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Abstract

Through the application of a Dirichlet boundary condition and under an
additional integral-type condition, the recovery of the time-dependent
coefficient in a one -dimensional parabolic equation is investigated in this
paper. When data is entered, the solution is affected to a precarious status
during exposure to random errors and noise. The Crank-Nicolson finite
difference approach is implemented for the direct solution of the problem,
while nonlinear numerical optimization is employed for the inverse problem.
Isqnonlin, the MATLAB routine optimization tool, is applied to compute the
last problem. The Tikhonov regularization approach must be used to produce
smooth, stable answers. The evaluation and comparison with their identical
answers were performed by running the root mean square error formula. It
conclude that, the numerical results are consistent and accurate.

Keywords: Nonlinear minimization, Crank-Nicolson approach, Non-local
integration condition, Dirichlet boundary conditions, Heat equation, Inverse
problem.
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1. Introduction

Partial differential equations have played a leading role in various fields of science for
many decades due to their importance in applications, including physics, engineering, and
quantum chemistry. On the other hand, the role and importance of partial differential
equations are evident in forming models of natural phenomena and establishing numerical
methods for approximate solutions and their application to concrete fields of life [1-4]. In
the last six decades of the previous century, inverse problems and their study have earned a
growing prominence due to their importance in the crystallization of their mathematical
models and their spacious framework of applications. These models have become essential
in formulating physical problems in engineering and industry [5-7]. At the beginning of the
millennium, the concept of inverse problems was expanded due to its broad role in
important application areas and the reconstruction of unknown parameters [8-11]. Under
Dirichlet boundary conditions, in addition to the integral overdetermination condition, the
inverse problem of assigning the spreading coefficient in a 1-D parabolic heat equation was
investigated in [12]. A new method has been developed in [13] for the first time, which
involves the implementation of two algorithms in stages to recreate the time-dependent
diffusion coefficient in a 1-D parabolic equation. For these unknown coefficients, the
procedure for finding them is necessary to re-create the numerically balanced inverse
problem in the one-dimensional time-dependent thermal equation. u; = k(x, t)uy,, +
f(x,t), [14]. In [15], a new formulation for the numerical solution of the inverse problem of
the simultaneous determination of the time-dependent right-hand side and the fundamental
coefficient in the parabolic equation. In a similar method, the researchers tackled the
problem of finding the unknown time- and space-dependent parameters in the right part of a
2-D heat equation [16]. In [17], the authors address the inverse source problem for parabolic
equations; they introduced and developed a new approach and implementation to solve the
inverse problem for the nonlinear parameter. As well as finding the time-dependent diffusion

. . . . . . . ow
coefficient of a one-dimensional inverse problem in the parabolic equation E(x, T) =

k(1) af;W (x, 1), was also investigated by employing the Crank-Nicholson technique [18].
In the same context, a numerical investigation was carried out using the approach previously
mentioned in [18] in the heat equation to identify the time-dependent reaction coefficients
through Stefan boundary conditions and thermal moments available from the supplementary
data [19]. In these works [20, 21], a proposed method for calculating the parabolic thermal
coefficients is followed in two inverse problems with a non-local boundary condition. In
addition, the authors in [22, 23] considered concurrently determining two time-dependent
parameters for a one-dimensional nonlinear IP. Furthermore, the numerical determination of
the time-dependent heat conduction coefficients was studied by applying the Dirichlet
boundary condition and the non-local heat flux as over-specification and initial boundary
conditions in the two-dimensional heat equation. u; = a;()uy, + ax(uy, + f(x,y,1),
[24]. Also, by relying on Dirichlet boundary conditions and an over-specification condition
of the integral kind for the 1-D parabolic equation, the time-dependent functions b; =
b,(t),b, = b,(t) were specified in [25], as well as finding the functions
u(x,7),s(t),a(r), b(x,t) in [26]. In [27], with the second-order 1-D parabolic equation, the
non-local integration condition, and additional conditions, the reconstruction of the
unknown time-dependent coefficients associated with the Neumann boundary condition is
examined. Finding the time-dependent coefficient of a two-dimensional second-order
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parabolic equation was considered under the mixed homogeneous boundary conditions in
[28, 29]. Meanwhile, an inverse problem for a 2-D parabolic equation for reconstructing a
time-dependent coefficient subject to non-local conditions has been dealt with in [30]. A
non-local linear combination of heat flux overdetermination is employed to reconstruct the
conductivity and temperature in the two-dimensional heat equation [31]. Huntul discussed in
[32] the restoration of time-wise heat conduction coefficient, the free boundary of heat flux,
and non-local integrated control as over-specification conditions in a two-dimensional
parabolic equation. For the first time numerically and under overdetermination conditions,
the inverse problem of recovering both the temperature u(x,y,t) as well as the time-
dependent heat source f; ;(t),i,j = 0,1 a two-dimensional parabolic equation subject to a
Neumann boundary condition was examined in [33]. This paper aims to find the numerical
reconstruction for the time-wise coefficient in the total variable coefficient parabolic heat
equation with integral mass/ heat specification condition as the overdetermination condition.
The structure of this work is described below:

The mathematical setting of a one-dimensional parabolic heat equation in Section 2 was
introduced. In Section 3, the numerical solution of the direct problem (DP) (1) — (3) is
introduced. In Section 4, the regularized minimization problem is presented, which is treated
with the MATLAB implementation of Isqnonlin with the inverse problem (IP) solving
technique (1) — (4) .In addition, the numerical results are discussed in Section 5. In Section
6, the conclusions were provided.

2. Mathematical Statement of (IP)

Under the region 27 = {(x,t):0 <x < h,0 <t <T}, were concerned with the IP of
identifying the anonymous timewise coefficient c(t) That satisfies a one-dimensional
parabolic equation alongside the unknown temperature u(x, t).

U = a(x, uy, + b, u, +c(u+ f(x,t), (x,t) € 2y (1)
according to the initial condition
u(x,0) =w(x), x€][0,h], (2)
associated to the non-homogenous Dirichlet boundary conditions;
u(0,t) = m3(t), u(h,t) = mu(t), t €[0,T], 3)
Afterward, with an over-specified condition of the integral type.
h
]u(x, t)dx = ms(t), t€][0,T]. (4)

0
The compatibility conditions are fulfilled by the functions w(x), m3(t), m4(t) and mz(t)

that are provided. The unique solvability of the investigated problem has been proved in
[34]. However, no computational solution was performed on this, so this is the major
purpose of the present work.

Definition 2.1: [34] Assume the pair (c(t),u(x,t)) € C[0,T] X C>1(2;) be a solution to
the IP (1) — (4) , when equation (1) and conditions (2) — (4) are met.

The IP (1) — (4) have an existence and unique solvability illustrated in [34] and are as
below:

Theorem 2.2: [34] Assume the following conditions are satisfied:
By) m; € C1[0,T],j = 3,5 w € C2[0,h], a € C*°(Qr), b, f € H*°(07);
B,) a(x,t) >0, (x,t) € 2, ms(t) #0,t €[0,T];
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Bs) w(0) =m3(0), w(h) = my(0), f w(x) = ms (0),

m3(0) = a(0,0)w”(0) + b(0,0)w’'(0) + c(0)w(0) + £(0,0),

my(0) = a(h, O)w”(h) + b(h,0)w'(h) + c(0)w(h) + f(h,0),
where, c(0) = (0)[ ms(0) — foh(a(x, 0)w"” (x) + b(x,0)w'(x) + f(x,0))dx] (5)
Afterwards, it can be identified by the number 0 < ty < T , which is determined by the
initial data, that the solution to the IP (1) — (4) exists for (x,t) € ﬁto )

Theorem 2.3: [34] Suppose the below conditions are fulfilled.

a(x,t) > 0,(x,0) € 27, mg(t) #0, t € [0.T], and a,b € H*°(Q;). The solution of the
(IP) (1) — (4) is unique.

3. Numerical technique for the direct problem (1) — (3) based on FDM.

Dealing with the DP boundary value problem represented by Equations (1) — (3) in this
context. The functions a(x,t),b(x,t),c(t), w(x), ms (t),mu(t) and f(x,t) are given,
additionally, required to find the solution u(x, t). Also, via employing the Crank-Nicholson
FDM, which is second-order accurate in space and time, the problem is solved as follows: a
description of the discrete form of the DP (1) — (3). Slice the domain 2 into two

subintervals with positive numbers, M, N with equal step lengths Ax and At , at Ax = %

T : .
and At =, respectively. Indicating w;; := u(x;, t;) La(xi,t) = a;j, b(x;,t;) = by,
c(tj) = ¢j, and f(x;, tj) i= f;; where x; = iAx ,t; = jAt , at each specific node (i,j) for
i=0M,j=0N.

To implement the Crank-Nicholson procedure, assume the right-hand side of the heat
Equation (1) as, G(x,t,u, Uy, Uyy) = a(x, )Uy, + b(x, )uy, + c(Du + f(x,t)

ul,,+tul,, =% (Gije1+Gij), (6)
where,
(—At)a; 41 (AD)b;j4a (A)ai i1 (AD)cjq
< 2(0x)?  4hx ) i+1f+1+<1 0?2 2 )u”“

At)a; ; At)Db; ;
o (@oay  @oby)
2(Ax)? 4Ax ’

_ (At)al']+(At)le » . _ (At)al,]+AtC] U + (At)a” (At)bl'] w '
2(Ax)2 ' 4Ax )Y (Ax)2 2 2(Ax)2 4Ax )Y

+ % (fij + fijer): (7)

Concerning the value of i = 1, (M —1)andj =0,N,let A, B and C as
_ Ata; Atb” _ —Ata;;  Atcj _ Atay; . Atb;
Aij (Z(Ax)z 4Ax ) Bij = ( (8x)? + )' Lj (Z(Ax)z 4A ) (®)

By substituting Equation (8) in Equation (7) , 0bta1n1ng
Al]+1ul+1 j+1 + [1 Bl}+1]uL]+1 Cl}+1ul 1,j+1 — Ai,jui+1,j + [1 + Ei,j]ui,j +
Cijui—1j+ 7 (fi,j + fij+1)- €C))
In Equations (2) and (3) , expressing the initial and boundary conditions as below.
u(x;,0) = w(x;),i=0M, u(O, tj) = m3(t)), u(M, tj) =mu(t)), Jj= 0,N. (10)

In the Equation (9) typically, the values are known on the right-hand side, while those
are unknown on the left. After that, into M quad intervals, the interval X was partitioned.
Then, for each, =1, ... ... ... ,M —1, j=0 atthe initial time, doing the substitution in the
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equation (9). Now, substituting the first part of the parabolic thermal equation with the
temperature function represented by u;; and then substitute the second part with the

temperature function represented by u; j,, into the right-hand side by relying on the given
Dirichlet boundary conditions ug 1 = m3(to), Uy, = Ma(to), calculating ug 1, Uo,j, Unm,j
and uy ;1. The equation (9) yields a linear equation system (M — 1) X (M — 1) for the
unknown values. As a linear equation system, the above difference equation can be re-
written as form:

W'Ll.j+1 = Su] +F , (11)
For which W and § are (M — 1) X (M — 1) and
u]'+1 = (ul‘j_;,_l uZ‘j+1, ....,uM_1,j+1)tr and u] = (ul‘]’, uz‘]’, ....,uM_l‘]')tr, are stated as
below:
(1 —Byjr1 —Ayjs1 0 0 0
—Coye1 1—Byji1  —Azj 0 0
= ) ] : : )
0 —Cy—2j+1 1= By_2j+1 —Ap_2j
- ) 0 0 —Cy-1,j+1 11— BM—l,j+1_(M_1)X(M_1)
1+B,, A, 0 0 0
Coj 1+By Ay 0 0
s=| : : : :
0 Cyv—2j 1+By-2j Au-2;
0 0 Cuay 1+ Buiidy s
~ ~ At ]
Cyjs1Uoj+1 +  Cyjug; + 7(f1,j + f1,j+1)
At
> (f2,; + f2,j+1)
0
F = :
0
At
> (fu-2,j + fu-2,j+1)
- - t
[ Av-1,jUm,j + Ay-1j+1Unje1 T > (fu-1,j + fM—1,j+1)_

(M-1)x1

3.1 Example of a direct problem (whenever c(t) is known).

Suppose having a DP with the entered data, such as when the unknown parameters are
available, as shown below, and for simplicity, consider h = T = 1.
a(x,t) =1, b(x,t) =1+t2 c(t) =1+t, wlkx)=(e™™+x2), ms(t) =et,
my(t) = (et + 1)et

fl,t) =(e*+x2)et — (e +2)et —(1+t>)(—e*+2x)et — (1 +t)(e™* + x?)et
where the desired answer is

u(x, t) = (e™* + x?)et (12)

Accurate and steady results for the temperature u(x, t) when the mesh size was determined
at M = N = 40 , Figure 1; according to this figure, it can be concluded that a stable and
accurate solution was attained at this appropriate grid size, and the graph indicates the value
of the absolute error, which has a value of 10~>. Moreover, it illustrates the excellent result
obtained. In addition, Figure 2 presents the computational details of the required outcome
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Ms(t) for the selected grid points within the computed range. This Figure provides more
precise results.

Numerical solution

Exact solution Error graph

error

Figure 1: The exact and numerical results temperature u(x,t) for the direct problem was
calculated at mesh size M = N = 40 and error graph.

exact i
26 .
o numerical

24+

221 o

M, (1

0.8 ! I ! I 1 I 1 I 1 J
0.6 0.7 0.8 0.9 1

Figure 2: Approximate and analytical values of ms(t) At the time, the node was calculated
as a single size.

Table 1:The approximate values for ms(t) at different time node evaluated at different

mesh sizes.

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
M=N=10 1 1.1000 [1.2000 [.3000 [.4000 [.5000 [.6000 [.7000 [.8000 [.9000 (000
M=N=20 1 1.1000 [1.2000 [.3000 [.4000 [.5000 [.6000 [.7000 [.8000 [.9000 (000
M=N=40 1 1.1000 [1.2000 [.3000 [.4000 [.5000 [.6000 [.7000 [.8000 [.9000 (000
M=N=80 1 1.1000 [.2000 [.3000 [.4000 [.5000 [1.6000 [1.7000 [.8000 [1.9000 |000
M=N=100 |1 1.1000 [.2000 [.3000 [.4000 [.5000 [1.6000 [1.7000 [.8000 [1.9000 |000

Exact 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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4. A computational technique for IP (1) — (4)

Retrieve the unknown time-dependent coefficient c(t) with temperature u(x,t) for a
one-dimensional parabolic equation to achieve numerically stable and accurate results,
which is our purpose for the inverse problem (1) — (4) presented in Section 2. At the initial
time, from the entered data, the unknown coefficient can be retrieved using the Equation
(5). To solve the inverse problem iteratively, these values will be implemented as a fixed
initial guess. As a nonlinear minimization problem, the inverse problem was reformulated to
solve this problem. Seeking to reduce the discrepancy between the measured data and the
numerically calculated solution. The usual Tikhonov regularization approach was modified
to achieve a stable and smooth solution. From the overdetermination condition (4), the
functional error can be enforced as below:

h 2
0(c) = ||J; uCe ydx = ms@® || + Bllc@II?, (13)
It can also be described approximately as follows:
h 2
0(0) = T [fy ule ty)dx — ms(e)| + BT, c?, (14)

It is possible to determine the regularization parameter for f by relying on the
appropriate selection technique, such that f > 0. Therefore, to implement an optimization in
the accuracy of the solution, it is necessary to carefully select the value of the regularization
parameter for £. In addition, by applying the Isqnonlin routine via the MATLAB toolbox
with the Trust-Region-Reflective algorithm to find the minimizer of the nonlinear Tikhonov
regularization functional (13), check [35] for further details. By embarking on a specific
initial guess, this routine seeks to find the minimum sum of squares by making a specific
initial guess. Dealing with noisy as well as accurate data (4), the IP (1) — (4) was solved.
As follows, random errors are introduced to simulate factual data.

mE(t) =ms(t) +e;,  j=1N, (15)
as that € indicates a vector that follows a random Gaussian normal distribution, with a mean
for zero and standard deviation of, which is determined through:
o=pX ggg{gﬂ ms(t) , (16)

Since p represents the noise proportion. Our random variables € = (Ej) , J=0,N were

constructed utilizing the MATLAB bulletin function "normrnd" of the form:
e=normrnd(0, g, N). (17)

5. Computational outcomes and discussion

A numerical experiment example is presented in this section to interpret the accuracy and
stability of numerical methods by relying on the Crank-Nicholson procedure. Moreover, to
employ Equations (15), (16) and (17) to mimic the actual conditions of measurement
errors, introducing noise to the input data (4), reducing the objective function, @ described

in section 4. In addition, root mean square error (RMSE) was applied, which can be
1

characterized as RMSE(¢) :E v (Cnumerical (t;) — cexact( tj))z]E

(18)

to validate the accuracy of the computational solution. As follows an analytical example to
illustrate the accuracy and stability of numerical solutions in Equations (21) and (22) for
the unknown values u(x, t) and c(t) successively was discussed, and for easiness, taking
(h =1) and (T = 1) in this example and specify the mesh size (M = N = 80).
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5.1 Test example (for IP)
first, considering the IP represented by Equations (1) — (4) with the unknown timewise
coefficient c(t) , alongside the entered data expressed as the following:
a(x,t) =1+¢t, b(x,t) =—-1-2t, w(x) = (1 —3x)% ms3(t) = et , my(t) = 4et,
flx,t) = (1 —3x)%e* —18(1 + t)e' + (1 + 2t)(—6 + 18x)e’, (19)
ms(t) = e, 20)

The solution has ensured that local existence and uniqueness, subject to Theorems 1 and

2 conditions, must be observed clearly. So, the accurate answer to the problem is
u(x, t) = (1 —3x)%et,(x,t) € Qr (21)
c(t) =t?, te[0,T] (22)

After that, making M = N = 80 and verify to reconstruct the coefficient time dependent
c(t) where no noise is included in the over-specification (4), i.e., p = 0, and without
enforcing any regularization in (16). Employing the Isqnonlin subroutine to minimize © in
(14) with data (19) and (20) investigating the IP (1) — (4). The numerical results for c(t)
are presented in Figure 3a, where obtaining RMSE(c) = 0.0152. As a function of the
number of iterations, the objective function O is interpreted; in Figure 3b, it is shown that
the process requires 9 iterations to obtain a very low variance of about 0(10~°) while
reaching a monotonically decreasing convergence.

exact
— —% — numerical

0 0;2 O.I4 OI.6 0i8 ‘Il

t
Figure 3: (a). Data for the IP (1)-(4) calculated for a mesh size M = N = 80, including both
exact and approximate, for c(t).
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10710
0

3 4 5 6 7 8 9
Number of lterations

Figure 3: (b). The objective function (14), in the noise-free and regularization-free case

with mesh size M = N = 80

Also, here, to the over-specification condition mg(t) 1% noise was added, i.e., (p =
1%)as in (15), to check for stability. At (16), also performing the search for larger amounts
of noise. The results obtained were less accurate and are therefore not presented. Without
including regularization, Figure 4b depicts the objective function (14) when it decreases to
the value. (10~°) Rapidly at iteration 130. According to Figure 4a, oscillating and unstable
results were produced, indicating that the inverse problem is primarily inaccurate and
unstable when it does not contain any regularization, that is, § = 0.With RMSE (c) =

80

exact

oy .
60 F nunlwerlcl:al T
1 T‘! ¥
[ b
|
40 | ¥ Tx XTITHI"""'
T'I X | R I: 1l
LiE b SRR ERRREREN Y
20 + Il:‘l':ll T'Inll. *Tfll,"‘l:,'::ll'llH',I'l:':|"|:||'|l
|||'|lli< oy X bt bt
x I I N N B L T T T A T TR T Y
— I 1 R T N L TR N L T N A A ST RN
= ok gy PRI L0 WAV B e B O o B W B et e Bl K e o Sl el
[&] | 1 T A T T T R
| I R T R T T A I R TR R TRV R AP PR T
Py 1 ] R R FR LR T Ly
\ PRI R R T S R TR TR TR TRTRTRIR PR YR
20 Fu A R ST R R

1 Iy iy 10 T TR 1
! HER P L R R R
x J<j<|| Xy AR RRRERE R
- - i I x 1 TR
0 X ‘l* dydyg ol
3 ooyl
HE

-60

*X
_80 1 L 1 1]
0 0.4 0.6 0.8 1

t

Figure 4: (a) Exact solution and approximate solution for p = 1% noise and absence of

regularization
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Unregularized objective function

10710 ' ' ' ; : ' '
0 20 40 60 80 100 120 140
Number of Iterations
Figure 4: (b) at p = 1% noise and does not contain regularization, the unregularized

objective function 14.

Hence, regularization needs to be implemented to find accurate and stable solutions.
Noise with p = 1% and set § with the parameters = {107%;i = 1, ...,7} was introduced to
emulate the noisy data as it is entered. Employing equation (14) for mg(t) Figure 6,7
depicts the regularized function ® and additionally displays the coefficient time-dependent
c(t). By looking at this figure, when B € {1073,1072,1071}, the results obtained are well-
stabilised and acceptable. However, when B € {107%,107>,107%,1077}, the values are
highly oscillatory and unstable. Table 1 presents the numerical results and details the
number of iterations and objective function values, the RMSE values for the unknown time-
dependent coefficient c(t), and the various regularisation values. It is evident from the table
that the best RMSE result was obtained at 0.3133. Figure 5 indicates that the steady and
rapid stabilization at the value of 0(1073).

s
o
x

—_
=)
N

Regularized objective function

Number of Iterations
Figure 5: The regularization objective function(14), and a regularization f € {10‘i;i =
1, ... ,7} , with input data containing p = 1% noise
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c(t)

Figure 6: The analytical and the numerical reconstructions for c(t), with p = 1% noise
involved in the input data, with a regularization parameter 3 € {10_l i=1, ... ,4}.

Figure 7: The analytical and the numerical reconstructions for ¢(t), with p = 1% noise
involved in the input data, with a regularization parameter 3 € {10"1 ;1= 5,6,7}.

Table 2: Nnumerically data from some expressing different regularization parameters f €
{1075 i = 1,...,7} with involves noise = 1% .

B 107 106 10° 10 107 102 10t
No. of iterations 23 24 6 18 18 16 13
bjectivesfunctional ¥ , 0.0103 0.0272 0.0520 0.0834 0.1198 0.1325
2) at final iteration
RMSE(c) 14.9790 7.6310 | 3.4434 1.1194 0.3133 03525 | 0.4408

6. Conclusions

In a one-dimensional parabolic equation under over-specification conditions, the IP of
recovering the time-dependent coefficient with temperature u(x,t) is considered. By
adopting the Crank-Nicholson approach, the direct problem was handled. By executing the
Isqnonlin routine in MATLAB, the IP was inspected and converted into a least squares
optimization problem. Cases of numerical results exist with different noise ratios and with
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and without regularization. In the first case, consider when no noise is included (p =
0%) and regularization (8 = 0).The results are stable and accurate, requiring fewer
iterations to reach results quickly. On the contrary, in the second case, when noise is
introduced (p = 1%) with no regularization (8 = 0), achieving highly fluctuating results
for the reconstructed coefficient c(t), which are unstable and require more iterations to
reach the results. In the third case, when including noise (p = 1%) and setting different
values of regularization, observing that the results are stable and steady when the values of
regularization are {1073,1072,1071} While obtaining highly oscillatory and unstable
results when the values of regularization are {107%,107°,107%,1077} for the reconstructed
coefficient on time c(t).
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