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Abstract
In this paper some results concerning two reverse derivations on semiprime rings
are presented. These results are related to a result which is inspired by the classical
result of E. Posner. This result is asserts that if R is a 2- torsion free semiprime ring,
f and h are non-zero reverse derivations of R. Then f/ can not be a non-zero
derivation. A notion of orthogonal reverse derivations arises here.
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1.Introduction

Throughout R will represent an associative
ring. R is said to be 2 - torsion free if 2x =0, x
€ R implies x = 0. Recall that R is prime if x R y
=0 implies x =0 or y = 0, and R is semiprime if
x R x =0 implies x = 0. An additive mapping f:
R — R is called a derivation if

fOpy)=f(x)y+xf(y)holds forallx,y € R .

Breser and Vukman [1] have introduced the
notion of a reverse derivation as, an additive
mapping f : R — R satisfying

f(xy)=f(y) x+yf(x)holds for all x, ye R.
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Other properties of derivations and reverse
derivations can be found in ([2], [3],
[4],[5],[6]and[7])

Two additive mapping f, #: R— R is said to be
orthogonal if

() R h(y)=0=h () R f(x) for all x, y € R.

In [8] Bresar and Vukman introduced the notion
of orthogonality for two derivations f'and /4 on a
semiprime ring, and they presented several
necessary and sufficient conditions for f'and 4 to
be orthogonal and they gave the related result to
a classical result of E. Posner [9],which state
that, if R is prime ring of characteristic not 2,and

£, h are non-zero derivations of R, then fi can’t
be a derivation. In [10] Arga¢ Nakajima and
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Albasg introduced orthogonal generalized
derivations on a semiprime ring and they
presented some results concerning two
generalized derivations on a semiprime ring.
Their results are a generalization of results of M.
Bresar and J. Vukman in [8]. And in [11]
Golbasi and Aydin, introduced the notion of
orthogonal (o, t) — derivations and orthogonal
generalized (o, t) — derivations. Their results
abstracted some results of M. BreSar and J.
Vukman][8].

In this paper, our aim is to introduce the notion
of orthogonal for two reverse derivations f'and /
on a semiprime ring, and we presented several
necessary and sufficient conditions for f'and 4 to
be orthogonal .Also we will give the same
results of M. BreSar and J. Vukman [§8] to
orthogonal reverse derivations. We will show
that if R is a 2 — torsion free semi-prime ring and
f, h be reverse derivations of R. Then if fand 4
are orthogonal reverse derivations of R, then
there exists an essential ideal K of R (i.e. KN N
# 0 for every ideal N of R ), such that the
restrictions of f and # to N are appropriate
direct sums.

For a semiprime ring R and an ideal U of R, it is
well- known that the left and right annihilators
of U in R coincide.We denote the annihilator of
U by Ann (U). Note that U N Ann (U) = 0 and
U @ Ann (U) is an essential ideal of R .

2. Orthogonal reverse derivations

Now we present the definition of orthogonal
reverse derivations as follows
Definition . Two reverse derivations f and % of
R are called orthogonal if

SO RAY)=0=h(y)Rf(x)
forall x, y € R. 9]

It is obvious that a non-zero reverse derivation
can not be orthogonal on itself.

Let us consider an example of the non-zero
orthogonal reverse derivations. Let R; and R,
are prime rings, set R =R, @ R, .Then R is
semiprime ring .Let d; be a non-zero reverse
derivation of R; .A mapping d:R—R defined by

d((rl 9 1’2 )): (dl (7"1 ),0)
derivation of R. We write d as d;® 0 .

Similarly, let g, be a nonzero reverse derivation
of R, and define g2:R—R by

g(r,r,)=(0,g,(r,)) .thus g=0,@® g,. Then d
and g are orthogonal.

IS a nonzero reverse
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3. The Results

The main goal of this section is to prove the
following theorem, which corresponds to ( [8],
Theorem 1).

Theorem 1. Let R be a 2-torsion free
semiprime ring. Let f and 4 be reverse
derivations of R. Then f and % are orthogonal if
and only if one of the following conditions holds
@ fh=0.

(i) hf=0.

(i) fh+hf=0.

(iv) fhis a derivation.

(v) hfis aderivation.

i) f(x) h(x)=0, forallx e R.

(vii) f (x) h(x) + h(x) f (x) = 0,for all x € R.

(viii) There exist ideals K; and K, of R such
that:

(a) K;n"nK,=0and K = K; @ K, is an
essential ideal of R.

(b) f maps R into K; and ~ maps R into
K.

(c) The restriction of fto K = K; @ K is a direct
sum f; @ 0,, where  f;: K; — K, is a reverse
derivation of K; and 0,: K, — K, is zero. If  f;
=0 then f'=0.

(d) The restriction of 2 to K = K; @ K, is a
direct sum 0; @ h,, where

0,: K; — K; is zero and h,: K, — K, is a
reverse derivation of K. If &, =0

then 2= 0.

For the proof of the Theorem 1 we need the
following lemmas:

Lemma 1. ([8], Lemma 1). Let R be a 2-torsion
free semiprime ring and a, b the elements of R.
Then the following conditions are equivalent:

(i) axb=0, forallx € R.
(if) bxa=0, for all x € R.
(iiiy)axb+bxa=0, forallx e R.

If one of these conditions is fulfilled then ab =
ba=0.

Lemma 2. ([8], Lemma 2). Let R be a
semiprime ring. And suppose that additive
mappings fand ~ of R into itself satisfy f (x) R
h(x) =0, forall x € R. Then f(x) R h(y) =0, for
allx, y eR.

Lemma 3. Let R be a 2-torsion free semiprime
ring. Let f and / be reverse derivations of R.
Then fand £ are orthogonal if and only if

SX)h ) +h(x)f()=0, forallx,y € R.
Proof. Suppose that

S x) h(y) + h(x) f(») =0,
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forallx,y € R.

Take y =xy in (2). Then we obtain
0=7(x)hxy)+ hx) (xp)
0={/()hy)+h(x)f )} x+[f(x)y h(x)+ h(x)
yvf ().

By (2) we get

2

0=7(x)y hx)+ h(x)yf(x).

And by Lemma 1, we get
f(x)yh(x)=0, forallx,y e R.

Hence
f(x)R h(x)=0, forallx e R.

By Lemma 2 we see that f'and /4 are orthogonal.
Conversely, if f and & are orthogonal then by
Lemmal, we get

() h(y) = h(x) f(») = 0, for all x, y € R.

Thus

£G) h() + h(x) f() =0, forallx,y e R.

Let f'and / be reverse derivations of any ring R.
By a direct computation, we verify the following
identities:

I EN=H@y+tfD)h)+thx)  f
) +x(fh) (y) forallx,y e R. 3)

We now have enough information to prove
Theorem 1.
Proof of Theorem 1. (i) ="f and h are
orthogonal". Suppose that f'/# = 0. According to
(3), we have
fx)h(y)+h(x)f()=0, forallx,y e R.
Hence fand / are orthogonal by Lemma 3.

"f'and & are orthogonal"” =(i). We have f(x)
yh(z)=0, forallx,y,zeR.
Hence
0=/(f®)yh(2))

=/ h () f0) + (¢ h (2) (%)
= [hE)y f0) +hE@f G () +v b (2)().

The second and third summands are zero since f
and 4 are orthogonal.
Therefore this relation is reduced to

(S @y f(x)=0
where x, y, z are arbitrary elements in R, so take
x=h(z) in the above relation, we get

(fAyY@R(fh)(z)=0, forallz € R.
Since R is semiprime, we get
(fh)(z)=0, forallz e R

(if) similar way used in the proof of ( 7).
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(iif) =" fand h are orthogonal". If f'and / are
any reverse derivations, then we have by (3) and
(4) that

(Fh+hf)@xy)=(Fh) @y ) hQE)+hrx)f
(B O f )y + @) h () + h () f ()
tx(hf)
=(fh+hf)(x) y + 2f (x) h(y) + 2 h(x) f )+ x (fh
+h)(»).

Thus, if fh + h f=0 then the above relation
reduces to

2( f(x) h(y) + h(x) f ()= 0,for all x, y € R.

Since R is 2—torsion free, we get
fx)h()+ h(x)f(»)=0, forallx,yeR.
By Lemma 3, we get f'and /4 are orthogonal.
" fand A are orthogonal" =(iii). From (i) and
(if), Theorem 1, we get fh+ h f= 0.

(iv) ="f and h are orthogonal". Since f 4 is a
derivation we have
(Fh) xy)=(h) @)y +x (Fh) ().
Comparing this expression with (3), we obtain
SR +h@)f()=0
Now apply Lemma 3.

() =(iv). Clear.

(v) ="f and & are orthogonal". Similar way
use in the proof of (v).
(if) =>(v). Clear.
(viy ="f and & are orthogonal". A
linearization of f'(x) A(x) = 0 gives
S @) h(y) + 1 () h(x) =0,
forallx,y € R. (®)]
Take y =y z in (5), we obtain
S h@) y+f(x)z h(y) + (@) y h(x) +z 1)
h(x)=0, forallx,y,z € R.
By (5), f(x) h(z) = - f(2) h(x) and / (y) h(x) = - f
(x) & (y) and so the above relation becomes
S@OMX)y+f () zh () T/ @y hXx)-zf)
h(y)=0, forallx,y,ze R.
Hence we have
J@ [y, h)]+[f(x),z]h(y)=0, Where
[u , v] denotes the commutator uv — vu.
Replacing z by f (x) in the above relation, we
obtain
/) [y, h(x)]=0, forallx,yeR.
Letting y =y w in the last relation results in
0= /2(x) [y w, h(x)]
= L) w, @]+ @) [y, )] w
= fWz[w, hx)].

Hence from Lemma 2 we obtain that
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P R [ ow k)]
forallx,y,w e R (6)
Replacing x by x u in (6) and using (3) yields
that
(S0 u+2f(0) f (@) +x f*w)) R [
w, h(y)]=0.
By (6) the above relation reduces to
2 f@)f@R[w,h(y)]=0.
Since R is 2—torsion free, we have
J@) f@)R[w, h(y)] =0,
forall x € R. (7
Taking x =x z in (7), we get
J@Oxf@Rw, k(Y] +zf(x)f(W)R[w,
h(»)] =0,
and by using (7), we get
J@xf@)R[w, h(y)]=0.
In particular,
JE) R [w, k()] R f(x) R[w , h(y)] =0
since R is semiprime,which implies
S&)R[w, h()]=0.
But then also
[f x),A(»)] R [f (x),h(y)] =0,for all x, y € R.

Hence

£(0) h() = h() f(x) , forallx, y € R.

Thus (5) can be written in the form
h(y) f(x)+ f(y) h(x)=0, forallx,y € R.
Now use Lemma 3.
" fand A are orthogonal " =(vi). If fand / are

orthogonal then we have

f@)RI(x)=0, forallx e R.
Then by Lemma 1, we get

f(x) h(x)=0, forallx € R.

0,

(vii) =(iv). Take y = x in (3). Then we see
that
(O = () x + £ (x) h(x) +
h(x) f(x) +x (fh) (x).
Thus we have
(f )()=(f h) (o)x +x(f h)(x), forallx € R.
The above relation implies that / /4 is a Jordan
derivation. Then f & is a derivation by [[2],
Theorem 1].

" f and h are orthogonal " =>(vii). This
follows immediately from Lemma 3.

(viii) ="f and /h are orthogonal ". Clear.

" fand & are orthogonal " =( viii). Let K; be
an ideal of R generated by all f(x), X €
R, and let K, be Ann (K ), the annihilator of K.
From (1), we see that A(x) € K, , forall x e R.
Whenever K is an ideal in a semiprime ring we
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have K; " K, =0and K = K; @ K, is an
essential ideal. Thus (a) and (b) are proved.

Our next goal is to show that f'is zero on K.
Take k, € K,. Then k; k, =0, for all k; € K.
Hence

0=r (ki ko) =f(k2) ki + k> f(k)).

It is obvious from the definition of K that f
leaves K; invariant and , hence ks f(ky) =
0. Then the above relation reduces to f(k,) k; =
0. Since in a semiprime ring the left and right
and two-sided annihilators of an ideal coincide,
we then have f(k,) € Ann (K;) =K. But on the
other hand f (k,) belongs to the set of generating
elements of K ;. Thus flky) e K nK,
= 0, which means that f'is zero on K, .

As we have mentioned above f leaves K,
invariant. Therefore we may define a mapping
f1:K; — K; as arestriction of f to K;.
Suppose that f; = 0. Then fis zero on K = K; @
K.
Take k € K and y € R, we have

Jfyk)y=fy+k iy

Butf(yk)=f(k)=0since ky, k € K.
Consequently £ f(y) =0, for all y € R. Thus f
(y) € Ann (K). But ideal K is essential and
therefore Ann (K) = 0 by . Hence f(y) =0, for
all ye R.
Then (c) is thereby proved.

It remains to prove (d). First we show that 4

is zero on K ;. Take x, y, z € R and set k)=
zf(y) x. Then
hk)=hx)(zf)+xh(zf() )

=h(x) 2 f (Y Exh 0Dz 2 [ 0) b @),
Since f'and 4 are orthogonal we have  A(x) z f
0)=0,f()h (z2) =0 and hf=0. Hence

h(k;) = 0. In a similar fashion we see that 4 (z f
»))=0, A(f(y) x) =0 and A(f (y))= 0. Then & is
zero on K;. Recall that # maps R into K,. In
particular, it leaves K, invariant. Thus we may
define 4, : K, — K, as a restriction of % to K.
The proof that 4, = 0 implies & = 0 is the same
as the proof that /; = 0 implies f= 0. The proof
of the theorem is complete.

A well known result of E. Posner [9] states
that if R is a prime ring of characteristic not
equal 2, fand & are non-zero derivations of R,
then '/ can not be a non-zero derivation.

The result which is inspired by a theorem of
E. Posner, states that, if R is a 2—torsion free
semiprime ring, f and /4 are non-zero reverse
derivations of R. Then f 4 can not be a non-zero
derivation. One can consider (iv) and (i),
Theorem 1 as a proof of this result.
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We now state some consequences of Theorem 1.

Corollary 1. Let R be a prime ring of
characteristic not equal 2. Let fand 4 be reverse
derivations of R. If fand / are satisfy one of the
conditions of Theorem 1, then either
f=0o0rh=0.

Since a non-zero reverse derivation can not be
orthogonal on itself we see that (iv) of Theorem
1 yields the following result.

Corollary 2. Let R be a 2 — torsion free
semiprime ring and let / be a reverse derivation
of R. If f*is also a derivation, then /' = 0.

Similarly, using (vi) of Theorem 1, we obtain

Corollary 3. Let R be a 2-torsion free
semiprime ring and let /' be a reverse derivation
of R.If f(x)*=0 forall x € R, then f=0.

It is natural to ask if there is any connection
between reverse derivations f and 4 of a ring R.
If f2=hnorif f(x)*=h()’, foreveryx e
R.Theorem 1 enables the consideration of these
problems.

In the following theorems, we answer this
question.

Theorem 2. Let R be a 2-torsion free semiprime
ring. Let f and % be reverse derivations of R.
Suppose that f> = k7 then f + h and f— h are
orthogonal. Thus, there exist ideals K; and K, of
R such that K = K; @ K, is an essential direct
suminR, f=hon K;and f=—h on K.

Proof . From f > = h* it follows immediately
that

F+h(f—h)+(F—h) (F+h)=0.
Hence /' + & and f— h are orthogonal by (iii),
Theorem 1. Another part of the Theorem 2,
follows from (viii),Theorem 1.

Corollary 4. Let R be a prime ring of
characteristic not equal 2. Let f and /& be
derivations of R . If f?=h? then either f=—h
orf=h.

Theorem 3. Let R be a 2—torsion free semiprime
ring. Let f and 4 be reverse derivations of R . If
f(x)*=h(x)’, forallx R, thenf+ h and f—h
are orthogonal. Thus, there exist ideals K; and
K, of R such that K = K; @ K, is an essential
direct sumin R, f=hon K; and f=—hon K.
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Proof . Note that (f + &) (x) (f—h) (x) + (f—h)
(x) (f + h) (x) =0, for all x € R. Now apply (vii)
and (viii), Theorem 1.

Corollary 5. Let R be a prime ring of
characteristic not equal 2. Let fand 4 be reverse
derivations of R . If f (x)* = h (x), for all x € R,
then either f=—hor f=h .
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