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Abstract

This paper presents a methodology to predict reservoir permeability from
well logs data by using an artificial intelligence technique namely artificial neural
network. A multilayered perceptron trained by backpropagation algorithm was used
to build the predictive model. The performance of the net results was measured by
correlation coefficient. The implemented artificial neural network model is
demonstrated by applying it to Mishrif limestone reservoir at Nasyria oil field, south
of Iraq. The results show that artificial neural network was capable of reproducing
permeability (horizontal and vertical) with very high accuracy, so that the calculated
correlation coefficients for horizontal and vertical permeability were 0.85 and 0.90,
respectively. The results could be generalized to other field after examining new
data, and a regional study might be possible to study reservoir properties in south of
Iraq with cheap and very fast constructed models.
Key Words: Artificial neural network, Mishrif Formation, Permeability, Artificial
intelligence

405 aladiualy 4l cleaal) g (g (adll aSall | gua L3S (pads
Ao lial) dypanl) cilSuil)

Jhia & Jle Adaf

-@bal) =8 padl Bpadl daals aslal)l LIS (a V) ple aud

il

S asly Ay paall elial) SIS il gan) padil AplSal ) sl Gl ki

Al zaser i b Ayl el aladiuly Tpeal) gl 40l o 3l e liall dpanl

Caeadiinly Clihal) sauwial Lpmal) A5 a s Leie La g5l Aplene e Ialaie] L liual) dyanl

LU Jalaa aladialy Lsanl) 3080 4500 api 25 (Leinlea) LS Giapsd CAN il 3k

Copdall 265 e (Rasanlls 4a8Y) LM oy il el dpuaall A8 Zisad Baba . 2l

a5l Lyimal) A0S 2 3sail lan Adlall ApSaY) O Cuiy L 3hall agin ¢ Apalil) Jia b

Sismall Gonally 5ol Gene o Aaild Cilune (aedd Lil) Cilunall e alasiuly i i)

Jie aladind 45lSal laalie dagin Tl cind LlS dad) unas Gpanll Gaall unag A8ESH sy
el b Ll Laglon Jia 3 46D e Liaal) byl o2a

67



Handhel

Introduction

Permeability is one of the most important
characteristic of hydrocarbon bearing formation
which reflects the ability of rocks to transmit
fluids in the presence of a potential energy
gradient. Understanding the spatial distribution
of this property is fundamental to the successful
exploitation and reservoir management.
Determination of permeability of rocks is a
major problem in petroleum industry because of
its inherent non-linear dependency on rocks and
fluid contained within them such as porosity,
irreduciable water saturation, shale volume,
tortusity, pore connectivity and other factors
associated with well conditions or formation
damage. To date, there are three generally
reliable ways of acquiring knowledge on rock
permeability. These are: (1) direct measurement
of rock sample (cores). (2) empirical models that
relate permeability to parameters calculated
from well logs such as porosity and water
saturation, and (3) by using artificial intelligence
(A techniques such as artificial neural network,
fuzzy inference system, and genetic algorithm.
During the last few decades, Al techniques have
become increasingly popular in the petroleum
industry. Resent examples include permeability
prediction with artificial neural networks
(ANNSs) from well logs data [1] [2], generation
of synthetic wireline logs from other logs [3]
[4], identification of lithological and
depositional facies via competitive neural
network and fuzzy logic [5] [6], and estimation
of reservoir permeability using integration of
genetic algorithm and a coactive neuro-fuzzy
inference system [7]. These computational
techniques offer real advantage over
conventional modeling, including the ability to
handle large amounts of noisy data from
dynamic and non-linear systems without a prior
assumption of the process involved, and give a
good solution even when input data are
incomplete or ambiguous.
The aim of this article is to use artificial neural
networks to estimate horizontal and vertical
permeability of Mishrif Formation at Nasyria oil
field, south of Iraq, from well logs data, and to
use acquired knowledge in a predictive sense.
The objective also involves trying to introduce
these efficient techniques to oil industry of Iraq
as alternative approaches to highly expensive
traditional physically based models.
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Artificial Neural Network

An artificial neural network (ANN) model
is a flexible mathematical structure capable of
describing complex non-linear relation between
input and output data sets. The architecture of
ANN models is loosely based on biological
nervous system [8]. A neural network is
composed of many processing elements, called
neurons, operating in parallel. Each neuron is
connected to other neurons via links of variable
weights. The weights represent information
being used by the network to solve a specific
problem [9]. Basically, there are different types
of ANN according to their architecture:
recurrent and feed-forward. Beside the
architecture, three different learning paradigms
are developed, each corresponding to a
particular abstract learning task. These are
unsupervised, supervised, and reinforcement. In
unsupervised learning the ANN is presented to
some data without getting any teacher
information. This type of learning is often used
for data clustering and data analysis. In
supervised learning, data is presented together
with the teacher information in order to
associate the data with the teacher signal. This
type of learning is often used for classification
and function approximation. In reinforcement
learning, data is usually not given, but generated
by an agent's interactions with the environment.
The most popular ANN architecture is the
multilayered perceptron (MLP) trained with
Backpropagation (BP) algorithm. A MLP
network consists of an input layer, one or more
hidden layer of computation neurons, and an
output layer. The number of input and output
neurons is determined by the actual number of
input and output variables. The number of
hidden layers and neurons are determined by
trial and error procedure, and depend on the
complexity of the problem under consideration.
The schematic diagram of a three-layer MLP is
shown in Figure 1. Each neuron in a layer
receives weighted inputs from a previous layer
and transmits its output to the neuron in the next
layer. The summation of weighted input signal
is calculated by using the following equation:
(Figure 2)

n

ynet = Z XiWi + Wb
i=1

(M

where Y . is the summation of weighted input,
X; is the neuron input, W, is weight associated

with each neuron input, W, is bias, and n is
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number of examples (instants). The results from
equation 1 is transformed by a non-linear
activation function given by

_ -1
You = f(net) = (1+ € ynet) @)
where Y, is the response of neural network

system,  fis the non-linear activation

function.

The responses of neural network system are
compared with the target values through an error
statistic namely mean square error given by:

MSE = %i(y:’“ -y) 3)

i1
where y™and y™ are the observed and

predicted values, respectively.

Training in ANNs (sometimes called learning)
involves feeding samples as input vectors
through designed network, calculating the error
of the output layer, and then adjusting the
weight of the network to minimize error.
Training can stop when the network error drops
below a specified threshold. In this study, BP
learning algorithm, a supervised learning is
used. Standard BP is a gradient descent
algorithm in which the network weights are
moved along the negative of the gradient of the
performance function. The term BP refers to the
manner in which gradient is computed for non-
linear multilayer network.
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BP algorithm consists of two passes through the
different layers of the network: a forward pass
and backward pass [8]. In the forward pass the
input signal propagate through the network in
forward direction, layer by layer. Finally, a set
of outputs is produced. In the backward pass, the
weights are all adjusted according to a
correction rule. The output of the network is
subtracted from the target values to produce an
error term. This error is then propagated
backward through the network. The weights can
be updated one by one or by a batch mode. In a
batch mode, the descent is based on the gradient
VE for the total training set according to the
following equation: [9]

« OE .
Aw; (n)=-n o Haaw, (n-1) @
i

where 77 and o are the learning and momentum
parameters, respectively. The momentum term
determines the effect of past weight changes on
the current direction of movement in the weight
space. A good choice of these parameters is
required for the training success and the speed
of the neural network learning.

Input Layer

Hidden Layer

output Layer

W: weight

Figure 1: A simple multilayered perceptron with one hidden layer.
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Figure 2: The schematic representation of a neuron

Description of the Reservoir

The field under study is located in south of
Iraq between latitudes (34°80’- 34°60" N) and
longitudes (57°50" -60°10" E), Figure 3. It is
anticline structure with northwest- southeast
general trend. Three reservoir units contain most
of the oil within the reservoir; the Yamam, Nahr
Umr, and Mishrif Formations. This study is
focused on Mishrif Formation which is the most
promising productive unit in the study area.
The  Mishrif Formation  represents a
heterogeneous formation originally described as
organic detrital limestones with beds of algal,
rudist, and coral-reef limestones, capped by
limonitic fresh water limestones [10]. The
abundant fauna listed by Bellen et al. [10]
indicates that the formation is of Cenomanian-
Early Turonian age. The formation was
deposited as rudist shoals and patch reefs over
growing subtle structural highs developing in an
otherwise relatively deeper shelf on which
marine sediments of the Rumaila Formation
were deposited [11]. The lower boundary of the
formation is conformable. The underlying unit is
usually the Rumaila Formation. The upper
contact is unconformable and this unit overlay
the Muddud Formation. Porosity of the
formation is up to 22%, and permeability ranges
from 23 to 775 md, which reflects the high
degree of heterogeneity. The API gravity of oil
is typically 23- 36.6°, averaging around 25°
[12].

Methodology

A total of 103 core permeability (horizontal
and vertical) measurements and their
corresponding well logs data from two
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exploration wells (Ns-5 and Ns-3) were attained
from archive of South Oil Company (SOC), and
were used to build the network model. The used
well logs data include gamma ray (GR), bulk
density log (MFDL), compressional sonic log
(DT), neutron log (DT), and induction log
(ILD). Because of the vast distribution of the
permeability data, logarithmic scale was used.
The basic statistics of input and output variables
(well logs data and permeability data,
respectively) are summarized in Tables 1 and 2
for training and testing data sets.

Selection of input variables for Al model is a
very important and critical step. The gamma ray
log responses provide evidence of clay that has
an impact on permeability. The bulk density,
sonic, and neutron are inverse functions of
porosity and shale content; therefore they
contribute to the permeability of the formation
[1]. Deep induction log usually used to calculate
water saturation in rocks since water saturation
may or may not be an indication of water
movement in the rock through the geological
time it may have some contribution to rock
permeability [2].

The neural network toolbox in MATLAB 2007b
was used in this study. The ANN model was
based on a MLP with one hidden layer. The
original data (input and output) were processed
through two steps: data normalization and data
set partition. Generally, the original data
consists of different parameters with different
physical meaning and units, and thus their
degrees are highly variable. To ensure that each
variable is treated equally in a model, data are
usually rescaled to a certain interval such as
[-1, 1] [0, 1] or other scaling criterion. The
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mapminmax scaling function was wused to
normalize data set in the range [-1, 1]. After
normalization, data set was divided into three
parts: 60% for training, 20% for validation, and
20% for testing.

The optimal number of hidden nodes is 20 as
determined by trial and error method. In
training, BP is applied using the Levernberg-
Marqurdrat  implementation. The logistic
sigmoid and linear activation functions are used
in the hidden and output layer, respectively. The
learning and momentum parameters that give
best results are 0.06 and 0.8, respectively. Early
stopping technique is used to ensure that the
network would not overfit the training data, but
rather has a good generalization as the key goal
[8]. The performance of the implemented
network was evaluated by using squared
correlation coefficient (R2). The R2 measures
the linear correlation between the observed and
predicted values; the optimal value is one. It is
calculated using the following equation:

g(yf’“ -y ly-9)
-5 )

i=1

R =

)

where ¥ and Y are averages of observed and
predicted permeability, respectively.

Results and Discussion

The cross plots of measured permeabilties
(horizontal and vertical) against network
prediction results are shown in Figure 4 and
Figure 5 for testing data set (Ns-1 well). The
high correlation coefficients, 0.86 and 0.90 for
horizontal and vertical permeabilities indicate
that ANN model implemented here is capable of
producing results with high accuracy, despite the
high degree of heterogeneity of interested
reservoir. The developed ANN in this study
could be used to predict permeability from wire
logs data for new wells in the same field without
the need for very expensive coring process.

Conclusion

1.The developed ANN model for Mishrif
reservoir in Nasyria oil field is capable of
estimating formation permeabilites with a high
accuracy by using only well log data for five
conventional logs.
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2.By adding additional parameters such as depth

to ANN model input could increase the

capability of the model but it may constrain

the extrapolation capability of it.
Determination of permeability from other
artificial intelligence and machine learning
techniques such as neuro-fuzzy inference system
and model trees by applying a single technique
or a hybrid from one or more techniques is
recommended for future work.
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Figure 4: The comparison between measured and predicted horizontal
permeability for (Ns-3 well)
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Figure 5: The comparison between measured and predicted vertical
permeability for (Ns-3 well)

Table 1: Basic statistics of the input and output data for training data set (Ns-5)

Variable Min. Max. Mean St.Dev
Gamma Ray log (API) 14.500 47.000 20.548 6.735
Bulk Density log (gm/cm?) 2.050 2.650 2.384 0.127
Sonic log (pus/ft) 58.300 114.000 27.350 9.960
Neutron log (%) 11.000 45.000 21.267 7.213
Deep Induction log (€2.m) 0.858 20.000 5.945 5.051
(Lrgg) horizontal permeability (Kn) 5 377 1.724 0.122 0.954
Log vertical permeability (K,) (md) -2.201 1.919 -0.084 0.977

Table 2: Basic statistics of the input and output data for testing data set (Ns-3)

Variable Min. Max. Mean St.Dev
Gamma Ray log (API) 13.850 30.000 18.870 4.022
Bulk Density log (gm/cm’) 2.240 2.362 2.312 0.0336
Sonic log (pus/ft) 86.300 73.080 79.560 3.910
Neutron log (%) 21.000 29.3000 24.810 2.369
Deep Induction log (2.m) 0.450 25.000 3.780 6.120
(Lrgﬁ) horizontal-permeability (Ka) g 5346 1.869 0.823 0.528
Log vertical permeability (K,) (md) -0.060 1.973 0.807 0.550
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