
Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

 DOI: 10.24996/ijs.2021.62.1.20

*
Email: ruwaida.mohsin@uokufa.edu.iq

218

A Metaheuristic Approach to the C1S Problem

Rewayda Abo-Alsabeh
1
, Abdellah Salhi

2

1
Department of Mathematical Sciences, University of Kufa, Alnajif, Iraq

2
Department of Mathematical Sciences, University of Essex, UK

Received: 29/6/2019 Accepted: 15/3/2020

Abstract

 Given a binary matrix, finding the maximum set of columns such that the

resulting submatrix has the Consecutive Ones Property (C1P) is called the

Consecutive Ones Submatrix (C1S) problem. There are solution approaches for it,

but there is also a room for improvement. Moreover, most of the studies of the

problem use exact solution methods. We propose an evolutionary approach to solve

the problem. We also suggest a related problem to C1S, which is the Consecutive

Blocks Minimization (CBM). The algorithm is then performed on real-world and

randomly generated matrices of the set covering type.

Keywords: Approximation algorithm, Genetic algorithm, Consecutive Ones

Property, Consecutive Block Minimization.

 نهج ألادله العليا لـمدألة خاصية الواحدات المتعاقبة

 2عبد الله صالحي ،1*رويدة رزاق محدن

 العخاق جامعة الكهفة،لحاسهب والخياضيات، كلية علهم ا قدم الخياضيات،1
 انكلتخا قدم الخياضيات، كلية الخياضيات، جامعة اسيكذ،2

 الخلاصه
(، أيجاد المجمهعة العظمى من الاعمجة بحيث المرفهفة الجدئية الناتجة تمتلك 1، 0)-عطيت مرفهفةا

. يهجج عجة (C1S)تجعى مدألة المرفهفة الجدئية للهاحجات المتعاقبة C1P)خاصية الهاحجات المتعاقبة)
طخق لحلها, لكن لا مجال لتحدين الحل كفاية. علاوة على ذلك فأن معظم دراسات المذكلة تدتحجم طخق

، وهي ترغيخ القهالب C1Sالحل الجقيق. نحن نقتخح نهج التطهر لحل المدألة. كحلك نقتخح مدألة تتعلق بـالـ
. الخهارزمية يتم تطبيقها على مرفهفات من العالم الحقيقي و مرفهفات متهلجة عذهائيا من (CBM)متعاقبة ال

 نهع مجمهعة الغطاء.
1. Introduction

 The problem of consecutive ones submatrix on a binary matrix has been known since the 1950s. It

was suggested by Fulkerson and Gross [1] and described as follows: Let be an incidence matrix, and

then can we rearrange its columns so that each row has a single block of ones?

1.1 Basic concepts of C1P and C1S

Definition 1.1. A block of 1's (block of 0's) in a binary matrix A is any maximal set of consecutive

one entries (zero entries) appearing in the same row [2].

A binary matrix A is said to have the Consecutive Ones Property (C1P) if the ones

in every row appear consecutively [3].

 ISSN: 0067-2904

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

219

Definition 1.2. A binary matrix has the C1P for rows if its columns can be ordered such that all the

10s are consecutive in every row [3].

This property is similar for the columns, through matrix transposition.

Definition 1.3. Given a binary matrix, the problem of finding a maximum submatrix having columns

with C1P property is called the Consecutive Ones Submatrix problem [4].

Definition 1.4. Given a matrix , a valid permutation of is a permutation of its columns that puts the

ones in consecutive arrangement in each row. A binary matrix is C1P, if the matrix can be reordered

by such a permutation [2].

The C1P property is desirable, which often leads to efficient algorithms. Recently, there has been a

great deal of interest in matrix modification and transformation into a binary matrix having the C1P.

These transformations can be shown up as problems [5, 6, 7]. In general, these problems are NP-hard
1

even for very sparse matrices. Well known solution approaches depend on characterizing the so-called

Tucker forbidden submatrices [8, 7, 9, 4]. Here we propose a heuristic approach to the C1S problem.

1.2 Brief review

 In integer programming, the property of C1P is very interesting as it shows that the problems

based on matrices having this property are easier to solve than the suggested model. Such matrices

with C1P are totally unimodular [10, 11]. The property arises in many applications such as railway

optimization [12], information retrieval [13], and scheduling [14]. It also finds applications in

ancestral genome reconstruction [15] and the construction of physical mapping with hybridization data

[16]. In graph theory, it helps to find out interval graphs [1, 17].

 C1P has been fairly well studied. Kendall [18, 19] attributed the first appearance of the C1P

property to Flinders Petrie, an archaeologist in 1899. Many heuristic methods were suggested for the

problem of chronological ordering archaeological deposits before the work of Fulkerson and Gross

[1], who provided the first polynomial complexity algorithm. In 1972, Tucker [8] proposed a

characterization of matrices with the C1P using forbidden submatrices. Later, Booth and Lueker [20]

introduced the first linear-time algorithm for it. They used a data structure called the PQ-tree. A binary

matrix has C1P if and only if its data structure exists [20].

 Let () matrices be binary matrices with at most in each column and in each row.

Garey and Johnson [21] pointed out that the decision version of the C1S problem is NP-complete.

Later, Hajiaghayi and Ganjali [9] showed that the C1S problem is NP-hard for () matrices. They

also found a polynomial time solution for () matrices. Hence, their work raised the question of

whether the C1S problem stays NP-complete or not for both () matrices and () matrices.

The question was answered by Tan and Zhang [4]. For both () matrices and () matrices

having the C1S, they proved that the decision versions are NP-complete. For () matrices that

have no identical two columns, they showed that the C1S problem is polynomial time 0.8-

approximable. They also found that the C1S problem is 0.5-approximable for () matrices and for
() matrices. On the other hand, they proved that for () matrices there exists an such

that the approximation of the C1S problem within a factor of is NP-hard.

 The Petrie Seriation (or Sequence-dating) Problem [19] is an important and interesting problem

that was formulated in mathematical terms by Flinders Petrie almost one century ago. It is to

chronologically order grave sites in a cemetery where each grave contains (or does not contain) a

number of stylistic artifacts of a period. It is mathematically modelled by an incidence matrix A where

the columns are specific artifact types and the rows are the grave sites. In 2006, Gargano and Lurie

[22] introduced a hybrid evolutionary approach for solving this problem. They found a permutation of

rows that transforms A into a matrix that has a consecutive ones block in each column; this is called a

Petrie matrix. Finding this permutation is equivalent to showing that A has the C1P property. The

Consecutive Block Minimization is a related problem. The aim is to minimize the number of blocks of

1's by permuting the columns of the matrix. Haddadi and others [3] gave a polynomial-time local-

improvement heuristic for the problem.

 This paper is organized as follows. Section 2 reviews current solution approaches. Section 3

presents the proposed GA algorithm for solving the C1S problem. Section 4 provides experimental

results. Section 5 is the conclusion.

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

220

2. An illustration of C1S and current solution approaches

2.1 The seriation problem

 The incidence matrix A is an input to this problem. It is a binary matrix with m rows and columns

(grave sites and object types, respectively); the entry of A has a value of one if grave has any

object of type and zero otherwise. If the rows (graves) were in the suitable time successive order,
1
A problem belongs to the class NP if a solution to it can be generated and verified quickly, i.e. in

polynomial time. It is believed that NP-hard problems are intractable, i.e. that there is no efficient

algorithm to solve them, [7].

, then each column (object) would indicate a time period during which that object was common.

Assume that each object represents the time interval from the appearance of the object to the time

when it becomes uncommon. The chronological ordering of the graves is reached by getting rows

permutation of that transforms it into Petrie form. This will minimize the total temporal range of an

object summed over all the varieties. This range for an artifact type is the span from the first to the last

appearance of a „1‟ in the column of corresponding to that artifact type.

 Kendall [19] introduced a solution by using a Similarity Matrix of size for graves,

which is nonnegative and symmetric. He found out that a permutation P can convert matrix A into a

Petrie form (i. e.,), as it can transform the grave matrix Q into Robinson form (Robinson Matrix
1
, i.

). The final matrix has the C1P where each column displays the correct order of the artifact

type from its appearance to it disappears.

2.2 Polynomial-time local-improvement heuristic for CBM

The problem of CBM-decision is NP-complete even if it is limited to binary matrices containing two

ones in each row [13, 23]. However, Haddadi introduced a polynomial-time heuristic which gives a

permutation such that the optimum solution and the consecutive blocks do not differ by more than

50%.

 Haddadi and others found a polynomial-time local-improvement heuristic for the CBM. They

introduced two () size local neighborhood search, where the blocks number of a neighbor is

provided in () operations [2, 3].

2.3 A GA-based solution approach

 The GA has been used in related cases. Here, we develop an implementation to deal with C1S. GA

is a meta-heuristic inspired by the process of natural selection that belongs to the larger class of

evolutionary algorithms (EA). It was proposed by Holland [24]. Genetic algorithms are commonly

used to generate high-quality solutions to optimization and search problems by relying on bio-inspired

operators, such as crossover, mutation, and reproduction [25].

Solution representation
 The basic is to keep permuting the columns of the given binary matrix to get as many consecutive

ones as possible in every row. An integer is used here to represent a solution or chromosome of size n,

an array of the column indices of the matrix. The position of each gene in the chromosome

corresponds to a column in this matrix. Figure-1 illustrates this representation.

1 6 7 2 10 4 8 3 9 5

 Figure 1-Chromosome representation

Genetic operators

 After randomly generating the initial population, we breed successive generations of offspring.

This can be achieved by performing genetic operators which are crossover, mutation, and

reproduction.

Crossover operator. We use the 'Order Crossover' of Gen and Cheng [26] to breed a new child. This

operation begins by picking a substring (subchromosome) from one of the two parents randomly, then

copying it into its corresponding location in the child. The genes in the second parent that appeared in

the substring are deleted to prevent repeating the gene. In the end, the genes are placed into the

unfixed location of the child from left to right, relying on the order of the sequence (Figure-2).

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

221

Mutation operator. It is used to allow the genetic algorithm to search in the global solution space and

prevent trapping in local optima, via changing one or more genes. Here, two genes from an individual

are randomly chosen and then swapped. Figure-3 illustrates the mutation operator.
1
Robinson matrix is a matrix with entries which do not increase as one progresses along a row beyond

the main diagonal and do not decrease as one continues to progress along that row towards the main

diagonal.

Parent1 1 10 8 7 5 3 6 2 4 9

Child1 1 10 8 3 6 5 2 4 7 9

Parent2 3 6 5 2 4 8 7 9 1 10

Parent1 1 10 8 7 5 3 6 2 4 9

Child1 3 6 5 1 10 8 7 2 4 9

Parent2 3 6 5 2 4 8 7 9 1 10

 Figure 2-Child1 and Child2 obtained with crossover

Parent 1 10 8 7 5 3 6 2 4 9

Child 1 10 2 7 5 3 6 8 4 9

 Figure 3-Individuals obtained with the mutation operator

Reproduction. Without any modification, some fit chromosomes are copied via this operator into the

next generation.

Fitness functions

 The matrix does not include enough information to decide whether it has the property or not.

However, we will use the entries of the matrix to build a fitness function. Many fitness functions are

tested and the most reliable one with respect to the number of C1S columns and run time is selected.

Fitness Function FF1. It computes the number of 1's in each row using a simple formula.

Summing the number of 1's for all the rows will give the fitness value of the matrix.

Suppose that we have the following rows with four ones each

 row1 = (1 0 1 1 1 0), row2 = (1 0 1 0 1 1).

 The first row has two blocks of 1's, k1, and k2, where k1 is one element and k2 is three 1's. We deal

with every block as a sequence of 1's. The associated series is defined as the ordered formal sum

∑
 where is the length of the block. Counting the elements for the two blocks will be as

 ∑ ∑

 ()

 Applying the formula for the two rows gives fitness values of 7 and 5, respectively, where

∑
 ∑

 and ∑
 ∑

 ∑
 . Applying this

formula for a matrix gives different fitness values for every row. The fitness value for the whole

matrix is found by accumulating the fitness values of all the rows, as shown in the next formula

 ∑ ()

 The larger the fitness, the better the matrix with respect to consecutive ones blocks. With different

permutations of columns in each generation and computing the fitness function of the matrix, the

consecutive solutions are improved every time by pushing the ones together to form less blocks. In the

final generation, it is expected that a matrix with best consecutive ones in every row is obtained.

Fitness Function FF2. This function relies on counting the ones in the different regions of the matrix.

That is, by finding the label of the connected components of the matrix, where each maximal

connected region is assigned as a unique label [27, 28]. The matrix below has three regions of ones.

The first connected components in the matrix has elements (label 1), the second has three elements

(label 2), and the last has one element (label 3), as shown in the region matrix. We also deal with

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

222

every region as a sequence of 1's, like the fitness FF1. The fitness values of the regions are 15, 6, and

1, respectively, which means that the fitness function for the matrix is 22, where ∑
 ∑

∑
 () () .

 (

) (

)

 This function pushes the ones in different separated regions, which may produce a variety of fitness

values more than those of FF1. It accumulates the ones, not only in the rows, but also in the columns.

This helps to accumulate the ones in large blocks. Function FF1 may give similar fitness values for

many rows, and consequently similar fitness values for different matrices. This causes that the worse

matrix with less columns having the C1P property may be selected for the next generation. With FF2,

there is a higher chance to distinguish between matrices. It may give better results than the FF1

function. Although it gives good results, unfortunately it costs more time than FF1. Thus, it is not the

desired function for the proposed algorithm.

Fitness Function FF3. This function counts the zeros, instead of the ones, in every row and then for

the whole matrix. The same formula that is used for finding the maximal sum of 1's in FF1 is used

here. Maximizing the fitness value leads to aggregating the zeros in blocks, which results in

minimizing the number of gaps between the ones. This fitness almost gives the same result but with

longer time, because the matrix is sparse so the calculations cost longer time than FF1. As we seek

better results with shorter time, this fitness function is also not suitable for our implementation.

Fitness Function FF4. The fitness function that Gargano and Lurie used for solving the Petrie

Seriation Problem [22] is used to find the consecutive ones in the columns by permutation of the rows.

Although it gives good results for small matrices, they did not mention whether it is suitable for large

matrices with different densities. Thus, we decided to test it. Their fitness is evaluated with the so

called Petrie Range Index (PRI) of the permuted binary matrix. We formulate the fitness for our

matrix by choosing the first column and the last column , where in each row there is at least one

element. The PRI for that row is . The fitness for the matrix is the sum of these values over

all the rows. The best solution is reached through minimizing the PRI. It is noticeable that if the matrix

has the same number of ones in each column, then the fitness value for the matrix will be the same for

any permutation. As a result, good matrices may not cross to the next generation, which causes not

having very good results. This approach is more suitable for matrices with high density with different

number of ones in each column. It generates less columns with C1P but in shorter time as compared to

the other functions. It is formulated as follow

 ∑

Here again, FF4 is not suitable for our implementation of GA.

Fitness Function FF5. This function is meant to solve the CBM problem which is equivalent to C1S.

The aim is to permutate the matrix columns to minimize the number of blocks of consecutive ones.

Building the function relies on counting the blocks of the ones in each row, then for the whole matrix.

The same two rows, and that are used in FF1 function for illustrations, are used here. The

first row has two blocks of ones and the second one has three blocks . The formula

for the matrix is

 ∑∑

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

223

 Applying the formula for the two rows gives values of 2 and 3, respectively. The fitness value for

the whole matrix can be obtained by summing up the fitness values of all the rows. This fitness also

pushes the 1's together to make blocks. The smaller the fitness value, the lesser number of blocks the

matrix will have, thus producing a larger C1S submatrix.

Stopping criterion

 A common criterion used to stop the proposed genetic algorithm is the maximum number of

generations.

Selection procedure

 It usually implements a roulette wheel which is biased towards fit individuals. This means that

good individuals are likely to be parents.

 The proposed GA algorithm is shown in a pseudocode as shown in Algorithm 1.

Algorithm 1: Algorithm C1P

1 Input a binary matrix A;

2 Input the rate of crossover and the rate of mutation;

3 Generate a random population of permutations of columns of matrix A;

4 Evaluate the fitness of the permutations according to some fitness function;

5 Rank individuals according to their fitness;

6 Select parents from the population according to some selection procedure;

7 Generate a new population by applying the following operators: crossover,

 mutation, and reproduction;

8 Compute the fitness of the individuals of the new population;

9 Until (The sopping criteria are satisfied) Repeat from 5.

10 Return Permuted matrix.

2.4 Testing the quality of the fitness functions

 To compare the quality of the fitness functions that are stated above, we implement them separately

in Algorithm1. They are applied to the same matrices with a fixed number of generations and initial

population. We run the GA on 5 different matrices for each size. The size of the population and the

generation are fixed to 40 for the first two matrices and 100 for the rest. Table-1 records the number of

columns (Nbcols) with C1P rounded to the nearest integer. We refer to the matrices size as (Mat.) and

to the density as (Dens.). The table shows that FF1 and FF5 produce better results in a shorter time.

Although both of them give almost the same results, the latter is superior in CPU time.

Table 1-Comparing the fitness functions on the number of columns with C1P and time.

Mat.

Dens.(%)

FF1

Nbcols

Time(s)

FF2

Nbcols

Time(s)

FF3

Nbcols

Time(s)

FF4

Nbcols

Time(s)

FF5

Nbcols

Time(s)

24 6

50 4

100 2

200 .

500 .

21 1.11

17 1.45

28 12.58

20 16.66

14 47.59

21 1.97

18 5.89

30 14.05

20 95.94

14 2760.48

20 2.35

17 8.26

27 33.37

20 133.4

13 641.19

14 0.49

13 0.31

22 1.22

15 3.13

11 17.52

23 0.71

20 1.67

27 9.77

21 12.31

14 31.31

3. Computational experience

3.1 Results of Algorithm 1 on the CBM problem

 This algorithm is implemented for matrices of the set covering problem with different densities.

We use these matrices to serve as a test bed to run the GA implementation. The results shown in

Table- 2 are obtained by applying Algorithm 1 to ten different matrices of each size. We run the GA

10 times on every matrix, each time with a random initial population. In fact, the results of the

algorithm rely on the arrangement of the binary matrix and, therefore, it may produce better results

when it is repeated with different initial populations. The run time depends slightly on the density of

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

224

the matrix and the number of rows, but more on the number of columns. We set the number of

generations and population size to 100. The heuristic gives the results of the number of blocks and

columns. The first five columns have the initial information of the matrices with the number of

generations (Gen) in column 3. The rest of the table shows the number of final blocks with the number

of improved blocks, the number of columns (Nbcols) with C1P, and the time. For small matrices, the

number of columns with C1P is good, but for matrices with size the results are not up to

expectation. From our experience, the results can be improved by the following:

1. Increasing the number of generations and the initial population size.

2. For large matrices, it is better to have an initial population which covers more than half the columns

of the matrix to obtain about the same number of columns having the C1P. This reduces computing

time. This can be achieved by reducing the chromosome that presents the matrix to the half.

3. Dividing the matrix into submatrices and applying Algorithm 1, separately, then applying it for the

whole matrix put together. This however requires more time.

4. The initial population can be seeded by applying Algorithm 1 many times, then making the final

population from the best of each run and use it as the initial population. This also computationally

expensive.

 Overall, this algorithm is performed to different instances of real-world and randomly generated

matrices. The nonsymmetric matrices that are created from the set covering problem are not checked

for the consecutive ones property, so the optimal solutions are not known. Consequently, we cannot

discuss the quality of our results. The rest of matrices, Real-world data, (-) whose sizes

are given in Table- 3, arise from the problem of stop location, posted by a German railway company

[29]. The problem is formulated as a Set Covering Problem (SCP) [29, 30]. These cases produce

matrices with 0, 1 entries, that are assumed to have almost C1P. Other small size matrices of types B

and C, which are randomly created by Ruf and Schöbel [29], are both sparse and almost have the C1P

with density values of 3% and 5%, respectively (Table- 3). Finally, the algorithm is implemented as

follows:

 The results of Table- 4 show that the columns of the B and C matrices from Ruf and Schöbel could

not satisfy the C1P. Also, applying this procedure alone is not enough to improve the number of

consecutive blocks.

 The results on the real-world data of Ruf and Schöbel are illustrated in Table-5. The first matrix

R1km almost satisfies the CBM, since the number of final blocks is near to , and thus optimal. With

respect to the rest of matrices of this type, although the final numbers of blocks and columns differ

from the optimal values, they are close to the lower bound , but not to the upper . However, it still

produces large submatrices with C1P. From the results shown in the three tables, we can say that:

1. Performing Algorithm 1 improves the number of blocks but not that of the columns with C1P.

2. Originally, any matrix should have C1S submatrix of at least two columns. The result from

Algorithm 1 does not rely on the size of the C1S only, but also on the structure of the matrix.

3. Minimizing the number of blocks does not imply finding a large C1S submatrix. We can say that

improving the C1S can improve the CBM, but the converse is not always true. This is because the size

of the C1S submatrix relies on the position of the destructive column.

4. Over all, the number of consecutive blocks from the algorithm in Tables-(3, 4 and 5) show a good

improvement, While the number of columns with C1P is not as expected.

4. Conclusions

 We presented a metaheuristic method for solving the C1S problem. A basic GA is proposed with

many new fitness functions and FF5 is chosen to solve the C1S problem. The minimum consecutive

blocks or CBM in [3] is also solved using the GA. We applied our algorithm to a large number of

randomly generated matrices and real-world instances. The results show that large submatrices with

C1P can be found for matrices with small sizes. However, since the optimum solutions are not known,

it is not possible to say how far the solutions returned by our approaches are actually resulted from

them. Finally, we can say that the GA is a suitable algorithm for solving the C1S problem if we want

to separate a small submatrix with C1S.

Acknowledgements

 The authors would like to thank Schöbel, one of the authors of [29], who provided us with real-

world data. Also, we extend tanks to Omar Kirikcki for supplying us with the random nonsymmetric

matrices.

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

225

Table 2- Computational results of the C1P algorithm for nonsymmetric randomly generated matrices

Initial information GA Algo.

Mat. Dens. Ge. Initial Initial

(%) blocks C1P

Final Blocks Nbcols Time(s)

Blocks improve. C1P

24 16 100 84 3

50 4 100 103 6

100 2 100 209 17

100 4 100 444 10

100 10 100 863 8

200 2 100 781 16

200 4 100 1379 8

200 10 100 3248 8

500 2 100 5189 11

500 4 100 9612 4

500 10 100 22021 6

24 60 24 2.96

51 52 49 3.93

174 35 32 9.68

373 70 12 9.97

719 144 11 9.96

706 72 23 12.07

1304 75 13 11.85

2834 413 12 12.13

4925 264 17 31.21

9193 419 11 30.62

20721 1958 9 33.79

Table 3-Test problem statistics

Real world matrices

 Mat. Dens.(%) Size

Randomly generated instances

Mat. Dens.(%) Size Mat. Dens.(%) Size

 R1km 0.002

 R2km 0.014 1196 889

 R3km 0.022 1419 886

 R5km 0.043 1123 593

 R10km 0.203 275 165

 B1 0.032 100 96

 B2 0.036 100 95

 B3 0.034 100 92

 B4 0.031 100 92

 B5 0.029 100 92

 C1 0.048 100 100

 C2 0.054 100 100

 C3 0.510 100 99

 C4 0.050 100 100

 C5 0.051 100 100

Table 4- Computational results of the C1P algorithm for randomly generated matrices with almost

C1P

Initial information GA Algo.

Mat. Ge. Initial Initial

blocks C1P

Final Blocks Nbcols Time(s)

Blocks improve. C1P

Randomly generated instances from Ruf and Schöbel with sparsity 3%

B1 100 296 12

B2 100 325 7

B3 100 304 10

B4 100 276 11

B5 100 270 13

264 32 15 10.38

292 33 13 9.72

266 48 14 9.39

250 26 16 10.02

229 41 17 10.39

Randomly generated instances from Ruf and Schöbel with sparsity 5%

C1 100 456 10

C2 100 516 7

C3 100 479 8

C4 100 482 7

C5 100 483 7

420 36 10 10.37

462 54 9 10.16

436 43 11 10.05

433 49 11 10.04

440 43 14 10.33

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

226

Table 5-Computational results of the C1P algorithm for real-world instance matrices

Initial information GA Algo.

Mat. Ge. Initial Initial

 blocks C1P

 Final Blocks Nbcols Time(s)

 Blocks improve. C1P

Real-world instances with sparsity (1 - 2)%

 100 764 243

 100 1359 52

 100 1813 38

 100 1597 34

 100 389 32

 759 5 481 27.04

 1301 58 829 92.02

 1727 86 104 116.01

 1471 126 169 32.45

 332 57 46 6.83

References

1. Fulkerson, D. and Gross, O. 1965. “Incidence Matrices and Interval Graphs”, Pacific Journal of

Mathematics, 15(3): 835-855.

2. Haddadi, S. and Layouni, Z. 2008. “Consecutive Block Minimization is 1.5-Approximable”,

Information Processing Letters, 108(3): 132-135.

3. Haddadi, S., Chenche, S., Cheraitia, M. and Guessoum, F. 2015. “Polynomialtime Local-

Improvement Algorithm for Consecutive Block Minimization”, Information Processing Letters,

115(6): 612-617.

4. Tan, J. and Zhang, L. 2007. “The Consecutive Ones Submatrix Problem for Sparse Matrices”,

Algorithmica, 48(3): 287-299.

5. Blin, G., Rizzi, R. and Vialette, S. 2010. “A Faster Algorithm for Finding Minimum Tucker

Submatrices”, In Programs, Proofs, Processes. Springer, 69-77.

6. Dom, M., Guo, J. and Niedermeier, R. 2007. “Approximability and Parameterized Complexity of

Consecutive Ones Submatrix Problems2”, In Theory and Applications of Models of Computation.

Springer, pp. 680-691.

7. Dom, M., Guo, J. and Niedermeier, R. 2010. “Approximation and Fixed-Parameter Algorithms for

Consecutive Ones Submatrix Problems”, Journal of Computer and System Sciences, 76(3): 204-

221.

8. Tucker, A. 1972. “A Structure Theorem for the Consecutive 1's Property”, Journal of

Combinatorial Theory, Series B 12(2): 153-162.

9. Hajiaghayi, M. T. and Ganjali, Y. 2002. “A Note on the Consecutive Ones Submatrix Problem”,

Information Processing Letters, 83(3): 163-166.

10. Annexstein, F. and Swaminathan, R. 1998. “On Testing Consecutive-Ones Property in Parallel”,

Discrete Applied Mathematics, 88(1-3): 7-28.

11. Berge, C. 1972. “Balanced matrices”, Mathematical Programming, 2(1): 19-31.

12. Mecke, S. and Wagner, D. 2004. “Solving Geometric Covering Problems by Data Reduction”, In

Algorithms-ESA 2004. Springer, pp. 760-771.

13. Kou, L. T. 1977. “Polynomial Complete Consecutive Information Retrieval Problems”, SIAM

Journal on Computing, 6(1): 67-75.

14. Hochbaum, D. S. and Levin, A. 2006. “Cyclical Scheduling and Multi-Shift Scheduling:

Complexity and Approximation Algorithms”, Discrete Optimization, 3(4): 327-340.

15. Adam, Z., Turmel, M., Lemieux, C. and Sankoff, D. 2007. “Common Intervals and Symmetric

Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Avolution”,

Journal of Computational Biology, 14(4): 436-445.

16. Alizadeh, F., Karp, R. M., Weisser, D. K. and Zweig, G. 1995. “Physical Mapping of

Chromosomes Using Unique Probes”, Journal of Computational Biology, 2(2): 159-184.

17. Gilmore, P. and Hoffman, A. 1964. “A Characterization of Comparability Graphs and of Interval

Graphs”, Canadian Journal of Mathematics, 16: 539-548.

18. Meidanis, J., Porto, O. and Telles, G. P. 1998. “On the Consecutive Ones Property”, Discrete

Applied Mathematics, 88(1): 325-354.

Abo-Alsabeh and Salhi Iraqi Journal of Science, 2021, Vol. 62, No. 1, pp: 218-227

227

19. Kendall, D. 1969. ”Incidence Matrices, Interval Graphs and Seriation in Archeology”, Pacific

Journal of Mathematics, 28(3): 565-570.

20. Booth, K. S. and Lueker, G. S. 1976. “Testing for the Consecutive Ones Property, Interval Graphs,

and Graph Planarity Using PQ-Tree Algorithms”, Journal of Computer and System Sciences,

13(3): 335-379.

21. Garey, M. R. and Johnson, D. S. 1979. “A Guide to the Theory of NP-Completeness”, WH

Freemann, New York.

22. Gargano, M. L. and Lurie, L. 2006. “A Hybrid Evolutionary Approach to Solving the

Archaeological Seriation Problem”, Congressus Numerantium, 180: p43.

23. Haddadi, S. 2002. “A note on the NP-hardness of the Consecutive Block Minimization Problem”,

International Transactions in Operational Research, 9(6): 775-777.

24. Holland, J. H. 1975. “Adaptation in Natural and Artificial Systems” Ann Arbor MI: University of

Michigan Press.

25. Michalewicz, Z. 1996. “Genetic Algorithms + Data Structures = Evolution Programs”, Springer

Science & Business Media.

26. Gen, M. and Cheng, R. 1997. “Genetic Algorithms and Engineering Design”, John Wily and Sons,

New York.

27. Di Stefano, L. and Bulgarelli, A. 1999. “A Simple and Efficient Connected Components Labelling

Algorithm”, In Image Analysis and Processing, Proceedings. International Conference on (1999),

IEEE, pp. 322-327.

28. Dillencourt, M. B., an an Samet, H. and Tamminen, M. 1990. “Connected Component Labelling

for Arbitrary Binary Image Representations”, In Progress in Image Analysis and Processing:

Proceedings of the International Conference on Image Analysis and Processing, World Scientific,

p. 131.

29. Ruf, N. and Schöbel, A. 2004. “Set Covering with Almost Consecutive Ones Property”, Discrete

Optimization, 1(2): 215-228.

30. Ruf, N. 2002. “Locating Train Stations: Set Covering Problems with “C1P” Matrices”, Master's

Thesis, University of Kaiserslautern.

