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Abstract

Recently, Operator Equation Theory (OET) has a leading demonstrated
potentiality applicable in numerous scientific ranges of engineering, physical and
mathematical. In a Hilbert C*-module, OET has enhanced by expanding upon
extensive research. In this study, for the general situation of adjointable operators, the
solvability of the operator equation P*X®* + @YP = (2, where X and Y are unknown
operators, are investigated based on Moore-Penrose inverse. Necessary and sufficient
conditions for founding a solution to this equation are proposed. Moreover, by
utilizing matrix approaches, four general expressions for the solutions are derived
depending on the states of the operators P and @ involved in the equation.

Keywords: Operator, Hilbert C*-module, Operator equation, Invertibility, Adjoint
operator, Self-adjoint, Moore-Penrose invers.
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1. Introduction

The realm of Matrix Equations has intrinsic role in various domains of engineering and
mathematics. In system theory, the matrix equation formulated by PXD + FXT® = C has
been vastly utilized, for instance, to eigen structure assignment [1, 2]. Following, the @ revival
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of Operator Equations on Hilbert space or Hilbert C*-module, which is the extended formula
of M-Egs. Indeed, the Hilbert C*-module is a nature generalized formula of C*-algebras and
Hilbert space, was explored by Kaplansky [3] in 1953. The Operator Equations has contributed
to algebraic theory, particularly in non-abelian geometry and quantum groups and KK-theory,
see [4-9]. There are a variety of previous studies that paved the way or contributed to presenting
this study. Interestingly, the mathematicians Baksalary and Kala [10] in 1979 provided the
requisite and sufficient stipulations for the existence of a solution to equation PX —Y = ) and
constructed the general formula of the solution. In 1998, the researcher Xu, Wei, and Zheng
[11] presented the requisite and sufficient stipulations for the existence and uniqueness of the
solution to equation PX® + CYD = (2. They investigated the general formula of the solution.
Then, Wang, Zhang and Yu [12] in 2008 expanded attempts made investigating and deduced
the requisite and sufficient stipulations for the existence of real and imaginary solutions to
aforementioned equation. In 2009, Dehghan and Hajarian [13] deduced the reflexive solutions
to the Matrix Equation PX® + CYD = (2 by providing the requisite and sufficient stipulations
for the existence of these solutions. Subsequently, Karizaki and Djordjevic [14] in 2016
provided solutions to the Operator Equation PX® — SYQ = {2, on a Hilbert C*-module,
ran(P) = ran(S) and ran(®*) = ran(Q*) are closed. For more information, see [15-26].
In this sequel, F and D are Hilbert modules over the same C*-algebra. Denote by B(F, D) the
set including the adjointable operators defined on F to D. For case F = D, B(F, D) coincides
with B(F). P, ®, ) represents known operators. For P € B(F,D), let Ker(P) and R(P)
represent the zero-space and range, respectively.
The following several principles are required in this study.
Definition 1.1: [27, 28] Let F and D be vector spaces over the same filed then the operator
P:F — D called invertibility if there exists an operator @:D — F where P® = @P =
I, where I is an identity operator.
Definition 1.2: [29, 31] Let F and D be Hilbert spaces and P: F — D be a liner operator then
the operator P*: D — F is called adjoint of the operator P if < Px,y >=< x, P*y > for each
x€EF,yeD.
Definition 1.3: [32] An operator P: F — D where F and D are Hilbert spaces called self-
adjoint if P = P*.
Definition 1.4: [33, 34] Let P € B(F,D),the range of P, is denoted by R(%P) such that
R(P) = {Px:x € F}.
Definition 1.5: [35] Let P € B(F,D),the kernel of P, is denoted by ker(P) such that
ker(P) = {x € F: Px = 0}.
Definition 1.6: [36] Let P € B(F, D), the Moore-Penrose invers of P indicated by P* such
that P*is unique in B(F, D) and fulfills:

PP*P =P, PtPPt =P*, (PP*) =PP+, (PTP) =P+P.

The existence of the Moore-Penrose bounded inverse of a continuous operator between two
Hilbert C*-modules is guaranteed if and only if the operator has a closed range. For more about
the properties and applications of Moore-Penrose invers, see [37, 38]. The operator P €

B(F,D) is called regular if there exists @ € B(D, F) such that P@P = P. It is clear that
regular operators are almost regular and that regular operator have close range [39].

Theorem 1.7: [40] Let ® € B(F,D) and P € B(Z,D) be invertibility operators and {2
€ B(D), F, D, Z be Hilbert C*-modules. Then the next assumptions are comparable: (i) There
is a solution X € B(F,Z) to PX®" + ®X*P* = (1. (i1) 2 is self-adjoint. If (i) or (ii) are
available, therefore any solution to PX®* + @X*P* = (2. When X € B(F, Z) represents in the
form X = ~PL0(0*) ™ — P71Z(*) 7}, where Z € B(D)satisfies Z * = ~Z.
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For the case @ is invertible and P is regular, the following theorem gives an explicit solution
to the equation PX®* + o X*P* = ().

Theorem 1.8: [40] Suppose @ € B(F,D)is an invertibility and P € B(Z,D) is regular and
N € B(D), such that F, D, Z are Hilbert C*-modules. After that, next claims are comparable:
(1) There exists X € B(F,Z) is a solution to the operator equation PXP* + @X*P* = (1. (ii)
1 is self-adjoint and (I — PPN — PP*) = 0.If (i) or (ii) are available Thus, the solution
to PX®* + ®X*P* = (.1t is written in order:X = %?JF.QP?J“((D*)_I + PTZPPt(®*)" 1 +
PO —PPH)(@) 1+ U —-PPH)Y(P*)™L, where Z € B(D) achieves P* (Z+ Z)P =0
and Y € B(D,Z) is random.

For P and @ both close their regions, the next theorem studies the equation PX®* + ¢X*P* =
0.

Theorem 1.9: [41] Let®,2 € B(F),P € B(D,F). So that @ is self-adjoint and both P and @
possess regulars. Let F, D, Z be Hilbert C*-modules, 2®*® = N and PTd*® = P*. The next
claims are therefore comparable: (i) There is X € B(F, D) a solution to the operator equation
PXDP* + @X*P* = . (i) 2 = R*and (I — PPH)QU — PP*) = 0.1f (i) or (ii) are available,
thus the solution to PX®* + dX*P*=0. It is written in order:X = PTNPT —
%?mspwqﬁ + PYZPPYdT +V — PYPVODT, where Z € B(F) achieves P* (Z + Z )P
=0,V €B(F,D) is random.

2. Main results
This section investigates and provides four formulations for general solutions along with
their prerequisites and conditions. Regarding the operator equation
P*XDP* + OYP = 0. (1)
And it is considered a generalization of the equation that appeared in [41].
For P and @ are invertible, the following theorem discusses the state solution of Equation (1).

Theorem 2.1: Let P € B(B(F,D) and ® € B(D, F) be invertible and 2 € B(F), where F ,D
be Hilbert C*-modules, then the operator Equation (1) has a solution (X,Y) € B(D) x B(D),
in this case any solution to Equation (1) in this situation is shown as follows:
X = %(:P*)—lﬂ((p*)—l _ (?*)_1K((D*)_1
Y =2(@)7(P) " + (@)K (@)
where K € B(F) is arbitrary.
Proof: SupposeM = [P* ‘|per—rern=[" JpeD—>FoFL=
0 P ' 0 o ’
[, J|p@p—DpeD.L=[). L|FOFroFOF A
It is clear that L is self-adjoint. Therefore, using Theorem 1.7, there is a solution like X for
equation MXN* + NX*M* = L, from which we will obtain
[?* 0”0 XHCD* 0 _l_[(D 0 [O Y”P 0
0o Py ollo o1l 10 ollx* 0ll0 2
[ 0 ?*XCD*+<DY?]:[O 'Q]:L
PY*Q* + X*P 0 00 '
from this, we conclude P*X®* + @YP = (). That is (X,Y) represents a solution to this
equation. It is clear that M and N are reversible. Referring to Theorem 1.7 and utilizing the data
that has emerged, we find that the solution to equation MXN* + NX*M* = L is as follows

£ =MW - MTIZ(ND) T )
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where Z € B(F @ F) satisfied Z* = —Z. If we take Z= and after substituting each

2 zl
value with its equivalent in Equation (2), produces

[O X 0 (3’*)‘1.(2(43*)‘1]
Y™ ~2 P ()t
(7’) 1Zy(@)Th (P Z ()7
@) ze@) T @) Zu(@)
from this data and by utilizing the properties of matrices, leads to

X =2(P)T0@) 1 = (P Zy(0M) 7! (3)
= @) (@) = (P) 2 (@) 0
(P21 (@) 7L = 0,(P) T Zy(@) L 5)

We have that both P* and @* are invertible, so by utilizing Equation (5), it becomes clear
that Z; = 0,Z, = 0. Additionally, we have Z* = —Z, and this relationship provides us with the
relationship Z3 = —Z,. Therefore, when we assume that K = Z,, both (3) and (4) become as
the following form, which represents a solution to Equation (1).

X =2 (@)@ - (P)TK (@)
Y =2(@)10P) 7 + ()T (@)L
If @ is a regular and P is invertible, the following theorem gives another solution of Equation

(D.

Theorem 2.2: Let P € B(F,D), ® € B(D,F) and () € B(F), where F,D be Hilbert C*-
modules, P be invertible and @ is regular, such that @@ * 2 = 2, then the statements that follow
are interchangeable:
(1) There is a solution (X,Y) € B(D) x B(D) to Equation (1),
G) (I—odH)( —dd*) =0.
Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled.
1
X= E?*‘lcqumcp** — P lopptKp*t + PN — pd )N
+P* U — Dt D).
Y = %cpmcpw?—l + dTKPDtP L+ T (I — dPN)P L+ (I — dTO)WPL,

where K € B(F),W,U € B(F,D).
Proof: (i) = (ii) Suppose the Equation (1) has solution (X,Y) € B(D) X B(D). Then we
have

(I—-o0M)NU - ®d%) = — POT)(P*XD* + dYP)(I — dDY)

= - @dN)P XD (I — DY) + (I — POV PYP(I — <1><1>+) =0.
(i) = (i), Suppose (I — PP — dd*) = 0 and let N = ] DOD —>FD

® 0 0 X 0 n ] F @

FM=) o D@DoFOFL=|) 3

F — F @ F. Clear L is self-adjoint also,
(I—MM*Y)LU —MM™*) =

[o P+
}D@DHD@Di—

0 (I—-20")0*(I—-Pd1)] _ 0
(I - 0N — D) 0 B
from this data and referring to Theorem 1.8, X represents a solution to equation MXN* +

NX*M* = L, and from this equation, consists
P Gungk 0 OX*P + PY*D* 0 .Q*
MEN' 4+ NEM' = T ; | = [ =1,
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from this, we conclude P*X®* + @YP = (), That is, (X,Y) represents a solution to this
equation. Referring to Theorem 1.8 and utilizing the data that has emerged, we find that the
solution to equation MXN* + NX*M* = L is as follows

X = M*LMM*(N*)™ + M*ZMM*(N*)7?
+M*L(I — MM (N + (I — M*M)S(N*)™, (6)
where Z € B(F @ F) satisfied M*(Z + Z*)M =0 and S € B(F @ F,D @ D) is arbitrary. If
take Z = [Zl ZZ] , S = [51 SZ] and substituting each value with its equivalent in Equation
Zy Zy S3 54
(6), leads to

0 X 21[ 0 <p+n*<pcp+7>—1]+[¢+zlcp¢+?—1 ot 7,00 P2
Y 0l z2lptpeeptp-1t 0 Ot Z;0PtP L @tZ,pptTP1
N [ 0 ot (I — ppt)P1

o0 — PP 0

(I-o*®)5; Pt (I—dtd)S,P 1
(I—- o *P)S; P~ (I —dtd)S, P71l
this, relying on the properties of matrices, it bears fruit
X" = %qD“L.()*cD(ID*?_l + 2,00 P L+ Ot (I — @ON)P L+ (I — T D)S, P (7)

Y = 20+ 0@dt Pl + @t 2,00+ P L+ @10 — dON)P L+ (I — DTS, PL (8)
2

OrZ, 0Pt P L+ (1 —dTD)S; P 1 =0 9)
OtZ, 00t P 1+ (1 — 0t P)S, P71 =0, (10)
and after multiplying Equations (9) and (10) by P from the right and @ from the left, provides
OP*Z, Pt = 0and PPTZ,dPt = 0,
and since we have M*(Z + Z*)M = 0, this gives us the following data.

QZ, D =—PZ;D and @*Z3; P = —P*Z, D, (11)
and since ker (M*) = ker (M™*), this means that M*(Z + Z*)M = 0, and this leads us to the
following

OYZ,0 = —PtZ, " and T Z,0 = —dtZ;"P. (12)
Therefore, taking Z; = K, S, = U,S; = W and using Equations (11) and (12). Equations (7)
and (8) will become as follows and represent a solution to the Equation (1)
X= %P*_lc,‘bcb’f!)cb” — P lpptKpt + PN — dd )T
+P* U (1 — @t D)
Y = %(D*.Q(D(D’“P‘l + ®tKPptP 1+ 0101 — NP1+ (I — T O)WP L.
If @ is invertible and P is a regular, the following theorem provides solution to Equation (1).

Theorem 2.3: Let P € B(F,D), ® € B(D,F) and 2 € B(F), where F,D be Hilbert C*-
modules, @ be invertible and P be regular, such that 2P*P = (2, then the statements that
follow are interchangeable:
(1) There is a solution (X,Y) € B(D) x B(D) to Equation (1),
(i1) (I-P*P)n —P*P) =0.
Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled
X =P PP T P KPHPO T 4+ PO - PHP)O T + (I - PPOUDT
Y = %d)‘lﬂﬁ?ﬂ?’f — @ 1PtPKPY + @711 — PTP)QPT + o7 W*(I — PPY),
where K € B(F),W,U € B(F,D)
Proof: (i) = (ii) Suppose the Equation (1) has solution (X,Y) € B(D) X B(D). This
achieves
(I-P*P)RU —-P*P)=(U—-P*P)(P*'XP* + ®YP)(I — P*P)
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= (I —P*P)P*XD*(I — P*P) + (I — P*P)OYP(I — P*P) = 0.

(i) = (i) Suppose (I — P*P)Q(I —P*P) =0 and let M = [7; 39*] DOD > FD
FN=[" Jlpep—reri=[) Jlpep—peDnL=[) {]Fe
F — F @ F. Clear L is self-adjoint also,
(I — MMP)L{ — MM*) = 0 (I =P*P)QU —-P*P)] _ 0
= (1—?*?*+)!2*(1—S"*P*+) 0 =0,

from this data and referring to Theorem 1.8, X will represent a solution to equation MXN* +
NX*M* = L, and from this equation, consists
oA Ok p g 0 P XDP* + QYP 0 0
MANT+ NXM™= [P*Y*CD* + OXP 0 |= [rz* 0] =L
from this, produces P*X®* + ®YP = (1, that is (X ,Y) represents a solution to this equation.
Referring to Theorem 1.8 and utilizing the data that has emerged, we find that the solution to
equation MXN* + NX*M* = L is as follows

X= %M“LLMM“L(N*)_1 +MYZMM* (Nt + M*L(I — MM*Y)(N*)™1

+(I — MM*)S(N9™, (13)

where Z € B(F @ F) satistied M*(Z + Z*)M =0 and S € B(F @ F,D @ D) is arbitrary. If

41 % 51 S
take Z = [23 Z4] and S = S, S,

Equation (13), this achieves
[O X _ ll: 0 :P*+Q:P*?*+(p*—1]
yrool z2lptgrprprtert 0
I?*+Zl?*?*+¢*—1 ?*+Zz?*?*+(p*_1l
?*+23?*?*+(p*_1 ?*+Z4?*?*+¢*_1
0 Pra(l— PP ot
+ + + -1
P (1 - PP 0
N l(] _ ?*+?*)Sl(p*_1 (I _ ?*+?*)SZ¢*—II
(1_?*+:P*)S3¢*_1 (I—:P*+:P*)S4¢*_1 ’
this, relying on the properties of matrices, yield
X =Pt P Pt TPt P Pt e T P (1 - Pt )

] and substituting each value with its equivalent in

+(I =P PSS, (14)

Y* = %P*Jr_()*ga*ga*‘*qp*—l + ?*+Z3?*?*+¢*_1 + ?*+_(2*(1 _ ?*?*"’)(p*_l
+(I — P PSS 0 7 (15)
:P*+Z1:P*:P*+(p*_1 + (I _ :P*+?*)Sld)*_1 — O (16)
PIZPPTO T 4 (1= PTPY)S, 0 =0, (17)

and after multiplying Equations (16) and (17) by @* from the right and P* from the left, gives
PYPZ,P*P =0and P*PZ,P*P =0,
and since we have M*(Z + Z*)M = 0, this provides us with the following data
PZ,P* = —PZ"P* and PZ;P* = —PZ,"P*, (18)

and since ker (M*) = ker (M™"), this means that M*(Z + Z*)M = 0, and this leads us to the
following

PP = —Pt 7, P and P Z,PF = =P 70 P, (19)
Therefore, taking Z, = K, S, = U,S; = W, using Equations (18) and (19). Equations (14) and
(15) will become as follows and represent a solution to the Equation (1)
X =P PP T P KPHPO T + PO - PHP)O T 4 (1 - PPYYUS T
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Y = %(D‘l?*?.()?* — @ 1PtPKPY + @711 — PTP)QAPT + o7 1W*(I — PPH).
The next theorem addresses the fourth solution of Equation (1), where both P and @ are
regulars.

Theorem 2.4: Let P € B(F,D), @ € B(D,F) be self-adjoint and (2 € B(F), where F ,D be
Hilbert C*-modules, @ and P are regular, such that QP*P =, P = Pod*, ¢pd* 0 =0 =
N d then the statements that follow are interchangeable:
(1) There is a solution (X,Y) € B(F,D) X B(D, F) to Equation (1),
(i1) (I-P*P)QI —P*P)=0and (I — @) — dP*) =0.
Any solution to Equation (1) takes the following form if (i) or (ii) are fulfilled
X=P"0o" - %SD*“L[ZSD*SDCD* + P TKPYPOT — U + PPHUDD™.
Y = TPt — %@“L.‘P“L.‘P.QIP“L — Q*PYPKPT —W* + ¢ OW PP,
where K € B(F),W,U € B(F,D).
Proof: (i) = (ii) Suppose the Equation (1) has solution (X,Y) € B(F,D) X B(F,D). Then
we have
(I-P*P)OU—-P*P)=(U—-P*P)(P*XP* + DYP)(I — P*P)
= —-P*P)PXP*(I—-P*P)+ (I —P*P)®YP(I —P*P) =0,
and
(I—-o2M)0U —PP*) = — PP (P XD + dYP)(I — dPH)
= - @dM)PXP*(I — ®PT) + (I — PPT)PYP(I — PDT) = 0.
(i) = (i) Suppose (I —P*P)Q(I —P*P)=0,and (I — PPN — ®P*) =0 and let

_[P* 07. _[® 07, s _[0 X
M=, plpep—rFern=[] |Fer-reri=|. (|Fe
F—-DHD,L= !(2)* g]:TGBT—>iFEBiF.ClearLisself-adjointalso,

0 (I =P*P)OU —-P*P)]| _

(I =MM*)LUI —MM™) = [(1 _?*?*+)Q*(1 —jJ*jJ*+) 0

from this data and referring to Theorem 1.9, X represents a solution to equation MXN* +

NX*M* = L, and from this equation, consists

oy Gunrr _ 0 PXP*+dYP1_ 10 07 _

MAN™+ NXM™ = [?*Y*cp* + OX*P 0 ] - [n* ] B

from this, produces P*X®* + ®YP = (1, that is (X ,Y) represents a solution to this equation.

Referring to Theorem 1.9 and utilizing the data that has emerged, the solution to equation

MXN* + NX*M* = L is as follows
)?=M+LN+—%M+LMM+N++M+ZMM+N++S—M+MSNN+, (20)

where Z € B(F 69 F) satistied M*(Z+ Z*)M =0 and S € B(F @ F,D @ D) is arbitrary. If

S: S
take Z = [Z ] ndS =t 2
3

S, 54] and substituting each value with its equivalent in
Equation (1), this generates
[ ] _ [ :P*+.Q(D+]
POt 0
1[ 0 Pt P ja*+(p+] [:P*J’Zl?*?”cb* ?**Zz?*?”qfﬁl
P PPt ot PPt ot Pzt et
51 ] lﬂv**? S, ot PP, q>q>+l
S3 PP S, 00t PRS0t
this, relying on the propertles of matrices, yield
X =P 0ot - %?**Q?*?**dﬁ + P2, PP ot — S, + PHPS,pdt. (21)
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Y* =P ot — %:P*Jrﬂ*?*?”d)* + P L PP ot — S, + PRS00, (22)
PP PR — S + PRS00t = 0. (25)
PrZ,P POt — S, + PP S, DT =0, (26)
and after multiplying Equations (25) and (26) by @ from the right and P* from the left, provide
?*?*+Z1?*?*+ _ 0,?*P*+Z4?*?*+ =0,
from the relationship M*(Z + Z*)M = Oand because ker (M*) = ker (M*), givesM™(Z +
Z*)M = 0, and this leads us to the following data
P 7P = =P 2, P and P Z,P* = —P*T 70 P (27)
Therefore, when we assume that Z, = K, S, = U,S; = W, using Equation (27), then Equations
(21) and (22) will become as follows and represent a solution to the Equation (1)

X =P tnot — %SD*J“!)S"*S"(D* + PFKPHPOY — U + PPHUDDY
Y = ¢tPt — §q>+sD+st>+ — P*PHPKPT —W* + dHOW PP,

3. Conclusions

The aim of this work was to provide some necessary and sufficient conditions for the
existence of solutions to the operator equation P* X®@* + @YP = (2, in addition to constructing
the forms of these solutions under additional assumptions and by using matrix techniques. This
technique may also be applicable to studying other equations such as P* X + YP = () and so
on.
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