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Abstract 

       Given a binary matrix, finding the maximum set of columns such that the 

resulting submatrix has the Consecutive Ones Property (C1P) is called the 

Consecutive Ones Submatrix (C1S) problem. There are solution approaches for it, 

but there is also a room for improvement. Moreover, most of the studies of the 

problem use exact solution methods. We propose an evolutionary approach to solve 

the problem. We also suggest a related problem to C1S, which is the Consecutive 

Blocks Minimization (CBM). The algorithm is then performed on real-world and 

randomly generated matrices of the set covering type.   

 

Keywords: Approximation algorithm, Genetic algorithm, Consecutive Ones 

Property, Consecutive Block Minimization. 

 

 نهج ألادله العليا لـمدألة خاصية الواحدات المتعاقبة
 

 2عبد الله صالحي ،1*رويدة رزاق محدن

 العخاق جامعة الكهفة،لحاسهب والخياضيات، كلية علهم ا قدم الخياضيات،1
 انكلتخا قدم الخياضيات، كلية الخياضيات، جامعة اسيكذ،2                                            

 

 الخلاصه    
(، أيجاد المجمهعة العظمى من الاعمجة بحيث المرفهفة الجدئية الناتجة تمتلك 1، 0)-عطيت مرفهفةا      

. يهجج عجة (C1S)تجعى مدألة المرفهفة الجدئية للهاحجات المتعاقبة  C1P)خاصية الهاحجات المتعاقبة )
طخق لحلها, لكن لا مجال لتحدين الحل كفاية. علاوة على ذلك فأن معظم دراسات المذكلة تدتحجم طخق 

، وهي ترغيخ القهالب C1Sالحل الجقيق. نحن نقتخح نهج التطهر لحل المدألة. كحلك نقتخح مدألة تتعلق بـالـ 
. الخهارزمية يتم تطبيقها على مرفهفات من العالم الحقيقي و مرفهفات متهلجة عذهائيا من (CBM)متعاقبة ال

 نهع مجمهعة الغطاء.
1. Introduction 

      The problem of consecutive ones submatrix on a binary matrix has been known since the 1950s. It 

was suggested by Fulkerson and Gross [1] and described as follows: Let   be an incidence matrix, and 

then can we rearrange its columns so that each row has a single block of ones? 

1.1 Basic concepts of C1P and C1S 

Definition 1.1. A block of 1's (block of 0's) in a binary matrix A is any maximal set of consecutive 

one entries (zero entries) appearing in the same row [2]. 

A binary matrix A is said to have the Consecutive Ones Property (C1P) if the ones 

in every row appear consecutively [3]. 

                   ISSN: 0067-2904 
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Definition 1.2. A binary matrix has the C1P for rows if its columns can be ordered such that all the 

10s are consecutive in every row [3]. 

This property is similar for the columns, through matrix transposition. 

Definition 1.3. Given a binary matrix, the problem of finding a maximum submatrix having columns 

with C1P property is called the Consecutive Ones Submatrix problem [4]. 

Definition 1.4. Given a matrix  , a valid permutation of   is a permutation of its columns that puts the 

ones in consecutive arrangement in each row. A binary matrix is C1P, if the matrix can be reordered 

by such a permutation [2].    

The C1P property is desirable, which often leads to efficient algorithms. Recently, there has been a 

great deal of interest in matrix modification and transformation into a binary matrix having the C1P.  

These transformations can be shown up as problems [5, 6, 7]. In general, these problems are NP-hard
1
 

even for very sparse matrices. Well known solution approaches depend on characterizing the so-called 

Tucker forbidden submatrices [8, 7, 9, 4]. Here we propose a heuristic approach to the C1S problem.                                                                                        

1.2 Brief review 

      In integer programming, the property of C1P is very interesting as it shows that the problems 

based on matrices having this property are easier to solve than the suggested model. Such matrices 

with C1P are totally unimodular [10, 11]. The property arises in many applications such as railway 

optimization [12], information retrieval [13], and scheduling [14]. It also finds applications in 

ancestral genome reconstruction [15] and the construction of physical mapping with hybridization data 

[16]. In graph theory, it helps to find out interval graphs [1, 17]. 

     C1P has been fairly well studied. Kendall [18, 19] attributed the first appearance of the C1P 

property to Flinders Petrie, an archaeologist in 1899. Many heuristic methods were suggested for the 

problem of chronological ordering archaeological deposits before the work of Fulkerson and Gross 

[1], who provided the first polynomial complexity algorithm. In 1972, Tucker [8] proposed a 

characterization of matrices with the C1P using forbidden submatrices. Later, Booth and Lueker [20] 

introduced the first linear-time algorithm for it. They used a data structure called the PQ-tree. A binary 

matrix has C1P if and only if its data structure exists [20]. 

     Let (   )  matrices be binary matrices with at most       in each column and        in each row. 

Garey and Johnson [21] pointed out that the decision version of the C1S problem is NP-complete. 

Later, Hajiaghayi and Ganjali [9] showed that the C1S problem is NP-hard for (   )  matrices. They 

also found a polynomial time solution for (   )  matrices. Hence, their work raised the question of 

whether the C1S problem stays NP-complete or not for both (   )  matrices and (   )  matrices. 

The question was answered by Tan and Zhang [4]. For both (   )  matrices and (   )  matrices 

having the C1S, they proved that the decision versions are NP-complete. For (   )  matrices that 

have no identical two columns, they showed that the C1S problem is polynomial time 0.8-

approximable. They also found that the C1S problem is 0.5-approximable for (   )  matrices and for 
(   )  matrices. On the other hand, they proved that for (   )  matrices there exists an     such 

that the approximation of the C1S problem within a factor of    is NP-hard.   

      The Petrie Seriation (or Sequence-dating) Problem [19] is an important and interesting problem 

that was formulated in mathematical terms by Flinders Petrie almost one century ago. It is to 

chronologically order grave sites in a cemetery where each grave contains (or does not contain) a 

number of stylistic artifacts of a period. It is mathematically modelled by an incidence matrix A where 

the columns are specific artifact types and the rows are the grave sites. In 2006, Gargano and Lurie 

[22] introduced a hybrid evolutionary approach for solving this problem. They found a permutation of 

rows that transforms A into a matrix that has a consecutive ones block in each column; this is called a 

Petrie matrix. Finding this permutation is equivalent to showing that A has the C1P property. The 

Consecutive Block Minimization is a related problem. The aim is to minimize the number of blocks of 

1's by permuting the columns of the matrix. Haddadi and others [3] gave a polynomial-time local-

improvement heuristic for the problem.  

     This paper is organized as follows. Section 2 reviews current solution approaches. Section 3 

presents the proposed GA algorithm for solving the C1S problem. Section 4 provides experimental 

results. Section 5 is the conclusion. 
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2. An illustration of C1S and current solution approaches 

2.1 The seriation problem 

     The incidence matrix A is an input to this problem. It is a binary matrix with m rows and   columns 

(grave sites and object types, respectively); the     entry of A has a value of one if grave   has any 

object of type    and zero otherwise. If the rows (graves) were in the suitable time successive order, 
1
A problem belongs to the class NP if a solution to it can be generated and verified quickly, i.e. in 

polynomial time. It is believed that NP-hard problems are intractable, i.e. that there is no efficient 

algorithm to solve them, [7]. 

, then each column (object) would indicate a time period during which that object was common. 

Assume that each object represents the time interval from the appearance of the object to the time 

when it becomes uncommon. The chronological ordering of the graves is reached by getting rows 

permutation of   that transforms it into Petrie form. This will minimize the total temporal range of an 

object summed over all the varieties. This range for an artifact type is the span from the first to the last 

appearance of a „1‟ in the column of   corresponding to that artifact type.  

    Kendall [19] introduced a solution by using a Similarity Matrix         of size     for graves, 

which is nonnegative and symmetric. He found out that a permutation P can convert matrix A into a 

Petrie form (i. e.,  ), as it can transform the grave matrix Q into Robinson form (Robinson Matrix
1
, i. 

    ). The final matrix    has the C1P where each column displays the correct order of the artifact 

type from its appearance to it disappears. 

2.2 Polynomial-time local-improvement heuristic for CBM 

The problem of CBM-decision is NP-complete even if it is limited to binary matrices containing two 

ones in each row [13, 23]. However, Haddadi introduced a polynomial-time heuristic which gives a 

permutation such that the optimum solution and the consecutive blocks do not differ by more than 

50%.  

     Haddadi and others found a polynomial-time local-improvement heuristic for the CBM. They 

introduced two  (  ) size local neighborhood search, where the blocks number of a neighbor is 

provided in  ( ) operations [2, 3]. 

2.3 A GA-based solution approach 

      The GA has been used in related cases. Here, we develop an implementation to deal with C1S. GA 

is a meta-heuristic inspired by the process of natural selection that belongs to the larger class of 

evolutionary algorithms (EA). It was proposed by Holland [24]. Genetic algorithms are commonly 

used to generate high-quality solutions to optimization and search problems by relying on bio-inspired 

operators, such as crossover, mutation, and reproduction [25].  

Solution representation  
     The basic is to keep permuting the columns of the given binary matrix to get as many consecutive 

ones as possible in every row. An integer is used here to represent a solution or chromosome of size n, 

an array of the column indices of the matrix. The position of each gene in the chromosome 

corresponds to a column in this matrix. Figure-1 illustrates this representation. 

 

1 6 7 2 10 4 8 3 9 5 

                                                Figure 1-Chromosome representation   

  

Genetic operators 

      After randomly generating the initial population, we breed successive generations of offspring. 

This can be achieved by performing genetic operators which are crossover, mutation, and 

reproduction. 

Crossover operator. We use the 'Order Crossover' of Gen and Cheng [26] to breed a new child. This 

operation begins by picking a substring (subchromosome) from one of the two parents randomly, then 

copying it into its corresponding location in the child. The genes in the second parent that appeared in 

the substring are deleted to prevent repeating the gene. In the end, the genes are placed into the 

unfixed location of the child from left to right, relying on the order of the sequence (Figure-2).  
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Mutation operator. It is used to allow the genetic algorithm to search in the global solution space and 

prevent trapping in local optima, via changing one or more genes. Here, two genes from an individual 

are randomly chosen and then swapped. Figure-3 illustrates the mutation operator. 
1
Robinson matrix is a matrix with entries which do not increase as one progresses along a row beyond 

the main diagonal and do not decrease as one continues to progress along that row towards the main 

diagonal. 

Parent1 1 10 8 7 5 3 6 2 4 9 

Child1 1 10 8 3 6 5 2 4 7 9 

Parent2 3 6 5 2 4 8 7 9 1 10 

 

Parent1 1 10 8 7 5 3 6 2 4 9 

Child1 3 6 5 1 10 8 7 2 4 9 

Parent2 3 6 5 2 4 8 7 9 1 10 

                                       Figure 2-Child1 and Child2 obtained with crossover 

 

Parent 1 10 8 7 5 3 6 2 4 9 

Child 1 10 2 7 5 3 6 8 4 9 

                                 Figure 3-Individuals obtained with the mutation operator 

 

Reproduction. Without any modification, some fit chromosomes are copied via this operator into the 

next generation. 

Fitness functions 

     The matrix does not include enough information to decide whether it has the property or not. 

However, we will use the entries of the matrix to build a fitness function. Many fitness functions are 

tested and the most reliable one with respect to the number of C1S columns and run time is selected. 

Fitness Function FF1. It computes the number of 1's in each row using a simple formula. 

Summing the number of 1's for all the rows will give the fitness value of the matrix. 

Suppose that we have the following rows with four ones each  

                                 row1 = (1 0 1 1 1 0),       row2 = (1 0 1 0 1 1). 

       The first row has two blocks of 1's, k1, and k2, where k1 is one element and k2 is three 1's. We deal 

with every block as a sequence of 1's. The associated series is defined as the ordered formal sum 

∑   
     where   is the length of the block. Counting the elements for the two blocks will be as  

                                  ∑ ∑  
  
     

    

                                                                                                                        ( ) 
                                                                          
 

      Applying the formula for the two rows gives fitness values of 7 and 5, respectively, where 

∑   
     ∑   

           and  ∑   
     ∑   

     ∑   
            .  Applying this 

formula for a matrix gives different fitness values for every row. The fitness value for the whole 

matrix is found by accumulating the fitness values of all the rows, as shown in the next formula  

               ∑             ( ) 

 

   

 

                                                         
     The larger the fitness, the better the matrix with respect to consecutive ones blocks. With different 

permutations of columns in each generation and computing the fitness function of the matrix, the 

consecutive solutions are improved every time by pushing the ones together to form less blocks. In the 

final generation, it is expected that a matrix with best consecutive ones in every row is obtained. 

Fitness Function FF2. This function relies on counting the ones in the different regions of the matrix. 

That is, by finding the label of the connected components of the matrix, where each maximal 

connected region is assigned as a unique label [27, 28]. The matrix below has three regions of ones.              

The first connected components in the matrix has elements (label 1), the second has three elements 

(label 2), and the last has one element (label 3), as shown in the region matrix. We also deal with 
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every region as a sequence of 1's, like the fitness FF1. The fitness values of the regions are 15, 6, and 

1, respectively, which means that the fitness function for the matrix is 22, where ∑   
     ∑   

     

∑   
     (         )  (     )             . 

 

                                 ( 
   
   
  

   
   
   

   
   
   

   
   
   

   
  
   
)                      ( 

   
   
  

   
   
   

   
   
   

   
   
   

  
  
   
) 

 

     This function pushes the ones in different separated regions, which may produce a variety of fitness 

values more than those of FF1. It accumulates the ones, not only in the rows, but also in the columns. 

This helps to accumulate the ones in large blocks. Function FF1 may give similar fitness values for 

many rows, and consequently similar fitness values for different matrices. This causes that the worse 

matrix with less columns having the C1P property may be selected for the next generation. With FF2, 

there is a higher chance to distinguish between matrices. It may give better results than the FF1 

function. Although it gives good results, unfortunately it costs more time than FF1. Thus, it is not the 

desired function for the proposed algorithm. 

Fitness Function FF3. This function counts the zeros, instead of the ones, in every row and then for 

the whole matrix. The same formula that is used for finding the maximal sum of 1's in FF1 is used 

here. Maximizing the fitness value leads to aggregating the zeros in blocks, which results in 

minimizing the number of gaps between the ones. This fitness almost gives the same result but with 

longer time, because the matrix is sparse so the calculations cost longer time than FF1. As we seek 

better results with shorter time, this fitness function is also not suitable for our implementation. 

Fitness Function FF4. The fitness function that Gargano and Lurie used for solving the Petrie 

Seriation Problem [22] is used to find the consecutive ones in the columns by permutation of the rows. 

Although it gives good results for small matrices, they did not mention whether it is suitable for large 

matrices with different densities. Thus, we decided to test it. Their fitness is evaluated with the so 

called Petrie Range Index (PRI) of the permuted binary matrix. We formulate the fitness for our 

matrix by choosing the first column    and the last column   , where in each row there is at least one 

element. The PRI for that row is         . The fitness for the matrix is the sum of these values over 

all the rows. The best solution is reached through minimizing the PRI. It is noticeable that if the matrix 

has the same number of ones in each column, then the fitness value for the matrix will be the same for 

any permutation. As a result, good matrices may not cross to the next generation, which causes not 

having very good results. This approach is more suitable for matrices with high density with different 

number of ones in each column. It generates less columns with C1P but in shorter time as compared to 

the other functions. It is formulated as follow 

                           ∑          

 

   

 

                                                              
                                                              

                                                                 

 

Here again, FF4 is not suitable for our implementation of GA. 

Fitness Function FF5. This function is meant to solve the CBM problem which is equivalent to C1S. 

The aim is to permutate the matrix columns to minimize the number of blocks of consecutive ones. 

Building the function relies on counting the blocks of the ones in each row, then for the whole matrix. 

The same two rows,      and       that are used in FF1 function for illustrations, are used here. The 

first row has two blocks        of ones and the second one has three blocks           . The formula 

for the matrix is 

            ∑∑   
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     Applying the formula for the two rows gives values of 2 and 3, respectively. The fitness value for 

the whole matrix can be obtained by summing up the fitness values of all the rows. This fitness also 

pushes the 1's together to make blocks. The smaller the fitness value, the lesser number of blocks the 

matrix will have, thus producing a larger C1S submatrix.  

Stopping criterion  

     A common criterion used to stop the proposed genetic algorithm is the maximum number of 

generations.  

Selection procedure 

     It usually implements a roulette wheel which is biased towards fit individuals. This means that 

good individuals are likely to be parents.  

    The proposed GA algorithm is shown in a pseudocode as shown in Algorithm 1. 

 

Algorithm 1: Algorithm C1P 

 

1 Input a binary matrix A; 

2 Input  the rate of crossover and   the rate of mutation; 

3 Generate a random population of permutations of columns of matrix A; 

4 Evaluate the fitness of the permutations according to some fitness function; 

5 Rank individuals according to their fitness; 

6 Select parents from the population according to some selection procedure; 

7 Generate a new population by applying the following operators: crossover, 

       mutation, and reproduction; 

8 Compute the fitness of the individuals of the new population; 

9 Until (The sopping criteria are satisfied) Repeat from 5. 

10 Return Permuted matrix. 

 

2.4 Testing the quality of the fitness functions 

    To compare the quality of the fitness functions that are stated above, we implement them separately 

in Algorithm1. They are applied to the same matrices with a fixed number of generations and initial 

population. We run the GA on 5 different matrices for each size. The size of the population and the 

generation are fixed to 40 for the first two matrices and 100 for the rest. Table-1 records the number of 

columns (Nbcols) with C1P rounded to the nearest integer. We refer to the matrices size as (Mat.) and 

to the density as (Dens.). The table shows that FF1 and FF5 produce better results in a shorter time. 

Although both of them give almost the same results, the latter is superior in CPU time.  

 

Table 1-Comparing the fitness functions on the number of columns with C1P and time. 

Mat.   

Dens.(%) 

FF1 

Nbcols 

Time(s) 

FF2 

Nbcols 

Time(s) 

FF3 

Nbcols 

Time(s) 

FF4 

Nbcols 

Time(s) 

FF5 

Nbcols 

Time(s) 

24             6 

50             4 

100           2 

200           . 

500           . 

21         1.11 

17         1.45 

28         12.58 

20         16.66 

14         47.59 

21          1.97 

18          5.89 

30          14.05 

20          95.94 

14      2760.48 

20         2.35 

17         8.26 

27        33.37 

20        133.4 

13        641.19 

14         0.49 

13         0.31 

22         1.22 

15         3.13 

11         17.52 

23           0.71 

20           1.67 

27           9.77 

21          12.31 

14          31.31 

 

3. Computational experience 

3.1 Results of Algorithm 1 on the CBM problem 

      This algorithm is implemented for matrices of the set covering problem with different densities. 

We use these matrices to serve as a test bed to run the GA implementation. The results shown in 

Table- 2 are obtained by applying Algorithm 1 to ten different matrices of each size. We run the GA 

10 times on every matrix, each time with a random initial population. In fact, the results of the 

algorithm rely on the arrangement of the binary matrix and, therefore, it may produce better results 

when it is repeated with different initial populations. The run time depends slightly on the density of 
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the matrix and the number of rows, but more on the number of columns. We set the number of 

generations and population size to 100. The heuristic gives the results of the number of blocks and 

columns. The first five columns have the initial information of the matrices with the number of 

generations (Gen) in column 3. The rest of the table shows the number of final blocks with the number 

of improved blocks, the number of columns (Nbcols) with C1P, and the time. For small matrices, the 

number of columns with C1P is good, but for matrices with size       the results are not up to 

expectation. From our experience, the results can be improved by the following: 

1. Increasing the number of generations and the initial population size. 

2. For large matrices, it is better to have an initial population which covers more than half the columns 

of the matrix to obtain about the same number of columns having the C1P. This reduces computing 

time. This can be achieved by reducing the chromosome that presents the matrix to the half. 

3. Dividing the matrix into submatrices and applying Algorithm 1, separately, then applying it for the 

whole matrix put together. This however requires more time.  

4. The initial population can be seeded by applying Algorithm 1 many times, then making the final 

population from the best of each run and use it as the initial population. This also computationally 

expensive. 

     Overall, this algorithm is performed to different instances of real-world and randomly generated 

matrices. The nonsymmetric matrices that are created from the set covering problem are not checked 

for the consecutive ones property, so the optimal solutions are not known. Consequently, we cannot 

discuss the quality of our results. The rest of matrices, Real-world data, (     -     ) whose sizes 

are given in Table- 3, arise from the problem of stop location, posted by a German railway company 

[29]. The problem is formulated as a Set Covering Problem (SCP) [29, 30]. These cases produce 

matrices with 0, 1 entries, that are assumed to have almost C1P. Other small size matrices of types B 

and C, which are randomly created by Ruf and Schöbel [29], are both sparse and almost have the C1P 

with density values of 3% and 5%, respectively (Table- 3). Finally, the algorithm is implemented as 

follows: 

     The results of Table- 4 show that the columns of the B and C matrices from Ruf and Schöbel could 

not satisfy the C1P. Also, applying this procedure alone is not enough to improve the number of 

consecutive blocks.  

      The results on the real-world data of Ruf and Schöbel are illustrated in Table-5. The first matrix  

R1km almost satisfies the CBM, since the number of final blocks is near to  , and thus optimal. With 

respect to the rest of matrices of this type, although the final numbers of blocks and columns differ 

from the optimal values, they are close to the lower bound  , but not to the upper  . However, it still 

produces large submatrices with C1P. From the results shown in the three tables, we can say that: 

1. Performing Algorithm 1 improves the number of blocks but not that of the columns with C1P. 

2. Originally, any matrix should have C1S submatrix of at least two columns. The result from 

Algorithm 1 does not rely on the size of the C1S only, but also on the structure of the matrix. 

3. Minimizing the number of blocks does not imply finding a large C1S submatrix. We can say that 

improving the C1S can improve the CBM, but the converse is not always true. This is because the size 

of the C1S submatrix relies on the position of the destructive column. 

4. Over all, the number of consecutive blocks from the algorithm in Tables-(3, 4 and 5) show a good 

improvement, While the number of columns with C1P is not as expected. 

4. Conclusions 

      We presented a metaheuristic method for solving the C1S problem. A basic GA is proposed with 

many new fitness functions and FF5 is chosen to solve the C1S problem. The minimum consecutive 

blocks or CBM in [3] is also solved using the GA. We applied our algorithm to a large number of 

randomly generated matrices and real-world instances. The results show that large submatrices with 

C1P can be found for matrices with small sizes. However, since the optimum solutions are not known, 

it is not possible to say how far the solutions returned by our approaches are actually resulted from 

them. Finally, we can say that the GA is a suitable algorithm for solving the C1S problem if we want 

to separate a small submatrix with C1S. 
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Table 2- Computational results of the C1P algorithm for nonsymmetric randomly generated matrices 

Initial information GA Algo. 

Mat.      Dens.      Ge.      Initial     Initial 

(%)                  blocks     C1P 

Final      Blocks           Nbcols     Time(s) 

Blocks   improve.          C1P 

24          16        100        84             3 

50           4         100       103            6 

100         2         100       209           17 

100         4         100       444           10 

100        10        100       863            8 

200         2         100       781           16 

200         4         100      1379           8 

200        10        100      3248           8 

500         2         100      5189          11 

500         4         100      9612           4 

500        10        100      22021         6 

24             60             24              2.96 

51             52             49              3.93 

174            35             32              9.68 

373            70             12              9.97 

719           144            11              9.96 

706            72             23              12.07 

1304           75             13              11.85 

2834          413            12              12.13 

4925          264            17              31.21 

9193          419            11              30.62 

20721       1958            9               33.79 

 

Table 3-Test problem statistics 

Real world matrices 

  Mat.       Dens.(%)       Size  

Randomly generated instances 

Mat.    Dens.(%)        Size         Mat.      Dens.(%)        Size 

 R1km       0.002                

 R2km       0.014       1196   889  

 R3km       0.022       1419   886  

 R5km       0.043       1123   593 

 R10km     0.203        275   165  

 B1       0.032         100   96  

 B2       0.036         100   95  

 B3       0.034         100   92  

 B4       0.031         100   92  

 B5       0.029         100   92  

 C1         0.048        100   100 

 C2         0.054        100   100 

 C3         0.510        100   99 

 C4         0.050        100   100 

 C5         0.051        100   100 

  

Table 4- Computational results of the C1P algorithm for randomly generated matrices with almost 

C1P 

Initial information GA Algo. 

Mat.     Ge.      Initial    Initial 

blocks    C1P 

Final      Blocks         Nbcols     Time(s) 

Blocks   improve.        C1P 

 

Randomly generated instances from Ruf and Schöbel with sparsity 3% 

 

B1       100          296          12 

B2       100          325           7 

B3       100          304          10 

B4       100          276          11 

B5       100          270          13 

264           32                15           10.38 

292           33                13            9.72 

266           48                14            9.39 

250           26                16           10.02 

229           41                17           10.39 

 

Randomly generated instances from Ruf and Schöbel with sparsity  5% 

 

C1        100          456         10 

C2        100          516          7 

C3        100          479          8 

C4        100          482          7 

C5        100          483          7 

420          36                 10          10.37 

462          54                  9           10.16 

436          43                 11          10.05 

433          49                 11          10.04 

440          43                 14          10.33 
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Table 5-Computational results of the C1P algorithm for real-world instance matrices 

Initial information GA Algo. 

Mat.      Ge.       Initial     Initial 

                            blocks     C1P 

 Final      Blocks         Nbcols     Time(s) 

 Blocks   improve.        C1P 

 

Real-world instances with sparsity (1 - 2)% 

 

             100         764        243  

                  100         1359       52  

          100         1813       38  

          100         1597       34  

         100          389         32  

 759          5                481       27.04 

 1301        58              829       92.02 

 1727        86              104       116.01 

 1471       126             169       32.45 

 332          57               46          6.83 
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