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Abstract 

     Recently, Operator Equation Theory (OET) has a leading demonstrated 

potentiality applicable in numerous scientific ranges of engineering, physical and 

mathematical. In a Hilbert C*-module, OET has enhanced by expanding upon 

extensive research. In this study, for the general situation of adjointable operators, the 

solvability of the operator equation 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺, where 𝑋 and 𝑌 are unknown 

operators, are investigated based on Moore-Penrose inverse. Necessary and sufficient 

conditions for founding a solution to this equation are proposed. Moreover, by 

utilizing matrix approaches, four general expressions for the solutions are derived 

depending on the states of the operators 𝒫 and 𝛷 involved in the equation. 

 

Keywords: Operator, Hilbert C*-module, Operator equation, Invertibility, Adjoint 
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 حول الحلول التحليلية لمعادلة المؤثر التي تم انشاؤها بواسطة المؤثر القابل للترافق 
 
 *, سالم داود محسن احسان عبد الستار عوض 

 قسم الرياضيات، كلية التربية، الجامعة المستنصرية، بغداد، العراق 
 

 :   الخلاصة 
إمكانية تطبيقها في العديد من المجالات العلمية منها الهندسية   (OET)اثبتت نظرية معادلة المؤثر   حديثا      

(، تم تعزيز نظرية معادلة المؤثر من  (C*  Hilbert C*-module  -في وحدة هلبرت   والفيزيائية والرياضية.  
خلال التوسع في البحث المكثف. في هذه الدراسة، بالنسبة للوضع العام للمؤثرات المترافقة، يتم التحقيق في  

∗𝒫∗𝑋𝛷   قابلية حل معادلة المؤثر + 𝛷𝑌𝒫 = 𝛺    ًبينروز )-على معكوس موربناءMoore-Penrose 
invers،)    حيث𝑋, 𝑌   يتم اقتراح الشروط الضرورية والكافية لوجود حل لهذه المعادلة،  سوف  مؤثرين مجهولين. و

اعتمادًا على حالات المؤثرين  تعبيرات عامة للحلول    أربع علاوة على ذلك وباستخدام تقنية المصفوفة يتم اشتقاق  
𝒫, 𝛷  المتضمنين في المعادلة. 

 
1. Introduction 

     The realm of Matrix Equations has intrinsic role in various domains of engineering and 

mathematics. In system theory, the matrix equation formulated by 𝒫𝑋𝐷 +  𝐹𝑋𝑇𝛷 =  𝐶 has 

been vastly utilized, for instance, to eigen structure assignment [1, 2]. Following, the 𝛷 revival 
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of Operator Equations on Hilbert space or Hilbert C*-module, which is the extended formula 

of M-Eqs. Indeed, the Hilbert C*-module is a nature generalized formula of C*-algebras and 

Hilbert space, was explored by Kaplansky [3] in 1953. The Operator Equations has contributed 

to algebraic theory, particularly in non-abelian geometry and quantum groups and KK-theory, 

see [4-9]. There are a variety of previous studies that paved the way or contributed to presenting 

this study. Interestingly, the mathematicians Baksalary and Kala [10] in 1979 provided the 

requisite and sufficient stipulations for the existence of a solution to equation 𝒫𝑋 − 𝑌 = 𝛺 and 

constructed the general formula of the solution. In 1998, the researcher Xu, Wei, and Zheng 

[11] presented the requisite and sufficient stipulations for the existence and uniqueness of the 

solution to equation 𝒫𝑋𝛷 + 𝐶𝑌𝐷 = 𝛺. They investigated the general formula of the solution. 

Then, Wang, Zhang and Yu [12] in 2008 expanded attempts made investigating and deduced 

the requisite and sufficient stipulations for the existence of real and imaginary solutions to 

aforementioned equation. In 2009, Dehghan and Hajarian [13] deduced the reflexive solutions 

to the Matrix Equation 𝒫𝑋𝛷 + 𝐶𝑌𝐷 = 𝛺 by providing the requisite and sufficient stipulations 

for the existence of these solutions. Subsequently, Karizaki and Djordjevic [14] in 2016 

provided solutions to the Operator Equation 𝒫𝑋𝛷 − 𝑆𝑌𝑄 = 𝛺, on a Hilbert C*-module, 

𝑟𝑎𝑛(𝒫) = 𝑟𝑎𝑛(𝑆) and 𝑟𝑎𝑛(𝛷∗) = 𝑟𝑎𝑛(𝑄∗) are closed. For more information, see [15-26]. 

In this sequel, 𝐹 and 𝐷 are Hilbert modules over the same C*-algebra. Denote by 𝐵(𝐹, 𝐷) the 

set including the adjointable operators defined on 𝐹 to 𝐷. For case 𝐹 = 𝐷, 𝐵(𝐹, 𝐷) coincides 

with 𝐵(𝐹). 𝒫, 𝛷, 𝛺 represents known operators. For 𝒫 ∈ 𝐵(𝐹, 𝐷), let 𝐾𝑒𝑟(𝒫) and 𝑅(𝒫) 

represent the zero-space and range, respectively. 

The following several principles are required in this study. 

Definition 1.1: [27, 28] Let 𝐹 and 𝐷 be vector spaces over the same filed then the operator 

𝒫: 𝐹 ⟶ 𝐷 called invertibility if there exists an operator 𝛷: 𝐷 ⟶ 𝐹  where  𝒫𝛷 = 𝛷𝒫 =
𝐼 , where 𝐼 is an identity operator. 

Definition 1.2: [29, 31] Let 𝐹 and 𝐷 be Hilbert spaces and 𝒫: 𝐹 ⟶ 𝐷  be a liner operator then 

the operator 𝒫∗: 𝐷 ⟶ 𝐹 is called adjoint of the operator 𝒫 if < 𝒫𝑥, 𝑦 >=< 𝑥, 𝒫∗𝑦 > for each 

𝑥 ∈ 𝐹 , 𝑦 ∈ 𝐷 . 
Definition 1.3: [32] An operator 𝒫: 𝐹 ⟶ 𝐷 where 𝐹 and 𝐷 are Hilbert spaces called self-

adjoint if 𝒫 = 𝒫∗. 

Definition 1.4: [33, 34] Let  𝒫 ∈  𝐵(𝐹, 𝐷),the range of 𝒫, is denoted by 𝑅(𝒫) such that 

𝑅(𝒫) = {𝒫𝑥: 𝑥 ∈ 𝐹}.  
Definition 1.5: [35] Let  𝒫 ∈  𝐵(𝐹, 𝐷),the kernel of 𝒫, is denoted by 𝑘𝑒𝑟(𝒫) such that 

𝑘𝑒𝑟(𝒫) = {𝑥 ∈ 𝐹: 𝒫𝑥 = 0}. 
Definition 1.6: [36] Let  𝒫 ∈  𝐵(𝐹, 𝐷), the Moore-Penrose invers of  𝒫  indicated by 𝒫+ such 

that  𝒫+is unique in 𝐵(𝐹, 𝐷) and fulfills: 

  𝒫𝒫+𝒫 = 𝒫,   𝒫+𝒫𝒫+ = 𝒫+,   (𝒫𝒫+ )∗ = 𝒫𝒫+,    (𝒫+𝒫)∗ = 𝒫+𝒫. 

 

     The existence of the Moore-Penrose bounded inverse of a continuous operator between two 

Hilbert C*-modules is guaranteed if and only if the operator has a closed range. For more about 

the properties and applications of Moore-Penrose invers, see [37, 38]. The operator 𝒫 ∈
 𝐵(𝐹, 𝐷) is called regular if there exists 𝛷 ∈  𝐵(𝐷, 𝐹) such that 𝒫𝛷𝒫 = 𝒫. It is clear that 

regular operators are almost regular and that regular operator have close range [39]. 

Theorem 1.7: [40] Let 𝛷 ∈  𝐵(𝐹, 𝐷) and 𝒫 ∈  𝐵(𝑍, 𝐷)  be invertibility operators and 𝛺 

∈ 𝐵(𝐷), 𝐹, 𝐷, 𝑍 be Hilbert C*-modules. Then the next assumptions are comparable: (i) There 

is a solution X ∈  𝐵(𝐹, 𝑍) to 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. (ii) 𝛺 is self-adjoint. If (i) or (ii) are 

available, therefore any solution to 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. When 𝑋 ∈  𝐵(𝐹, 𝑍) represents in the 

form 𝑋 =
1

2
𝒫−1𝛺(𝛷∗)−1 − 𝒫−1𝑍(𝛷∗)−1, where Z ∈  𝐵(𝐷)satisfies Z ∗ = −Z. 

 



    Awadh and Mohsen                                          Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx 

 

 

For the case 𝛷 is invertible and 𝒫 is regular, the following theorem gives an explicit solution 

to the equation 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. 

Theorem 1.8: [40] Suppose 𝛷 ∈  𝐵(𝐹, 𝐷)is an invertibility and 𝒫 ∈  𝐵(𝑍, 𝐷)  is regular and  

𝛺 ∈  𝐵(𝐷), such that 𝐹, 𝐷, 𝑍 are Hilbert C*-modules. After that, next claims are comparable: 

(i) There exists X ∈  𝐵(𝐹, 𝑍) is a solution to the operator equation 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. (ii) 
𝛺 is self-adjoint and (𝐼 − 𝒫𝒫+)𝛺(𝐼 − 𝒫𝒫+) = 0. If (i) or (ii) are available Thus, the solution 

to  𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. It is written in order:𝑋 =  
1

2
𝒫+𝛺𝒫𝒫+(𝛷∗)−1 + 𝒫+𝑍𝒫𝒫+(𝛷∗)−1 +

𝒫𝛺(1 − 𝒫𝒫+)(𝛷∗)−1 + (𝐼 − 𝒫𝒫+)𝑌(𝛷∗)−1, where Z ∈ 𝐵(𝐷) achieves  𝒫* (Z + Z*)𝒫 = 0 

and Y ∈  𝐵(𝐷, 𝑍) is random. 

For 𝒫 and 𝛷 both close their regions, the next theorem studies the equation 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ =
𝛺. 

 
Theorem 1.9: [41] Let 𝛷, 𝛺 ∈  𝐵(𝐹), 𝒫 ∈  𝐵(𝐷, 𝐹). So that 𝛷 is self-adjoint and both 𝒫 and 𝛷 

possess regulars. Let 𝐹, 𝐷, 𝑍 be Hilbert C*-modules,  𝛺𝛷+𝛷 = 𝛺 and 𝒫+𝛷+𝛷 = 𝒫+. The next 

claims are therefore comparable: (i) There is X ∈  𝐵(𝐹, 𝐷) a solution to the operator equation 

𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. (ii) 𝛺 = 𝛺∗and (𝐼 − 𝒫𝒫+)𝛺(𝐼 − 𝒫𝒫+) = 0. If (i) or (ii) are available, 

thus the solution to 𝒫𝑋𝛷∗ + 𝛷𝑋∗𝒫∗ = 𝛺. It is written in order:𝑋 = 𝒫+𝛺𝛷+ −
1

2
𝒫+𝛺𝒫𝒫+𝛷+ + 𝒫+𝑍𝒫𝒫+𝛷+ + 𝑉 − 𝒫+𝒫𝑉𝛷𝛷+, where Z ∈ 𝐵(𝐹) achieves 𝒫* (𝑍 +  𝑍 *)𝒫 

= 0, V ∈ 𝐵(𝐹, 𝐷) is random. 

 

2. Main results 

     This section investigates and provides four formulations for general solutions along with 

their prerequisites and conditions. Regarding the operator equation 

 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺. (1) 

And it is considered a generalization of the equation that appeared in [41]. 

For 𝒫 and 𝛷 are invertible, the following theorem discusses the state solution of Equation (1). 

 
Theorem 2.1: Let 𝒫 ∈ 𝐵(𝐵(𝐹, 𝐷) and 𝛷 ∈ 𝐵(𝐷, 𝐹)  be invertible and  𝛺 ∈ 𝐵(𝐹), where 𝐹 , 𝐷 

be Hilbert C*-modules, then the operator Equation (1) has a solution (𝑋, 𝑌) ∈ 𝐵(𝐷) × 𝐵(𝐷), 

in this case any solution to Equation (1) in this situation is shown as follows: 

 𝑋 =
1

2
(𝒫∗)−1𝛺(𝛷∗)−1 − (𝒫∗)−1𝐾(𝛷∗)−1 

 𝑌 =
1

2
(𝛷)−1𝛺(𝒫)−1 + (𝛷)−1𝐾(𝒫)−1, 

where 𝐾 ∈  𝐵(𝐹) is arbitrary. 

Proof: Suppose𝑀 = [
𝒫∗ 0
0 𝒫∗] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕ ℱ, 𝑁 = [

𝛷 0
0 𝛷

] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕ ℱ, 𝑋̂ =

[
0 𝑋

𝑌∗ 0
] : 𝒟 ⊕ 𝒟 ⟶ 𝒟 ⊕ 𝒟 , 𝐿 = [

0 𝛺
𝛺∗ 0

] : ℱ ⊕ ℱ ⟶ ℱ ⊕ ℱ. 

It is clear that 𝐿 is self-adjoint. Therefore, using Theorem 1.7, there is a solution like 𝑋̂ for 

equation 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = 𝐿, from which we will obtain 

 [
𝒫∗ 0
0 𝒫∗] [

0 𝑋
𝑌∗ 0

] [
𝛷∗ 0
0 𝛷∗] + [

𝛷 0
0 𝛷

] [
0 𝑌

𝑋∗ 0
] [

𝒫 0
0 𝒫

] 

 [
0 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫

𝒫∗𝑌∗𝛷∗ + 𝛷𝑋∗𝒫 0
] = [

0 𝛺
𝛺∗ 0

] = L, 

from this, we conclude 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺. That is (𝑋 , 𝑌) represents a solution to this 

equation. It is clear that 𝑀 and 𝑁 are reversible. Referring to Theorem 1.7 and utilizing the data 

that has emerged, we find that the solution to equation 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = 𝐿 is as follows 

 𝑋̂ =
1

2
𝑀−1𝐿(𝑁∗)−1 − 𝑀−1𝑍(𝑁∗)−1,  (2) 



    Awadh and Mohsen                                          Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx 

 

 

where 𝑍 ∈ 𝐵(𝐹 ⊕ 𝐹) satisfied 𝑍∗ = −𝑍. If we take 𝑍=[
𝑍1 𝑍2

𝑍3 𝑍4
], and after substituting each 

value with its equivalent in Equation (2), produces 

[
0 𝑋

𝑌∗ 0
] =

1

2
[

0 (𝒫∗)−1𝛺(𝛷∗)−1

(𝒫∗)−1𝛺∗(𝛷∗)−1 0
] 

 − [
(𝒫∗)−1𝑍1(𝛷∗)−1 (𝒫∗)−1𝑍2(𝛷∗)−1

(𝒫∗)−1𝑍3(𝛷∗)−1 (𝒫∗)−1𝑍4(𝛷∗)−1]. 

from this data and by utilizing the properties of matrices, leads to 

 𝑋 =
1

2
(𝒫∗)−1𝛺(𝛷∗)−1 − (𝒫∗)−1𝑍2(𝛷∗)−1 (3) 

 𝑌∗ =
1

2
(𝒫∗)−1𝛺∗(𝛷∗)−1 − (𝒫∗)−1𝑍3(𝛷∗)−1 (4) 

 (𝒫∗)−1𝑍1(𝛷∗)−1 = 0, (𝒫∗)−1𝑍4(𝛷∗)−1. (5) 

 

    We have that both 𝒫∗ and 𝛷∗ are invertible, so by utilizing Equation (5), it becomes clear 

that 𝑍1 = 0, 𝑍4 = 0. Additionally, we have 𝑍∗ = −𝑍, and this relationship provides us with the 

relationship 𝑍3
∗ = −𝑍2. Therefore, when we assume that 𝐾 = 𝑍2, both (3) and (4) become as 

the following form, which represents a solution to Equation (1). 

 𝑋 =
1

2
(𝒫∗)−1𝛺(𝛷∗)−1 − (𝒫∗)−1𝐾(𝛷∗)−1 

 𝑌 =
1

2
(𝛷)−1𝛺(𝒫)−1 + (𝛷)−1𝐾(𝒫)−1. 

If 𝛷 is a regular and 𝒫 is invertible, the following theorem gives another solution of Equation 

(1). 

 
Theorem 2.2: Let 𝒫 ∈ 𝐵(𝐹, 𝐷), 𝛷 ∈ 𝐵(𝐷, 𝐹)  and  𝛺 ∈ 𝐵(𝐹), where 𝐹 , 𝐷 be Hilbert C*-

modules, 𝒫 be invertible and 𝛷 is regular, such that 𝛷𝛷+𝛺 = 𝛺, then the statements that follow 

are interchangeable: 

(i) There is a solution (𝑋, 𝑌) ∈ 𝐵(𝐷) × 𝐵(𝐷) to Equation (1), 

(ii) (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = 0. 

Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled. 

𝑋 =
1

2
𝒫∗−1𝛷𝛷+𝛺𝛷∗+ − 𝒫∗−1𝛷𝛷+𝐾𝛷∗+ + 𝒫∗−1(𝐼 − 𝛷𝛷+)𝛺𝛷∗+

 

 +𝒫∗−1𝑈∗(𝐼 − 𝛷+𝛷). 

 𝑌 =
1

2
𝛷+𝛺𝛷𝛷+𝒫−1 + 𝛷+𝐾𝛷𝛷+𝒫−1 + 𝛷+𝛺(𝐼 − 𝛷𝛷+)𝒫−1 + (𝐼 − 𝛷+𝛷)𝑊𝒫−1, 

where  𝐾 ∈ 𝐵(𝐹), 𝑊, 𝑈 ∈ 𝐵(𝐹, 𝐷). 

Proof: (𝑖) ⟹ (𝑖𝑖)  Suppose the Equation (1) has solution (𝑋, 𝑌) ∈ 𝐵(𝐷) × 𝐵(𝐷). Then we 

have 

 (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = (𝐼 − 𝛷𝛷+)(𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫)(𝐼 − 𝛷𝛷+) 

 = (𝐼 − 𝛷𝛷+)𝒫∗𝑋𝛷∗(𝐼 − 𝛷𝛷+) + (𝐼 − 𝛷𝛷+)𝛷𝑌𝒫(𝐼 − 𝛷𝛷+) = 0. 

 (𝑖𝑖) ⟹ (𝑖), Suppose (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = 0 and let  𝑁 = [
𝒫∗ 0
0 𝒫∗] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕

ℱ, 𝑀 = [
𝛷 0
0 𝛷

] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕ ℱ, 𝑋̂ = [
0 𝑋∗

𝑌 0
] : 𝒟 ⊕ 𝒟 ⟶ 𝒟 ⊕ 𝒟 , 𝐿 = [

0 𝛺∗

𝛺 0
] : ℱ ⊕

ℱ ⟶ ℱ ⊕ ℱ. Clear 𝐿 is self-adjoint also, 

 (𝐼 − 𝑀𝑀+)𝐿(𝐼 − 𝑀𝑀+) = [
0 (𝐼 − 𝛷𝛷+)𝛺∗(𝐼 − 𝛷𝛷+)

(𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) 0
] = 0, 

from this data and referring to Theorem 1.8, 𝑋̂ represents a solution to equation 𝑀𝑋̂𝑁∗ +
𝑁𝑋̂∗𝑀∗ = 𝐿, and from this equation, consists 

 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = [
0 𝛷𝑋∗𝒫 + 𝒫∗𝑌∗𝛷∗

𝛷𝑌𝒫 + 𝒫∗𝑋𝛷∗ 0
] = [

0 𝛺∗

𝛺 0
] = 𝐿, 



    Awadh and Mohsen                                          Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx 

 

 

from this, we conclude 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺, That is, (𝑋 , 𝑌) represents a solution to this 

equation. Referring to Theorem 1.8 and utilizing the data that has emerged, we find that the 

solution to equation 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = 𝐿 is as follows 

 𝑋̂ =
1

2
𝑀+𝐿𝑀𝑀+(𝑁∗)−1 + 𝑀+𝑍𝑀𝑀+(𝑁∗)−1 

 +𝑀+𝐿(𝐼 − 𝑀𝑀+)(𝑁∗)−1 + (𝐼 − 𝑀+𝑀)𝑆(𝑁∗)−1,  (6) 

where 𝑍 ∈ 𝐵(𝐹 ⊕ 𝐹) satisfied 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0 and 𝑆 ∈ 𝐵(𝐹 ⊕ 𝐹, 𝐷 ⊕ 𝐷) is arbitrary. If 

take  𝑍 = [
𝑍1 𝑍2

𝑍3 𝑍4
] , 𝑆 = [

𝑆1 𝑆2

𝑆3 𝑆4
] and substituting each value with its equivalent in Equation 

(6), leads to 

 [
0 𝑋∗

𝑌 0
] =

1

2
[ 0 𝛷+𝛺∗𝛷𝛷+𝒫−1

𝛷+𝛺𝛷𝛷+𝒫−1 0
] + [

𝛷+𝑍1𝛷𝛷+𝒫−1 𝛷+𝑍2𝛷𝛷+𝒫−1

𝛷+𝑍3𝛷𝛷+𝒫−1 𝛷+𝑍4𝛷𝛷+𝒫−1] 

 + [
0 𝛷+𝛺∗(𝐼 − 𝛷𝛷+)𝒫−1

𝛷+𝛺(𝐼 − 𝛷𝛷+)𝒫−1 0
] 

 + [
(𝐼 − 𝛷+𝛷)𝑆1𝒫−1 (𝐼 − 𝛷+𝛷)𝑆2𝒫−1

(𝐼 − 𝛷+𝛷)𝑆3𝒫−1 (𝐼 − 𝛷+𝛷)𝑆4𝒫−1], 

this, relying on the properties of matrices, it bears fruit 

 𝑋∗ =
1

2
𝛷+𝛺∗𝛷𝛷+𝒫−1 + 𝛷+𝑍2𝛷𝛷+𝒫−1 + 𝛷+𝛺∗(𝐼 − 𝛷𝛷+)𝒫−1 + (𝐼 − 𝛷+𝛷)𝑆2𝒫−1 (7) 

 𝑌 =
1

2
𝛷+𝛺𝛷𝛷+𝒫−1 + 𝛷+𝑍3𝛷𝛷+𝒫−1 + 𝛷+𝛺(𝐼 − 𝛷𝛷+)𝒫−1 + (𝐼 − 𝛷+𝛷)𝑆3𝒫−1  (8) 

 𝛷+𝑍1𝛷𝛷+𝒫−1 + (𝐼 − 𝛷+𝛷)𝑆1𝒫−1 = 0  (9) 

 𝛷+𝑍4𝛷𝛷+𝒫−1 + (𝐼 − 𝛷+𝛷)𝑆4𝒫−1 = 0,  (10) 

and after multiplying Equations (9) and (10) by 𝒫 from the right and 𝛷 from the left, provides 

 𝛷𝛷+𝑍1𝛷𝛷+ = 0 and 𝛷𝛷+𝑍4𝛷𝛷+ = 0, 
and since we have 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0, this gives us the following data. 

 𝛷∗𝑍2
∗𝛷 = −𝛷∗𝑍3𝛷 and 𝛷∗𝑍3

∗𝛷 = −𝛷∗𝑍2𝛷, (11) 

and since 𝑘𝑒𝑟 (𝑀+)  = 𝑘𝑒𝑟 (𝑀∗), this means that 𝑀+(𝑍 + 𝑍∗)𝑀 = 0, and this leads us to the 

following 

 𝛷+𝑍3𝛷 = −𝛷+𝑍2
∗𝛷 and 𝛷+𝑍2𝛷 = −𝛷+𝑍3

∗𝛷.  (12) 

Therefore, taking 𝑍3 = 𝐾, 𝑆2 = 𝑈, 𝑆3 = 𝑊 and using Equations (11) and (12). Equations (7) 

and (8) will become as follows and represent a solution to the Equation (1) 

 𝑋 =
1

2
𝒫∗−1𝛷𝛷+𝛺𝛷∗+ − 𝒫∗−1𝛷𝛷+𝐾𝛷∗+ + 𝒫∗−1(𝐼 − 𝛷𝛷+)𝛺𝛷∗+

 

 +𝒫∗−1𝑈∗(𝐼 − 𝛷+𝛷) 

 𝑌 =
1

2
𝛷+𝛺𝛷𝛷+𝒫−1 + 𝛷+𝐾𝛷𝛷+𝒫−1 + 𝛷+𝛺(𝐼 − 𝛷𝛷+)𝒫−1 + (𝐼 − 𝛷+𝛷)𝑊𝒫−1. 

If 𝛷 is invertible and 𝒫 is a regular, the following theorem provides solution to Equation (1). 

 

Theorem 2.3: Let 𝒫 ∈ 𝐵(𝐹, 𝐷),  𝛷 ∈ 𝐵(𝐷, 𝐹)  and  𝛺 ∈ 𝐵(𝐹), where 𝐹 , 𝐷 be Hilbert C*-

modules, 𝛷 be invertible and 𝒫 be regular, such that 𝛺𝒫+𝒫 = 𝛺, then the statements that 

follow are interchangeable: 

(i) There is a solution (𝑋, 𝑌) ∈ 𝐵(𝐷) × 𝐵(𝐷) to Equation (1), 

(ii) (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = 0. 

Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled 

 𝑋 =
1

2
𝒫∗+𝛺𝒫+𝒫𝛷∗−1

+𝒫∗+𝐾𝒫+𝒫𝛷∗−1 + 𝒫∗+𝛺(𝐼 − 𝒫+𝒫)𝛷∗−1 + (𝐼 − 𝒫𝒫+)𝑈𝛷∗−1
 

 𝑌 =
1

2
𝛷−1𝒫+𝒫𝛺𝒫+ − 𝛷−1𝒫+𝒫𝐾𝒫+ + 𝛷−1(𝐼 − 𝒫+𝒫)𝛺𝒫+ + 𝛷−1𝑊∗(𝐼 − 𝒫𝒫+), 

where  𝐾 ∈ 𝐵(𝐹), 𝑊, 𝑈 ∈ 𝐵(𝐹, 𝐷) 

Proof: (𝑖) ⟹ (𝑖𝑖) Suppose the Equation (1) has solution (𝑋, 𝑌) ∈ 𝐵(𝐷) × 𝐵(𝐷). This 

achieves 

 (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = (𝐼 − 𝒫+𝒫)(𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫)(𝐼 − 𝒫+𝒫) 
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 = (𝐼 − 𝒫+𝒫)𝒫∗𝑋𝛷∗(𝐼 − 𝒫+𝒫) + (𝐼 − 𝒫+𝒫)𝛷𝑌𝒫(𝐼 − 𝒫+𝒫) = 0. 

(𝑖𝑖) ⟹ (𝑖) Suppose (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = 0 and let 𝑀 = [
𝒫∗ 0
0 𝒫∗] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕

ℱ, 𝑁 = [
𝛷 0
0 𝛷

] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕ ℱ, 𝑋̂ = [
0 𝑋
Y∗ 0

] : 𝒟 ⊕ 𝒟 ⟶ 𝒟 ⊕ 𝒟 , 𝐿 = [
0 𝛺

𝛺∗ 0
] : ℱ ⊕

ℱ ⟶ ℱ ⊕ ℱ. Clear 𝐿 is self-adjoint also, 

(𝐼 − 𝑀𝑀+)𝐿(𝐼 − 𝑀𝑀+) = [
0 (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫)

(𝐼 − 𝒫∗𝒫∗+)𝛺∗(𝐼 − 𝒫∗𝒫∗+) 0
] = 0, 

from this data and referring to Theorem 1.8, 𝑋̂ will represent a solution to equation 𝑀𝑋̂𝑁∗ +
𝑁𝑋̂∗𝑀∗ = 𝐿, and from this equation, consists 

 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = [
0 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫

𝒫∗𝑌∗𝛷∗ + 𝛷𝑋∗𝒫 0
] = [

0 𝛺
𝛺∗ 0

] = 𝐿, 

from this, produces 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺, that is (𝑋 , 𝑌) represents a solution to this equation. 

Referring to Theorem 1.8 and utilizing the data that has emerged, we find that the solution to 

equation 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = 𝐿 is as follows 

 𝑋̂ =
1

2
𝑀+𝐿𝑀𝑀+(𝑁∗)−1 + 𝑀+𝑍𝑀𝑀+(𝑁∗)−1 + 𝑀+𝐿(𝐼 − 𝑀𝑀+)(𝑁∗)−1 

 +(𝐼 − 𝑀𝑀+)𝑆(𝑁∗)−1, (13) 

where 𝑍 ∈ 𝐵(𝐹 ⊕ 𝐹) satisfied 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0 and 𝑆 ∈ 𝐵(𝐹 ⊕ 𝐹, 𝐷 ⊕ 𝐷) is arbitrary. If 

take 𝑍 = [
𝑍1 𝑍2

𝑍3 𝑍4
] and 𝑆 = [

𝑆1 𝑆2

𝑆3 𝑆4
] and substituting each value with its equivalent in 

Equation (13), this achieves 

 [
0 𝑋

𝑌∗ 0
] =

1

2
[ 0 𝒫∗+𝛺𝒫∗𝒫∗+𝛷∗−1

𝒫∗+𝛺∗𝒫∗𝒫∗+𝛷∗−1 0
] 

 + [
𝒫∗+𝑍1𝒫∗𝒫∗+𝛷∗−1 𝒫∗+𝑍2𝒫∗𝒫∗+𝛷∗−1

𝒫∗+𝑍3𝒫∗𝒫∗+𝛷∗−1 𝒫∗+𝑍4𝒫∗𝒫∗+𝛷∗−1] 

 + [
0 𝒫∗+𝛺(𝐼 − 𝒫∗𝒫∗+)𝛷∗−1

𝒫∗+𝛺∗(𝐼 − 𝒫∗𝒫∗+)𝛷∗−1 0
] 

 + [
(𝐼 − 𝒫∗+𝒫∗)𝑆1𝛷∗−1 (𝐼 − 𝒫∗+𝒫∗)𝑆2𝛷∗−1

(𝐼 − 𝒫∗+𝒫∗)𝑆3𝛷∗−1 (𝐼 − 𝒫∗+𝒫∗)𝑆4𝛷∗−1], 

this, relying on the properties of matrices, yield 

 𝑋 =
1

2
𝒫∗+𝛺𝒫∗𝒫∗+𝛷∗−1

+𝒫∗+𝑍2𝒫∗𝒫∗+𝛷∗−1 + 𝒫∗+𝛺(𝐼 − 𝒫∗𝒫∗+)𝛷∗−1
 

 +(𝐼 − 𝒫∗+𝒫∗)𝑆2𝛷∗−1
. (14) 

 𝑌∗ =
1

2
𝒫∗+𝛺∗𝒫∗𝒫∗+𝛷∗−1 + 𝒫∗+𝑍3𝒫∗𝒫∗+𝛷∗−1 + 𝒫∗+𝛺∗(𝐼 − 𝒫∗𝒫∗+)𝛷∗−1

 

 +(𝐼 − 𝒫∗+𝒫∗)𝑆3𝛷∗−1
. (15) 

 𝒫∗+𝑍1𝒫∗𝒫∗+𝛷∗−1 + (𝐼 − 𝒫∗+𝒫∗)𝑆1𝛷∗−1 = 0.  (16) 

 𝒫∗+𝑍4𝒫∗𝒫∗+𝛷∗−1 + (𝐼 − 𝒫∗+𝒫∗)𝑆4𝛷∗−1 = 0, (17) 

and after multiplying Equations (16) and (17) by 𝛷∗ from the right and 𝒫∗ from the left, gives 

 𝒫+𝒫𝑍1𝒫+𝒫 = 0 and 𝒫+𝒫𝑍4𝒫+𝒫 = 0, 

and since we have 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0, this provides us with the following data 

 𝒫𝑍2𝒫∗ = −𝒫𝑍3
∗𝒫∗ and 𝒫𝑍3𝒫∗ = −𝒫𝑍2

∗𝒫∗, (18) 

and since 𝑘𝑒𝑟 (𝑀+)  = 𝑘𝑒𝑟 (𝑀∗), this means that 𝑀+(𝑍 + 𝑍∗)𝑀 = 0, and this leads us to the 

following 

 𝒫∗+𝑍3𝒫∗ = −𝒫∗+𝑍2
∗𝒫∗ and 𝒫∗+𝑍2𝒫∗ = −𝒫∗+𝑍3

∗𝒫∗. (19) 

Therefore, taking 𝑍2 = 𝐾, 𝑆2 = 𝑈, 𝑆3 = 𝑊, using Equations (18) and (19). Equations (14) and 

(15) will become as follows and represent a solution to the Equation (1) 

 𝑋 =
1

2
𝒫∗+𝛺𝒫+𝒫𝛷∗−1

+𝒫∗+𝐾𝒫+𝒫𝛷∗−1 + 𝒫∗+𝛺(𝐼 − 𝒫+𝒫)𝛷∗−1 + (𝐼 − 𝒫𝒫+)𝑈𝛷∗−1
. 
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 𝑌 =
1

2
𝛷−1𝒫+𝒫𝛺𝒫+ − 𝛷−1𝒫+𝒫𝐾𝒫+ + 𝛷−1(𝐼 − 𝒫+𝒫)𝛺𝒫+ + 𝛷−1𝑊∗(𝐼 − 𝒫𝒫+). 

The next theorem addresses the fourth solution of Equation (1), where both 𝒫 and 𝛷 are 

regulars. 

 
Theorem 2.4: Let 𝒫 ∈ 𝐵(𝐹, 𝐷),  𝛷 ∈ 𝐵(𝐷, 𝐹) be self-adjoint and  𝛺 ∈ 𝐵(𝐹), where 𝐹 , 𝐷 be 

Hilbert C*-modules, 𝛷 and 𝒫 are regular, such that 𝛺𝒫+𝒫 = 𝛺, 𝒫 = 𝒫𝛷𝛷+, 𝛷𝛷+𝛺 = 𝛺 =
𝛺𝛷+𝛷 then the statements that follow are interchangeable: 

(i) There is a solution (𝑋, 𝑌) ∈ 𝐵(𝐹, 𝐷) × 𝐵(𝐷, 𝐹) to Equation (1), 

(ii) (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = 0 and (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = 0 . 
Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled 

 𝑋 = 𝒫∗+𝛺𝛷+ −
1

2
𝒫∗+𝛺𝒫+𝒫𝛷+ + 𝒫∗+𝐾𝒫+𝒫𝛷+ − 𝑈 + 𝒫𝒫+𝑈𝛷𝛷+. 

 𝑌 = 𝛷+𝛺𝒫+ −
1

2
𝛷+𝒫+𝒫𝛺𝒫+ − 𝛷+𝒫+𝒫𝐾𝒫+ − 𝑊∗ + 𝛷+𝛷𝑊∗𝒫𝒫+, 

where  𝐾 ∈ 𝐵(𝐹), 𝑊, 𝑈 ∈ 𝐵(𝐹, 𝐷). 

Proof: (𝑖) ⟹ (𝑖𝑖) Suppose the Equation (1) has solution (𝑋, 𝑌) ∈ 𝐵(𝐹, 𝐷) × 𝐵(𝐹, 𝐷). Then 

we have 

 (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = (𝐼 − 𝒫+𝒫)(𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫)(𝐼 − 𝒫+𝒫) 

 = (𝐼 − 𝒫+𝒫)𝒫∗𝑋𝛷∗(𝐼 − 𝒫+𝒫) + (𝐼 − 𝒫+𝒫)𝛷𝑌𝒫(𝐼 − 𝒫+𝒫) = 0, 

and 

 (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = (𝐼 − 𝛷𝛷+)(𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫)(𝐼 − 𝛷𝛷+) 

 = (𝐼 − 𝛷𝛷+)𝒫∗𝑋𝛷∗(𝐼 − 𝛷𝛷+) + (𝐼 − 𝛷𝛷+)𝛷𝑌𝒫(𝐼 − 𝛷𝛷+) = 0. 

(𝑖𝑖) ⟹ (𝑖) Suppose (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫) = 0, and (𝐼 − 𝛷𝛷+)𝛺(𝐼 − 𝛷𝛷+) = 0 and let 

𝑀 = [
𝒫∗ 0
0 𝒫∗] : 𝒟 ⊕ 𝒟 ⟶ ℱ ⊕ ℱ, 𝑁 = [

𝛷 0
0 𝛷

] : ℱ ⊕ ℱ ⟶ ℱ ⊕ ℱ, 𝑋̂ = [
0 𝑋

𝑌∗ 0
] : ℱ ⊕

ℱ ⟶ 𝒟 ⊕ 𝒟 , 𝐿 = [
0 𝛺

𝛺∗ 0
] : ℱ ⊕ ℱ ⟶ ℱ ⊕ ℱ. Clear 𝐿 is self-adjoint also, 

(𝐼 − 𝑀𝑀+)𝐿(𝐼 − 𝑀𝑀+) = [
0 (𝐼 − 𝒫+𝒫)𝛺(𝐼 − 𝒫+𝒫)

(𝐼 − 𝒫∗𝒫∗+)𝛺∗(𝐼 − 𝒫∗𝒫∗+) 0
] = 0, 

from this data and referring to Theorem 1.9, 𝑋̂  represents a solution to equation 𝑀𝑋̂𝑁∗ +
𝑁𝑋̂∗𝑀∗ = 𝐿, and from this equation, consists 

 𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = [
0 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫

𝒫∗𝑌∗𝛷∗ + 𝛷𝑋∗𝒫 0
] = [

0 𝛺
𝛺∗ 0

] = 𝐿, 

from this, produces 𝒫∗𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺, that is (𝑋 , 𝑌) represents a solution to this equation. 

Referring to Theorem 1.9 and utilizing the data that has emerged, the solution to equation 

𝑀𝑋̂𝑁∗ + 𝑁𝑋̂∗𝑀∗ = 𝐿 is as follows 

 𝑋̂ = 𝑀+𝐿𝑁+ −
1

2
𝑀+𝐿𝑀𝑀+𝑁+ + 𝑀+𝑍𝑀𝑀+𝑁+ + 𝑆 − 𝑀+𝑀𝑆𝑁𝑁+,  (20) 

where 𝑍 ∈ 𝐵(𝐹 ⊕ 𝐹) satisfied 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0 and 𝑆 ∈ 𝐵(𝐹 ⊕ 𝐹, 𝐷 ⊕ 𝐷) is arbitrary. If 

take 𝑍 = [
𝑍1 𝑍2

𝑍3 𝑍4
] and 𝑆 = [

𝑆1 𝑆2

𝑆3 𝑆4
] and substituting each value with its equivalent in 

Equation (1), this generates 

 [
0 𝑋

𝑌∗ 0
] = [ 0 𝒫∗+𝛺𝛷+

𝒫∗+𝛺∗𝛷+ 0
] 

 −
1

2
[ 0 𝒫∗+𝛺𝒫∗𝒫∗+𝛷+

𝒫∗+𝛺∗𝒫∗𝒫∗+𝛷+ 0
] + [

𝒫∗+𝑍1𝒫∗𝒫∗+𝛷+ 𝒫∗+𝑍2𝒫∗𝒫∗+𝛷+

𝒫∗+𝑍3𝒫∗𝒫∗+𝛷+ 𝒫∗+𝑍4𝒫∗𝒫∗+𝛷+
] 

 − [
𝑆1 𝑆2

𝑆3 𝑆4
] + [

𝒫∗+𝒫∗𝑆1𝛷𝛷+ 𝒫∗+𝒫∗𝑆2𝛷𝛷+

𝒫∗+𝒫∗𝑆3𝛷𝛷+ 𝒫∗+𝒫∗𝑆4𝛷𝛷+
], 

this, relying on the properties of matrices, yield 

 𝑋 = 𝒫∗+𝛺𝛷+ −
1

2
𝒫∗+𝛺𝒫∗𝒫∗+𝛷+ + 𝒫∗+𝑍2𝒫∗𝒫∗+𝛷+ − 𝑆2 + 𝒫∗+𝒫∗𝑆2𝛷𝛷+. (21) 
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 𝑌∗ = 𝒫∗+𝛺∗𝛷+ −
1

2
𝒫∗+𝛺∗𝒫∗𝒫∗+𝛷+ + 𝒫∗+𝑍3𝒫∗𝒫∗+𝛷+ − 𝑆3 + 𝒫∗+𝒫∗𝑆3𝛷𝛷+.  (22) 

 𝒫∗+𝑍1𝒫∗𝒫∗+𝛷+ − 𝑆1 + 𝒫∗+𝒫∗𝑆1𝛷𝛷+ = 0. (25) 

 𝒫∗+𝑍4𝒫∗𝒫∗+𝛷+ − 𝑆4 + 𝒫∗+𝒫∗𝑆4𝛷𝛷+ = 0, (26) 

and after multiplying Equations (25) and (26) by 𝛷 from the right and 𝒫∗ from the left, provide 

 𝒫∗𝒫∗+𝑍1𝒫∗𝒫∗+ = 0, 𝒫∗𝒫∗+𝑍4𝒫∗𝒫∗+ = 0, 

from the relationship 𝑀∗(𝑍 + 𝑍∗)𝑀 = 0and because 𝑘𝑒𝑟 (𝑀+)  = 𝑘𝑒𝑟 (𝑀∗), gives𝑀+(𝑍 +
𝑍∗)𝑀 = 0, and this leads us to the following data 

 𝒫∗+𝑍3𝒫∗ = −𝒫∗+𝑍2
∗𝒫∗ 𝑎𝑛𝑑 𝒫∗+𝑍2𝒫∗ = −𝒫∗+𝑍3

∗𝒫∗. (27) 

Therefore, when we assume that 𝑍2 = 𝐾, 𝑆2 = 𝑈, 𝑆3 = 𝑊, using Equation (27), then Equations 

(21) and (22) will become as follows and represent a solution to the Equation (1) 

 𝑋 = 𝒫∗+𝛺𝛷+ −
1

2
𝒫∗+𝛺𝒫+𝒫𝛷+ + 𝒫∗+𝐾𝒫+𝒫𝛷+ − 𝑈 + 𝒫𝒫+𝑈𝛷𝛷+ 

 𝑌 = 𝛷+𝛺𝒫+ −
1

2
𝛷+𝒫+𝒫𝛺𝒫+ − 𝛷+𝒫+𝒫𝐾𝒫+ − 𝑊∗ + 𝛷+𝛷𝑊∗𝒫𝒫+. 

 

3. Conclusions 

     The aim of this work was to provide some necessary and sufficient conditions for the 

existence of solutions to the operator equation 𝒫∗ 𝑋𝛷∗ + 𝛷𝑌𝒫 = 𝛺, in addition to constructing 

the forms of these solutions under additional assumptions and by using matrix techniques. This 

technique may also be applicable to studying other equations such as 𝒫∗ 𝑋 + 𝑌𝒫 = 𝛺 and so 

on. 
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