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Abstract

In this paper, a consideration is given to viscose, incompressible and
Newtonian fluid flowing in a pipe with square cross-section under the action of
pressure gradient. In particular consideration is given to first order fluid flow which

can be represented by the equation of state of the form:
Tij = 21”[ Cij
Where n is constant of fluid, T and e; are the stress and rate of strain
respectively. Cartesian coordinate has been used to describe the fluid motion and it
found that motion equations are controlled by Reynolds number. The motion
equations are solved by a semi-implicit algorithm namely Semi-Implicit Method for

Pressure Linked Equations (SIMPLE).

SIMPLE

SIMPLE

Introduction

A fluid is that state of matter which is
capable to changing is shape and is capable of
flowing. Both gases and liquids are classified as
fluid, each fluid characterized by an equation
that relates stress to rate of strain, known as
"State Equation ".And the number of fluids
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engineering applications is enormous: breathing,
blood flow, swimming, pumps, fans, turbines,

airplanes, ships, pipes... etc. When you think
about it, almost every thing on this planet either
is a fluid or moves with respect to a fluid. Fluid
mechanics is considered a branch of applied
mathematics which deals with behavior of fluids
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either in motion (fluid dynamics) or at rest (fluid
statics).

The first one who worked in the flow analysis of
Newtonian fluids in curved pipes is Dean,
(1927) [1]. He introduced a toroidal coordinate
system to show that the relation between
pressure gradient and the rate of flow through a
curved pipe with circular cross-section of
incompressible Newtonian fluid is dependent on
the curvature. But he couldn't show this
dependence and he will show in second paper
(1928) [2].In his paper Dean modified his
analysis by including higher order terms to be
able to show that the rate of flow is slightly
reduced by curvature.

Jones in (1960) makes a theoretical analysis of
the flow of incompressible non-Newtonian
viscose liquid in curved pipes with circular
cross- section keeping only the first order terms.
He shows that the secondary motion consists of
two symmetrical vortices and the distance of the
stream lines from the central plan decreases as
the Non-Newtonian parameters increase, [3].

In (1961) Kawaguti [4] studied the flow of
viscous fluid in a two-dimensional rectangular
cavity. He assumed that the cavity is bounded by
three rigid plan walls, and by a flat plate moving
in its own plan. The Reynolds number of the
flow is variedas 0,1,2 ,4,8,16,32,62, 128
and he find that in every case , there exits a
circulation flow extending the whole length of
the cavity, also he observed that no secondary
flow seems to occur in the shallow cavities
when the Reynolds number less than 64.
Greenspan, D. (1968) [5] used a new numerical
method which is developed for the Navier-
Stokes equation. Finite differences smoothing
and a special boundary technique are
fundamental. And this method is converges for
all Reynolds numbers, he shows that the
resulting stream curves exhibit only primary
vortices.

Ali M. M. (2005) [6] concerned with the study
of unsteady flow of Non-Newtonian, viscose,
incompressible fluid in a curved pipe with
rectangular cross-section, under the action of
pressure gradient. He used variational method
namely, Galerkin method after eliminating the
dependence term on time.
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Mathematical Formulation
Unsteady flow of fluid in the xy- plane is

considered. @~ The  Newtonian  fluid s
characterized by equation of state of the form:
Ti=2n¢; 1,j=1,2 ()

Where Tjj, ejj and n are stress , rate of strain
and viscosity coefficient respectively.
The coordinate systems in the cross-section are
related to coordinates (x, y) by the equations:

X=X Y Y i 2)
And the line element is
(ds)? = (dx)* + (dy)* eoeereeiieeee e, (3)

To drive the line element, let us denoted these
by y' to distinguish them from the general
curvilinear coordinate x' .where y',y*,x" and x* is
X,Y, xand y respectively .

The distance between two points P and Q with
coordinate y' and y'+dy' is ds where

2
(ds)? =Y dy*dy* ... )
k=1
k
However  dy* Y gy
ox'
Hence we get
2 ayk . ayk .
ds)’ = _dx ' _ dx
() kzl[ ox' j[ ox ! Where

=g dx dx’

()

2
2
k=1
And gj is called the metric tensor. Since it
relates distance to the infinitesimal coordinate
increment. Where only the diagonal terms are
nonzero i.e. (gj) the coordinate system are
orthogonal. Then
(ds)*=g (X" )Y +gn(dX?)? o
We can compute g2, which is
g11=1,g»=1, if we put these value in eq. (5) we
get (3).
Since any line element ds in any curvilinear
coordinates may be written in the form:

(ds)* =h’(dx")* +h; (dx*)?
Where h; are called scale factor. The comparing
equation (6) with (3) gives us that; h;=h,=1.

ayk
ox'

6yk
ox?

gy =
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The Motion Equations and Continuity

Equation in Curvilinear Coordinates [7]
The motion equations for two dimensional

flow in Cartesian coordinates can be written as:

«
A

Uy, )
ot X oy,
0T oT
P L T T g
aXl aXl ayl
ARV AR
ot ax oy,
el T
_6i YiYi XY (8)
ayl ayl aXl
N N_, (9
x oy

In the above equations, we assume that the fluid
is incompressible (p = constant).

Non-dimensional Form of Motion and
Continuity Equations

We can write down the motion and
continuity equation (7)-(9) in non-dimensional
form through using scaling and order-of-
magnitude analysis. See [8]
This can be done through introducing the
following new quantities;

X:ﬁ’yzﬁ’ :E,u:g’ VZM,P: P2
a a a’ v, V, e
The substituting of these quantities into

equations gives the motion and continuity
equations in dimensionless form which are:

6_u+ua_u+va_u+£:L(vzu) (10)

ot OX oy OX Re

NNy YR gy L
ot OX oy oy Re

6u 6v (12)
ox 8y

The above equations are controlled by a
parameter namely the Reynold's Number
Re=aV,/ v, where v is kinamtic viscosity.

SIMPLE Formulation and Discretization
On staggered grid, difference control volumes
are used to difference equations. Thus the
physical location of Pj;i» and ujy are the same
physical location of Pj, and vjy . For sake of
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simplification, we will use equidistance grid
points.
In order to obtain discrete equation
corresponding to the continuity equation (12) we
will apply the FVM over the control volume.
The continuity equation (12) is

ou ov _

OX

oy
The integration of the first term gives

T+Arne

i ”[ jdx dy dr, = (u), AyAc — (), AyA = (F, — F, AT

. (13)

Where (u)°y, = ue-u,, and F=u, Ay , F,= uy Ay,
similarly , for the second term

t+Ar en
[ jdy dxdz, =(v),AxA7 —(v), AxAT

[

T WS

=(F,-F,)A7
. (14)
Where (v)"s = vp,-vs and F,= v, AX, Fg = v, AX ..

Substitute in to the continuity equation we
obtain:-

(Fe_FW )+( Fn_Fs):O (15)
the last equation can be written as;

(Ue—uy )AY +(Vvy—Vvs) AX=0 .. (16)
from the Fig (11) we have u. = ujx

Uy = Uik, Vo= Vjx and vg= Vi

Then the equation (16) becomes

T T S T

The a application of the FVM to the X-
momentum equation (13), using the control
volume leads to the following discrete equation

(Axij(u )+ (FO o~ FO o Ay +

AT
(G gl,l)<+1/2 -G }1}71/2 )AX + (P1n+|1k - Pj",k” )Ay =0

n+l

ik _ulk

The last equation can be obtained by applying
the finite volume method when we choose

and g_yp_ LN

We will obtain the above discretization (18)
where;

FM - y?2 - 1 ou ..(19)
Re 0Ox

G -y - L ou (20
Re 0y

G=G6" and F=FV4pP Then the

discretization form corresponding to(19)and
(20) are
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[€)) n+l n+l
FHI,2k =025 (uJ K +uj+1k) (uJ « Tu )

jH+Lk
1 un+l _un+1
o J*‘kAX Ik .21
Fo _025( +ul )(u”+1 +u”“)
j-1/2k Uik HUjk ) Wk HUjk
1 un+1_un+1
Reijk ij s -(22)
ijmz 0.25 (V?k+v?—1k) (UTT:JFUTT:H)
un+1 _un+1
_ b Uik mUj (23)
Re Ay
1 1 1
G(& 12 =025 v ( ik— 1+VJ 1k— 1)(UT+k 1+UTT<)
1 un+1_un+1
o ik Tkt ..(24)

Re Ay

The substitution of (21)-(24) into (18) and
rearranging the terms, leads to the discrete
equation in the X- direction, this is given by

e Se

n+l
j+k T

2AX
+8 41k uj+lk +d i1 Uj 1k“[(025( k1™ j+1|( I)AX+ReAy}‘;I1+

U nH+l 1
&kl +a k-] 1U1k | ]"'( Pk F}n; )Ay=0

.(25)
Equation (25) can be rearranged as;

AXAY
AT

n+1 n+1
+ajk+]ujk+l+ajk ]ujk]+(PJ+]k

u n+1 +1 +
+aj!kJu +b" +a,+1kU,+1k+a,1kU

~Pithy =0
AT (26)
Where

al, = 0250, —ul, Ay +0.25(- V!

Az{ez éxj
Rl )

n
Vj+1.k—l)AX+

k-1 —

Ay AX
j+]k 025( j+lk+ujk)Ay7

a k= 025( i- ,k+ujk)Ay—L(ﬂ)

AX
1 ( Ax
al, =0.25(! k+vlk+l)Ax—E[A—y]
Ax
al, =-025(", +v0, JAx— (ij
and b“:—AXAyu»
j.k
At

The above equation may be written in more
convent form by use of summation

(AxAy

+(P

u

+ a‘;,kju?fk] + Y ajpuntt +b

n+1
j+1,k

- P/ )Ay =0

.(27)
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Where Z ay,un' denoted all the convection and

diffusion contributions from neighboring nodes
denoted by nb .The coefficients a%, and a

depend on the grid sizes and the solution u, v at
the n-th time level. It may be noted that some
terms in F" and G'" have been evaluated at the
n—tlll time level to ensure that (27) is linear in
u™t.

Using the FVM, the discredited form of the y-
momentum equation (11) can be written when

we choose;
g=v,F= L and Covap_ LV  We
Redx Re oy
have;
AXAY
(MJHE M Ry s
(szlzﬂ/z szk) 1/2)+(P1n:l+1 _PM)AX 0
Where
F® _ - ov L G® o2 1 ov
Re 0x Re ay
thus F=F® and G =GV +P
The discretization form for F® and G®are:
Fj(-fl)/Z k — =0.25 ( TT(I +VT:11k) (uj k T uj k+1)
Re AX
FJ 1/2.k —0-25( T+11k +VT+|<1) (UT+111< +UJ 1k+1)
_1 M .. (30)
Re AX
1 1
Gﬁ ke12 =0.25 ( ;Hk +VTT<+1) (Vj k +Vj k+l)
n+l n+l
_ 1 ij+l_vjk (31)
Re Ay
GiY.,,=0.25 (v;”k1 L+ V] ) (v;"kfl +v?’k)
Vn+l _ V
L VR Ve . (32)
Re Ay

The substitution of (29)-(32) into (28) we have;

AXAy n+l1 )A )
v Y+
ReAx ) ©
jvnﬂ

.k
] (025( jok+1 T jk I)AXWL ZAX
. (33)

n+l n+l
]lk_uj Lk-1

b+ [[0.25(

n+l1
k+31 1kVi-1k

+ aj+l kVJ+l

ReAy
)Ax 0

Equation (33) can be rearranged as

n+l1 n+l1 n+l
+a]k+lvj k+l+a1k lvjk 1 (ij+l_P
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ANy
( At et k}/rkl

\ N+ n+1
+ aj,k—lvj,k 1 (P] K+l

\ \Y n+1 \% n+1 \ n+1
+0" 8, Vi T ALV A Vi

Pl hx=0

n
Vj,k—l)AX +

Ay
AX

al, =025(-ul, —ul . Ay +025(v, -
AX
4

(-]

1
@k =025 (U Tkt u?,kﬂ)Ay - 7(
a] Lk — 025( j- lk+u] lk+1)Ay

aj . = 0. 25( k+vjk+l)AX_7(ﬂj

Ay

A
aj 1=—025(Jk+VJk ,)Ax [A;(/]
and
AXA
AT ’

The above equation can be written in more
convent form by use of summation

AXAy v n+1 v on+1 v

(Ar +aj,kjvj,k +zanbvnb +b (35)
n+1 n+1 _

+(Pj,k+1_Pj,k jAX—O

At any intermediate stage of the SIMPLE
iterative procedure the solution is to advance
from the (n)th time level to the (n+1)th. The
velocity solution is advanced in two stage .First
the momentum equation (27) and (35) are solved
to obtain an approximation u‘and v" of u""' and

v™! that does not satisfy continuity, hence we
must modify the pressure and velocities.

Modify Pressure and Velocity [10] [11]
The solution of equations (27) and (35) is
an approximation solution uand v' of u™"' and
! respectively. This velocity components (u’,
v ) will not satisfy the continuity equation (17)
Hence using the approximate velocity u a
pressure correction dP is sought which will both
give P = P" + P and provide a velocity
correction u®, such that u™' =u" + u® where
u™! satisfies the continuity in the form (17) and
similarly for velocity v".
The equations (27) and (35) can be written as:

P!y

.(36)

AXAY

(5

u n+l n+l n+1
+aj’kj +Yanun =—h" (PJ+lk
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AXAY
At

ax

. (37)

— _b (Pjn;il _ Pn+l

(

v n+1 v n+1
+aj,kj + 28 Vip

To obtain u” and v equations (36) and (37) are
approximated as

AXAY
AT

[AxAy

AT

Subsequently equations (36) and (37) are written
as scalar tridiagonal systems along each y grid
line (j constant) and solved using the Thomas
algorithm.

To obtain equation for subsequent velocity
correction u‘ equation (36) is subtracted from
(27) to give

[AxAy + aﬁl,kju?,k =
. (40)

At
And equation (37) is subtracted from (35) to
give a corresponding equation for v° which is;

( + a}kjvj’k SP;. k)Ax
. (41)

However to make the link between u® and 6P
and v and 8P as — Y ayvy,, —> s, explicit
as possible we will drop the quantity for closer
approximation.

The SIMPLE algorithm approximates equations
(40) and (41) as

+ a?,kju?,k +3 Ay, = b ( Lk ~ )Ay
. (38)

+ a\jl,kjv]f,k +X gV, = —bY - (Pjrjk+1 - Pjrjk )AX
.. (39)

—X g Upy — (5Pj+1,k =P« )Ay

AXAY
AT

v ,,C
= —Z AppVp — ( j k+1 —

U =d WP, —6P ) (42)
Where
_ﬂ and d) = EAy
AXAy a %(1 + E)ay, }

An equivalent expression can be obtained to link
vix" with (8P;jy — 8P;x+1) which is
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Vik = d (5P — P, k+1) - (43)
EA
Where df) = yv and
(1+E)aj
Aral
e (44)
AXAY

To obtain an equation that link 6P with the
velocity u and v, introducing the velocity
correction in the form

n+1
U = UG U, o (45)
And VI =V VS, (46)

Substituting equations (45) and (46) into (17) we
obtain;

* c )
— Ui —Uj )t

* c _
~Vik-1 7 Vika )— 0

Ay(u’;k+u‘?

.. (47)
Ax( ikt v

From (42) and (43) we have,

5PJ k+l)

5PJ+1 k)

C a4
Vik =djk (5'31,

) _d(X)(

J

And as a consequence (47) becomes

jk)}

j,k)}

Ay{djxk)(épjk —OPjk)— dxlk(épjlk
+Ax{d§yk)(éP —OPjxi)— df) k= 1(5P
——Ay( ik j—l,k)—AX( Vik _Vj,k—l)

. (48)

and b° =—Ay( flk) AX(V;,k —v]f,k,,)

Let rearrange the terms in equation (48) we have

P
aJ kO Pjx = =a’ .6 Piax @140 Pjik

j+1,k

P
+ aj7k+1§ Pika + aj!k_15 Pixat b

Where
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a;’k = Ay(d® + dgf;k)+ Ax(d;vg +d¥)
= Ayd {, = Ayd ),

- (y) - ()
= Axd ), = Axd ;|

j+1k

P
j k+1 a j.k—1
Equation (49) can be put in summation form as

follows:
j kéPJ k — zanb

Equation (50) is a disguised discrete Poisson
equation that can be written symbolically as

P, +b” .. (50)

1 x
VioP=—V, U i, (51)
At
To explain the last equation; let
k k
) _ ( ) (Y) —dw —

Then equation (48) reduces to

— KB P —26 P+ P, ) AX? -
KO Py —26 P +8 P, )/ Ay?
:—(u}’k— Jlk)/Ax—(*k v’}’k_l)/Ay
. (52)

The LHS of (52) is a discredited form of
o° o°
_ k{ (6P, )+ oy (P, )}

a 2
and this shows that (52) is a discredited form of
the Poisson equation.

The SIMLPE Algorithm [8] [11]

The complete SIMPLE algorithm can be
summarized as follows:
1.u" and v’ is obtain from (38) and (39)
2. 6P is obtaining from (50)
3. u® and v° is obtain from
respectively.
4. P""! is obtain from P""'=P™t+qp 8P , where op
is relaxation parameter.
The SIMPLE algorithm contain two relaxation
parameters op and E(=At), in our work we take
E=1 and op= 0.8 (Patankar 1980)[10] to a chive
a stable convergence.

(45) and (46)

Some important Notes about SIMLPE
[10]

1. The words Semi-implicit in the name
SIMPLE have used to acknowledge that
omission of the term. This term Zabeﬁb 72%%
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represents an indirect or implicit influence of the
pressure correction on velocity; pressure
corrections at nearby locations can alter the
neighboring velocities and thus cause a velocity
correction at the point under consideration.

2. The omission of any term would, of course,
be unacceptable if it meant that the ultimate
solution would not be the true solution of the
discretize forms of momentum and continuity
equations. It so happens that the converged
solution given by SIMPLE does not contain any
error resulting from the omission of
Salv,» YA, -

3. The mass source b" in the equation (50)
that serves a useful indicator of the convergence
of the fluid flow solution. The iterations should
be continued, until the value of b" every where
becomes sufficiently small.

4. In many problems, the value of the absolute
pressure is much larger than the local
differences in pressure that are encountered. If
the absolute value of pressure were used for p,
round-off errors would arise in calculations,
hence is best to set P= 0 as a references value at
suitable grid point and to calculate all other
values of P as pressures relative to the reference
value.

Discussion the Results

In this section we will explain the relationship
between Reynolds number and time increment
(dt) and it's effect on the eddy vortices from
grow or decay i.e disappear and vanish the eddy
vortex in the cross-section, we study this for
Reynolds number takes the various values which
is 12, 24, 48, and 96 at time increment 0.01,
0.03 and 0.05.
In the fig (1 — 3) we note that when time
increment increase the eddy vortex take varies
shapes this mean; when dt = 0.01 we see that
there is a single eddy vortex in the center of
cross-section while when dt = 0.03 it observed
that a new eddy vortex are created and the
original eddy is shifting toward boundary with
range (0.003 — 0.001) on other hand from fig
(25) we see that the new eddy vortex are shifting
toward boundary; and the original eddy have the
range (0.003 — 0.0015) near the boundary and
the corner of cross — section have a new eddy
vortex generate with range (0.0005 — 0.001)
The above explanation exhibited that the flow of
fluid is unsteady and flow field influence by
time, but if we set time equal to zero we
certainly get the steady flow.
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Fig (4 — 6) shows that the eddy vortex shifting
toward boundary from the left side and we also
observed that when RE=24 and dt = 0.01 the
range of eddy vortex have (0.005 — 0.001) while
at dt = 0.03 it have the range ( 0.003 — 0.0005)
and last figure(6) at dt = 0.05 we will see that
the range is (0.0012 — 0.0002).At RE = 48 and
dt = 0.01 ,see fig (7), is observed that there is a
single eddy vortex in the middle of cross-section
and parallel to y axis, it see that at the corner an
eddy become generate. Fig (8) explain that this
corner becomes a new eddy vortex with range
(0.0035 — 0.0005) and the original eddy have
(0.003 — 0.0005) when dt = 0.03 but in the case
dt = 0.05 fig (9) we will see that the eddy vortex
are shifting toward boundary from right side and
it note that the two vortex have the range (0.002
— 0.005) and (0.003 — 0.0005) respectively
Finally, fig (10 — 12) shows that there are two
eddy vortex near boundary with range (0.0014 —
0.0004) and (0.001 — 0.0004) at d t= 0.01 while
at dt = 0.03 and dt = 0.05 we observe that these
vortexes are shifting up towered boundary, the
stream line in the corner will be vanish.

SIMPLE Method At RE=12

2.8
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Figure (1)

SIMPLE Method At RE=12 & dt=0.03
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Figure (2)
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SIMPLE Method At RE=12 &dt=0.05
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SIMPLE Method At RE=24 & dt=0.01
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SIMPLE Method At RE=24 & dt=0.03
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SIMPLE Method At RE=48 & dt=0.01

[ Zs

1.5

Figure (7)
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Figure (8)

SIMPLE Method At RE=48 & dt=0.05
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SIMPLE Method At RE=96 & dt=0.01

3.5

2.5p.0007 0.0007
0.0008 0.000g
to0.000— %0009
__poot— 9001
2 ——go0t

S o oo
Qoo 000r— 0% o

) oo 4
15} 0% 0.0009 07 o0

200 o
\g"géo\i%%s QOOOOOOSO Y

0%
o 05
© Q
1 15 2 25 3 35

Figure (10)

640



Hussein and Hadi

SIMPLE Method At RE=96 & dt=0.05
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SIMPLE Method At RE=96 & dt=0.03

Figure (12)

References

1.

Dean, W. R. 1927. Note on the motion of
fluid in a curved pipe. Philos, Mag. 20:
208.

. Dean, W. R. 1928. The Stream line motion

of Fluid in acurved pipe. Philos Mag., 30::
673.

. Jones J. R. 1960. Note on the motion of

fluid in curved pipe quart. Jour. Mech.
Appl. Math, Vol. X111, Part 4, P.428.
Kawaguti, M. 1961. Numerical solution of
the navier-stokes equations for the flow in a
two dimensional cavity. J. phy. Soc. Japan,
16(12): 2307-2318.

Greenspan, D. 1968. Numerical Studies of
Prototype Cavity Flow Problems. J. Phys.
Fluids, 11(5):254.

Ali M. M. 2005. Unsteady flow of non-
Newtonian fluid in curved pipe with
rectangular cross-section. M.Sc. Thesis
submitted to the University of Baghdad.
Chapra S. C. 2005. Applied Numerical
Methods. McGraw-Hill, Inc, Higher
Education,(5-12).

Fletcher C. A. J. 1988. Computational
Techniques for Fluid Dynamics 1. Springer
— Verlag,(189-191).

Iragi Journal of Science, Vol.51, No.4, 2010, PP.633-641

641

9. Fletcher C. A. J. 1988. Computational
techniques for fluid dynamics 2. Springer —
Verlag,(357-365).

10.Patankar S. V. 1980. Numerical
Transfer and Fluid Flow. McGraw-Hill
Book Company,(118-137).

11. Patankar S. V. 1980. Numerical calculation
of fluid motion based on SIMPLE method.
J .Numerical Heat Transfer, 7:147-163.



