑗+1𝑢0,𝑗+1 + 𝐶̃1,𝑗𝑢0,𝑗 +

∆𝑡

2
(𝑓1,𝑗 + 𝑓1,𝑗+1)

∆𝑡

2
(𝑓2,𝑗 + 𝑓2,𝑗+1)

0
⋮
0

∆𝑡

2
(𝑓𝑀−2,𝑗 + 𝑓𝑀−2,𝑗+1)

𝐴̃𝑀−1,𝑗𝑢𝑀,𝑗 + 𝐴̃𝑀−1,𝑗+1𝑢𝑀,𝑗+1 +
∆𝑡

2
(𝑓𝑀−1,𝑗 + 𝑓𝑀−1,𝑗+1)]

 
 
 
 
 
 
 
 
 
 

(𝑀−1)×1

 

 

3.1 Example of a direct problem (whenever 𝒄(𝒕) is known). 

     Suppose having a DP with the entered data, such as when the unknown parameters are 

available, as shown below, and for simplicity, consider ℎ = 𝑇 = 1. 

𝑎(𝑥, 𝑡) = 1,  𝑏(𝑥, 𝑡) = 1 + 𝑡2,  𝑐(𝑡) = 1 + 𝑡,   𝜔(𝑥) = (𝑒−𝑥 + 𝑥2),   ʍ3(𝑡) = 𝑒𝑡,   
ʍ4(𝑡) = (𝑒−1 + 1)𝑒𝑡  ,  

𝑓(𝑥, 𝑡) = (𝑒−𝑥 + 𝑥2)𝑒𝑡 − (𝑒−𝑥 + 2)𝑒𝑡 − (1 + 𝑡2)(−𝑒−𝑥 + 2𝑥)𝑒𝑡 − (1 + 𝑡)(𝑒−𝑥 + 𝑥2)𝑒𝑡 

where the desired answer is  

𝑢(𝑥, 𝑡) = (𝑒−𝑥 + 𝑥2)𝑒𝑡                                                                          (12)         
Accurate and steady results for the temperature 𝑢(𝑥, 𝑡) when the mesh size was determined 

at 𝑀 = 𝑁 = 40 , Figure 1; according to this figure, it can be concluded that a stable and 

accurate solution was attained at this appropriate grid size, and the graph indicates the value 

of the absolute error, which has a value of 10−5. Moreover, it illustrates the excellent result 

obtained. In addition, Figure 2 presents the computational details of the required outcome 
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ʍ5(𝑡) for the selected grid points within the computed range. This Figure provides more 

precise results. 

 

 
Figure 1: The exact and numerical results temperature 𝑢(𝑥, 𝑡) for the direct problem was 

calculated at mesh size 𝑀 = 𝑁 = 40 and  error graph. 
 

 
Figure 2: Approximate and analytical values of ʍ5(𝑡)  At the time, the node was calculated 

as a single size. 

 

Table 1:The approximate values for ʍ5(𝑡) at different time node evaluated at different 

mesh sizes. 

𝑡 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M=N=10 1 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.000 

M=N=20 1 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.000 

M=N=40 1 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.000 

M=N=80 1 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.000 

M=N=100 1 1.1000 1.2000 1.3000 1.4000 1.5000 1.6000 1.7000 1.8000 1.9000 2.000 

Exact 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
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4. A computational technique for IP (𝟏) − (𝟒) 

     Retrieve the unknown time-dependent coefficient 𝑐(𝑡) with temperature 𝑢(𝑥, 𝑡) for a 

one-dimensional parabolic equation to achieve numerically stable and accurate results, 

which is our purpose for the inverse problem (1) − (4) presented in Section 2. At the initial 

time, from the entered data, the unknown coefficient can be retrieved using the Equation 
(5). To solve the inverse problem iteratively, these values will be implemented as a fixed 

initial guess. As a nonlinear minimization problem, the inverse problem was reformulated to 

solve this problem. Seeking to reduce the discrepancy between the measured data and the 

numerically calculated solution. The usual Tikhonov regularization approach was modified 

to achieve a stable and smooth solution. From the overdetermination condition (4), the 

functional error can be enforced as below:  

Θ(𝑐) = ‖∫ 𝑢(𝑥, 𝑡)𝑑𝑥 − ʍ5(𝑡)
ℎ

0
‖

2

+ 𝛽‖𝑐(𝑡)‖2 ,                                                            (13)               

It can also be described approximately as follows: 

Θ(𝑐) =  ∑ [∫ 𝑢(𝑥, 𝑡𝑗)𝑑𝑥 − ʍ5(𝑡𝑗
ℎ

0
)]

2

+ 𝛽 ∑ 𝑐𝑗
2 ,𝑁

𝑗=1
𝑁
𝑗=1                                                   (14) 

      

       It is possible to determine the regularization parameter for 𝛽 by relying on the 

appropriate selection technique, such that 𝛽 ≥ 0. Therefore, to implement an optimization in 

the accuracy of the solution, it is necessary to carefully select the value of the regularization 

parameter for 𝛽. In addition, by applying the lsqnonlin routine via the MATLAB toolbox 

with the Trust-Region-Reflective algorithm to find the minimizer of the nonlinear Tikhonov 

regularization functional (13), check [35] for further details. By embarking on a specific 

initial guess, this routine seeks to find the minimum sum of squares by making a specific 

initial guess. Dealing with noisy as well as accurate data (4), the IP (1) − (4) was solved. 

As follows, random errors are introduced to simulate factual data. 

ʍ5
𝜖(𝑡𝑗) = ʍ5(𝑡𝑗) + 𝜖1,𝑗,          𝑗 = 1,𝑁,                                                                         (15) 

as that 𝜖 indicates a vector that follows a random Gaussian normal distribution, with a mean 

for zero and standard deviation of, which is determined through: 

𝜎 = 𝑝 × 𝑚𝑎𝑥
𝑡∈[0,𝑇]

 ⎸ʍ5(𝑡)⎸,                                                                                                  (16)  

Since 𝑝 represents the noise proportion. Our random variables 𝜖 = (𝜖𝑗) ,    𝑗 = 0,𝑁  were 

constructed utilizing the MATLAB bulletin function "normrnd" of the form: 

𝜖=𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 𝜎, 𝑁).                                                                                                    (17) 

 

5. Computational outcomes and discussion 

     A numerical experiment example is presented in this section to interpret the accuracy and 

stability of numerical methods by relying on the Crank-Nicholson procedure. Moreover, to 

employ Equations (15), (16) and (17) to mimic the actual conditions of measurement 

errors, introducing noise to the input data (4), reducing the objective function, Θ described 

in section 4. In addition, root mean square error (RMSE) was applied, which can be 

characterized as RMSE(𝑐) =[
𝑇

𝑁
∑ (𝑐𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑡𝑗) − 𝑐𝑒𝑥𝑎𝑐𝑡(𝑡𝑗))

2
𝑁
𝑗=1 ]

1

2

                                                       

(18) 

to validate the accuracy of the computational solution. As follows an analytical example to 

illustrate the accuracy and stability of numerical solutions in Equations (21)  and (22) for 

the unknown values 𝑢(𝑥, 𝑡) and 𝑐(𝑡) successively was discussed, and for easiness, taking 

(ℎ = 1) and (𝑇 = 1) in this example and specify the mesh size (𝑀 = 𝑁 = 80). 
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5.1 Test example (for IP) 

     first, considering the IP represented by Equations (1) − (4) with the unknown timewise 

coefficient 𝑐(𝑡) , alongside the entered data expressed as the following: 

𝑎(𝑥, 𝑡) = 1 + 𝑡 , 𝑏(𝑥, 𝑡) = −1 − 2𝑡 ,  𝜔(𝑥) = (1 − 3𝑥)2,  ʍ3(𝑡) = 𝑒𝑡 , ʍ4(𝑡) = 4𝑒𝑡 , 

 𝑓(𝑥, 𝑡) = (1 − 3𝑥)2𝑒𝑡 − 18(1 + 𝑡)𝑒𝑡 + (1 + 2𝑡)(−6 + 18𝑥)𝑒𝑡,                                  (19)     

ʍ5(𝑡) = 𝑒𝑡,                                                                                                      (20) 

 

     The solution has ensured that local existence and uniqueness, subject to Theorems 1 and 

2 conditions, must be observed clearly. So, the accurate answer to the problem is 

𝑢(𝑥, 𝑡) = (1 − 3𝑥)2𝑒𝑡,(𝑥, 𝑡) ∈ 𝛺𝑇                                                                              (21) 

𝑐(𝑡) = 𝑡2,     𝑡 ∈ [0, 𝑇]                                                                                                  (22) 

 

     After that, making  𝑀 = 𝑁 = 80  and verify to reconstruct the coefficient time dependent 

𝑐(𝑡) where no noise is included in the over-specification (4), i.e., 𝑝 = 0, and without 

enforcing any regularization in (16). Employing the Isqnonlin subroutine to minimize Θ in 
(14) with data (19) and (20) investigating the IP (1) − (4). The numerical results for 𝑐(𝑡) 

are presented in Figure 3𝑎, where obtaining RMSE(𝑐) = 0.0152. As a function of the 

number of iterations, the objective function Θ is interpreted; in Figure 3𝑏, it is shown that 

the process requires 9  iterations to obtain a very low variance of about 𝑂(10−9) while 

reaching a monotonically decreasing convergence. 

 

 
Figure 3: (a). Data for the IP (1)-(4) calculated for a mesh size 𝑀 = 𝑁 = 80, including both 

exact and approximate, for c(t). 



Mahdi and Hussein                             Iraqi Journal of Science, 2025, Vol. 66, No. 12, pp: 5675- 5687 

 

5683 

 
Figure 3: (b). The objective function (14), in the noise-free and regularization-free case 

with mesh size 𝑀 = 𝑁 = 80 

 

       Also, here, to the over-specification condition ʍ5(𝑡) 1% noise was added, i.e., (𝑝 =
1%)as in (15), to check for stability. At (16), also performing the search for larger amounts 

of noise. The results obtained were less accurate and are therefore not presented. Without 

including regularization, Figure 4𝑏 depicts the objective function (14) when it decreases to 

the value. (10−9) Rapidly at iteration 130. According to Figure 4𝑎, oscillating and unstable 

results were produced, indicating that the inverse problem is primarily inaccurate and 

unstable when it does not contain any regularization, that is, 𝛽 = 0.With RMSE (𝑐) =
41.9859. 

 

 
Figure 4: (a) Exact solution and approximate solution for 𝑝 = 1% noise and absence of 

regularization 
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Figure 4: (b) at 𝑝 = 1% noise and does not contain regularization, the unregularized 

objective function 14. 

 

       Hence, regularization needs to be implemented to find accurate and stable solutions. 

Noise with 𝑝 = 1% and set 𝛽 with the parameters = {10−𝑖; 𝑖 = 1,… ,7} was introduced to 

emulate the noisy data as it is entered. Employing equation (14) for ʍ5(𝑡) Figure 6,7 

depicts the regularized function Θ and additionally displays the coefficient time-dependent 

𝑐(𝑡). By looking at this figure, when 𝛽 ∈ {10−3, 10−2, 10−1}, the results obtained are well-

stabilised and acceptable. However, when 𝛽 ∈  {10−4, 10−5, 10−6, 10−7}, the values are 

highly oscillatory and unstable. Table 1 presents the numerical results and details the 

number of iterations and objective function values, the RMSE values for the unknown time-

dependent coefficient 𝑐(𝑡),  and the various regularisation values. It is evident from the table 

that the best RMSE result was obtained at 0.3133. Figure 5 indicates that the steady and 

rapid stabilization at the value of 0(10−3). 

 

 
Figure 5: The regularization objective function(14), and a regularization 𝛽 ∈ {10−𝑖; 𝑖 =

1,… ,7} , with input data containing 𝑝 = 1%  noise 
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Figure 6: The analytical and the numerical reconstructions for c(τ), with p = 1%   noise 

involved in the input data, with a regularization parameter β ∈ {10−i; i = 1,… ,4}. 
 

 
Figure 7: The analytical and the numerical reconstructions for c(τ), with p = 1%  noise 

involved in the input data, with a regularization parameter β ∈ {10−i; i = 5,6,7}. 
 

Table 2: Nnumerically data from some expressing different regularization parameters  𝛽 ∈
{10−𝑖; 𝑖 = 1,… ,7} with involves noise = 1% . 

𝛽 10-7 10-6 10-5 10-4 10-3 10-2 10−1 

No. of iterations 23 24 6 18 18 16 13 

Objective functional 

(12) at final iteration 
0.0034 0.0103 0.0272 0.0520 0.0834 0.1198 0.1325 

RMSE(c) 14.9790 7.6310 3.4434 1.1194 0.3133 0.3525 0.4408 

 

6. Conclusions 

     In a one-dimensional parabolic equation under over-specification conditions, the IP of 

recovering the time-dependent coefficient with temperature 𝑢(𝑥, 𝑡) is considered. By 

adopting the Crank-Nicholson approach, the direct problem was handled. By executing the 

Isqnonlin routine in MATLAB, the IP was inspected and converted into a least squares 

optimization problem. Cases of numerical results exist with different noise ratios and with 
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and without regularization. In the first case, consider when no noise is included (𝑝 =
0%) and regularization (𝛽 = 0). The results are stable and accurate, requiring fewer 

iterations to reach results quickly.  On the contrary, in the second case, when noise is 

introduced (𝑝 = 1%) with no regularization (𝛽 = 0), achieving highly fluctuating results 

for the reconstructed coefficient 𝑐(𝑡), which are unstable and require more iterations to 

reach the results. In the third case, when including noise (𝑝 = 1%)  and setting different 

values of regularization, observing that the results are stable and steady when the values of 

regularization are {10−3, 10−2, 10−1}  While obtaining highly oscillatory and unstable 

results when the values of regularization are {10−4, 10−5, 10−6, 10−7}  for the reconstructed 

coefficient on time 𝑐(𝑡).  
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