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Abstract

In this paper, we generalize the rule of counting the number of the free variables
in the double — even pandiagonal magic squares; our method is not based on the
direct computation of the solution of the linear system. Instead, We deduce this rule
by applying the theorems and methods of linear algebra , finally put algorithm of the

solution .
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1. Introduction

Magic squares have turned up throughout
history, some in a mathematical context, others
in philosophical or religious contexts. According
to legend, the first magic square was discovered
in China by an unknown mathematician
sometime before the first century A.D. It was a
magic square of order three thought to have
appeared on the back of a turtle emerging from a
river. Other magic squares surfaced at various
places around the world in the centuries
following their discovery. Some of the more
interesting examples were recorded in Europe
during the 1500s. Cornelius Agrippa wrote De
Oceculta Philosophia in 1510. In it he describes
the spiritual powers of magic squares and
produces some squares of orders from three up
to nine. His work, although infuential in the
mathematical community, enjoyed only brief
success, for the counter-reformation and the
witch hunts of the Inquisition began soon
thereafter: Agrippa himself was accused of
being allied with the devil. Although this story
seems outlandish now, we cannot ignore the
strange mystical ties magic squares seem to have
with the world and nature surrounding us, above
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and beyond their mathematical signicance.
Despite the fact that magic squares have been
studied for a long time, they are still the subject
of research projects. These include both
mathematical-historical research, such as the
discovery of unpublished magic squares of
Benjamin Franklin [1], and pure mathematical
research, much of which is connected with the
algebraic and combinatorial geometry of
polyhedra (see, for example , [2] , and [3]).
Aside from mathematical research, magic
squares naturally continue to be an excellent
source of topics for "popular' mathematics
books .
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A pandiagonal magic square is a hxn matrix

ag | dn
dn+1 dn+2 | don
A2 _ny1| Bz _pgpl o an2
Where n>3,and the entries a1,82,08p2 40

distinct real numbers satisfying the following
system of equations:

a +.4+a o =S

n?—n1 802 _ny2

..(1-a)
Qtangy to 82 g =S
A +ap 0 e +82 o =S
ap+Faonten +a 2 =S (1-b)
A+ 2 e +a. =S
A+t +a 2 =S
An Fang Feeeeeeens +a2 4, =S (-0
A+ e a0 =S
Ao +apyg Fereeeene +82 o 0=
apn +aong Feeeenens 482 o 1 =S (-0

where S is a real constant (the so-called magic
sum). In this system the group (1 — a) represents
the summation of the entries in each row of the
matrix. The group (1 - b) represents the
summation of the entries in each column of the
matrix. The group (1 - c) represents the
summation of the entries in each right
(extended) diagonal of the matrix. The group (1
— d) represents the summation of the entries in
each left (extended) diagonal of the matrix [4].
We will prove that the linear system (1) will
have a solution, which contains
n*n—4*n+4
free parameters, if n is even.
2. Double-even pandiagonal
square of order (4x4)

We consider the linear system (1 —a), (1 —b),
(1 —c) and (1 — d), where n is of the form 2k (k
= 2, 4, ...). In this system there are four
equations, which are linearly dependent on the
other equations. These equations are the same
three equations as in the odd squares beside the
(n-D)th equation of the group (1 — d), which is
the result of subtraction of the sum of all other
odd-ranked equations of the group (1 — d) from
the sum of all odd-ranked equations of the group
(1-2a) [4]
Since k = 2 yields a very special case, we start
illustrating it: As in the case of odd squares we
consider the matrix of coefficients of the system

magic

after removing the previous mentioned
equations. we consider the square :

a a, as ay

as ag a7 ag

ag a1o dix | a2

ais3 dig dis | 16

In this case the system (1) takes the form:

a, +a, +a; +a, =S

a; +a; +a,+a; =S 2-a)
e (2-2a

ay +a,+ay, +a, =S

a+a, +a,+a,=S
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& +8+3 +ay; =S

8, +ag+8,+a, =S

8 +8; +8y; +Hay; =S ~(2=D)
8, +8; +a,+8; =S5
a,+ag+a; +a,; =

a,+a,+a, +a,; =S 20
a;+ag+ag+a;, =S
a,+ag+a,,+a;; =S

a, +ag +a,+a, =S

a,+a; +a,+a,; =S

a,+a, +a, +a,, =S --(2-d)

In the system (2 — a), ..., (2 — d), there are
three equations, which are linearly dependent on
the other equations. These equations are: the last
equation of the group (2 — b), the last equation
of the group (2 — ¢) and the last equation of the
group (2 — d). Indeed, the last equation of the
group (2 — b) is the result of subtraction of the
sum of all other equations of the group (2 — b)
from the sum of all equations of the group (2 —
a). The last equation of the group (2 — c) is the
result of subtraction of the sum of all other
equations of the group (2 — c¢) from the sum of
all equations of the group (2 — a). The last
equation of the group (2 — d) is the result of
subtraction of the sum of all other equations of
the group (2 — d) from the sum of all equations
of the group (2 — a).

In order to prove that there are no other
dependent equations we write down the matrix
of coefficients of the system after removing the
previous mentioned equations:
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1111000000000000
0000111100000000
000000001111 0000
0000000000001 111
100010001 0001000
0100010001000100
0010001000100000
100001000 0100001
0100001000011000
001000011 0000100
100000010 0100100
0100100000010010

We then prove that this matrix has full rank. To
establish this we consider the transpose of this
matrix(1):

100 010 01 0 01 O
100 0 01 0 01 0 01
10 0 0001 0 O0OT1I OO
10 0 0 OO O O OO OO
0601 0 010 0 0 O OTUO1
01 0 0 01 0 1 0 0 0O
0601 0 0 001 01 0 00O
01 0 0 0OOOOUOTI1 1 O
001 01000 O01 00O
001 00100 O0O0O0TUO
06001 00 0111 0 01O
001 0 0O0O0OO0OI1I O 01
00 01 10 0 0 0 O0 OO
0001 010001 1 O
00 01 0 010 0 0 01
00 01 0O0O0O1O0O O OO

and prove that this matrix has full rank(1). In
order to do this we study the equation of linear
dependence between the columns of the last
matrix.

We prove that this matrix has full rank by
studying the equation of linear dependence
between the columns of the matrix:

b,*C,+b,*C,+..+b,,*C, =0

where c,.C,,...C, denotes the columns of

the matrix and bl,bz,,_,,b12 are real numbers.
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The component wise form of the last equation
is:

b, +b,+b;+b,=0

b, +bg+by+b,=0 -1
b, +b,+by, =0

b, =0

b, +b, +b,, =0

b, +bg+bs =0 (4=2)
b, +b,+by, =0

b, +b,+b, =0

b, +b, +by, =0

by +b; =0 (4=3)
b, +b, +by+b,, =0

b, +by+b,, =0

b, +b,+b, =0

b, +;+b,o-+b;, =0 N s
b, +b,+b, =0

b, +b, =0

We conclude from the last equation of the group
(4 - 1) that b, =0. Substituting this value in
the other equations of the group (4 — 1) and
adding up leads to:

Since the summation of the equations in (4 — 2)
yields

12
4b,+> b, =0
=5

we deduce from (5) that b,=0.1In the same
manner we obtain:

b, =b, =0.

Using our knowledge about b,,b,,b, and

b,we are capable of rewriting the system (4)
like this:
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=0
=0

b, +bg+b,,
be+bg+by,
b, +by,

b, +b,
b, + by,
b, + by,
blO +bll

b, +by,
b,
b,+bg+b, =
b, +b,, =0

(6-2)

0
0
0
0

(6-3)

b, +b, =0
b,+b,+b, =0
b,+b, =0
b, =0

From the group (6 — 3) and the group (6 —4 ) we
conclude that by =0 and by =0. When we

substitute these values in the system (6) and do
some comparisons, e. g. when equating the left
side of the first equation in each of the groups (6
-1), ..., (6 —4) we obtain:

b9 = blO :bll = b12

Doing the same with the second equation we
get:

b, +b, =b,, +b,, =0 ---(8)

We rewrite the equations in (8) in the following

manner:
b12 = _b9'b10 = _b11

Using these relations we obtain from (7) the
equation —-2b, =0. Thus, b, =0. Due to the
previous relations between the variables
b,,b,,...b,, we conclude that all of them are
zero.

Setting all variables a, ,a,,..,a;,; to

represents a solution of the nonhomogenous
linear system (1). Since we have 16 variables
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and 16 equations, the solution of the 1 1 1 1
nonhomogenous linear system (1) has according :
to our analysis 16 — 16 + 4 = 4 free parameters . 1 1 1
0 0 0
3-  Generalization of  double-even
pandiagonal magic square ! b 0 oL
Now, we treat the general case, we consider : K 1 :
the matrix of coefficients of the system after 1
removing the previous mentioned dependent 1 1 0
equations. This matrix will be the same as the 1 0 1 1
matrix (3) after deleting the last row.
1 1 0 1 001
0 -
1 1
1..11
1 11 0 10 01
1..11
1.1 1
1 1 1 1 11 01 0
. . : 1
10 10 10 10 '
1
..... 9
1 01 0 01 001 " 1 1 1
|
1 and prove that this matrix has full rank[5]. In
10 1 10 -0 100 order to do this we study the equation of linear
dependence between the columns of the last
1 0o 01 0 10 01 matrix. _ _
: 1 .. We prove that this matrix has full rank by
1 studying the equation of linear dependence
- between the columns of the matrix:
10 100 1000 - 1
bl*q_+b2*C2 +...+b4n_4*C4n_4 =0
We then prove that this matrix has full rank. To .. (10)
(rans;??il):?;l)_thls we consider the transpose of this where C1:C2,.Can-4 denotes the columns

of the matrix and bl’bzv--’b4n-4 are real

numbers. The componentwise form of equation
(10) is:

by +Bny+oontheng =0
by +Bnso+bong +hy =0

by +bono+b3p3+04n4 =0
by +0ong +o3n2 =0
by =0 n(11-1)
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by +bnyg +gy =0
by +byp+bpy +o3pg =0

by

+hanotbgm =0 (11-2)
b +bn41+bon =0
b +bn42 +bons2 +b301 =0
by +on =0 w...(11-n)

We conclude from the last equation of the group

(11 - 1) that by =0, Substituting this value in
the other equations of the group (11 — 1) and
adding up leads to:

4n-4
>'b; =0
=Nl
Since the summation of the equations in (11 —
2) yields
4n-4
nbz + ij =0

j=n+1

Hence, we deduce from (12) that b2 =0 1nthe
same manner we obtain:

b3 =by=..=b, =0

Using our knowledge about by,bo b e
are capable of rewriting the system (11) like
this:

bnig+bon+b3pg =0

bnio +bopig +b3n =0

bon-2 +b3n-3+b4n.4 =0

bon1+b3n-2 =0 .(13-1)
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b1 +bg, =0
b2 +bon  +bgpyy =0

b3n2+b3ng =0 .(13-2)
bp41 +02n41 =0
bps2 +bonso +b3pg =0

baon =0 (13 -n)

From the group (13 —%) and the group (13 - n)

we conclude that bz =0 and ban =0
—n
2

When we substitute these values in the system
(13) and do some comparisons, e. g. when
equating the left side of the first equation in each
of the groups (13 - 1), ..., (13 — n) we obtain:

bont1 =b2ni2 =bonsg +ban-a =bonia +bsns
=....=bgn.2 +03n,3 =bgy =b3ny

Doing the same with the second equation we
get:
b2n+l + b3n = b2n+2 + b3n-1 = b2n+3 =
L e

=b

bmz + b3n+3 = b3n+2 = b3n+l

....(15)

2n+6+b4n-5 o=

Continuing these comparisons till we reach the
n
Eth equation in each of the groups (13 - 1), ...,

(13— n) we get:
b2n+l + b4n—4 = b2n+2 + b4n—5 =
b3n—3 + b3n—1 = b2n =0
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Remember that in the case k = 2 this equation
will be also the second equation, and that we
have to deal with two equations, only. We
rewrite the equations in (16) in the following
manner:

ban-1=-D3n-2
ban =-Db3n-3

ban-4 =—bonia

Using these relations we obtain from the
equations in (14), (15) and similar equations the
following linear system:

2Dy T honys 0
—2by g3 by Ly 0
_Zbin_3+b3n-5 =0
2
-2Db =0
g—n—l
_Zbgn+l+b2n+3 0
_Zbin+3+b2n+7 0
2
—2bgp 3ty =0
..................... (18)
The matrix of coefficients of this system is
21 000 0 00
02 010 0 00
00 00 0-0-20000--010
00 00 0-002000--000
01 00 0--000-=200--0 00
00 01 0000 020--000
00 00 O 01-2
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which is strictly diagonally dominant [6]. Thus,
it is invertible ,and hence, the last linear system
has the trivial solution, only. Due to the previous
relations between the variables

b1,b2,..,04n-4 we conclude that all of them
are zero.

S
to —
n

represents a solution of the nonhomogenous
linear system (1). Since we have n*n variables
and 4*n equations, the solution of the
nonhomogenous linear system (1) has according
to our analysis n*n — 4*n + 4 free parameters .

Setting all variables d1,82,..,8 2

Algorithm Double-Even PMS

Input
Mnx »= Matrix and represent even
Pandiagonal magic squares ,

Output
Free parameters of Pandiagonal magic
squares
V= n*n-4*n+4

Step 1:

Delet the equations of linear dependence
from system (1)

equation in Mg Do

Meg — My

End for
Step 2:

Write coefficients remaining of the
system (1) as matrix (3) , and prove that this
matrix has full rank .

Step 3:

Prove that the columns of matrix linear

independent

Man —_){ b11 b21b31 ey bn},from
bl*C1+b2*C2 +"'+b4n-3*c4n-3 =0

where C1,C2,.,Can-3 denotes the columns
of the matrix
and b1,b2,...,D4n-3 are real numbers
Steps 4:

Write the component wise of above
equations.
Step 5: do

{b11b21b3’ ---,bn} ){0,0,0,
...... 0}
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End for
End Algorithm
Conclusion

This table provide a convenient way of
describing the rule which counting the free
parameters in doubly-even pandiagonal magic

squares.
PMS n*n-
Order 4*n+4 4*n n*n
4 4 16 16
8 36 32 64
12 100 48 144
16 196 64 256
20 324 80 400
24 494 96 576
28 386 112 784
Etc.
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