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Abstract 
       The s-level of a screened hydogenic atom in a uniform magnetic field    of 
arbitrary strength B have been calculated accurately. First, the related spherical 
symmetric case )~(

2

1 22 Br  has been treated by using the linear variational 

method. The trial wave function is taken as linear mixture   of hydogenic and 3D 
harmonic ascillator wave functions of s-symmetry.  Second, the actual nonspherical 

case )(
2

1 222 yx   is studied by adopting the   correction   proposed   by   Mustafa   

and   Chhajlany   (Phys. Rev.A,50,(I994),2926). The latter accounts for the 
difference between the two cases in an appaximate way by utilizing the properties of 
the 2D and 3D harmonic oscillators. 
We start our study with the unsceened hydrogen case to recover their shifted 

N

1 results and deal then with the more involved case of the screened hydrogen atom 

covering wide ranges of the applied field and of the screening length. 
  

 الخلاصة             
 B تحت تاثير مجال مغناطيسي خارجي  لذرة الهايدروجين المحجوبةsلقد حسبت طاقة المستوى      
)~((لقــد عولجــت ابتــداءا حالــة التنــاظر الكــروي . بدقــة

2

1 22 Br  ( باســتخدام طريقــة التغــاير الخطيــة

 ومــن ثــم درســت s ذات التنــاظر 3Dومــزيج مــن دوال الهيــدروجين والمتذبــذب التــوافقي ثلاثــي الابعــاد 
ــــــــة ــــــــة اللاكروي )((الحال

2

1 222 yx  ( ــــــــذي اقترحــــــــه كــــــــل مــــــــن مــــــــصطفى ــــــــصحيح ال باســــــــتخدام الت

ان التـصحيح الاخيـر يأخـذ بنظـر الاعتبـار بـصورة  .(Phys. Rev.A,50,(I994),2926)وجـاجلاني
  .تقريبية الفرق بين الحالتين من خلال الاستفادة من خواص المتذبذبات الثنائية الثلاثية الابعاد 

 اللامحجــوب لتأكيــد نتــائج ســابقة بطريقــةاجريــت دراســة تمهيديــة لحالةالهايــدروجين
N

ثــم عولجــت    1

الحالة الاكثـر صـعوبة للـذرة المحجوبـة وقـد غطـت الدراسـة مـديات واسـعة للمجـال المغناطيـسي ولطـول 
  .الحجب

  
 

Introduction 
         A large number of physical problems 
require solving the schrodinger equation for 

spherically symmetric potential in order to 
determine the energy eigenvalues and 
eigenfunctions. 
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Since only a handful of potentials is exactly 
solvable, in general, one has to resort to 
numerical techniques or approximation schemes. 
A typical example of such a potential the one 
that arise in an atomic system under the      
effect of an external magnetic field B. The 
treatment of the quadratic Zeeman effect (~B

                         

2) 
attracts most available perturbative techniques. 

These include the shifted 
N

1
 expansion method 

based on logarithmic perturbation theory (Impo 
et. a1.(1984), Mustafa (1993), Mustafa et.al. 
(1994), Villalba et.al. (1998), (2001), (2002), 
Pino (1999), Elsaid (2002)), the shifted l-
expansion technique (Mustafa et.al. (1999), Odeh  
et,al, (2004), Mustafa (2004)) and the      
so called PT-symmetric  pseudo perturbation 
(Bender et.al. (1998,1999)), the semiclassical 
quantization method (Hasegawa et.al. (1998)) 
and the so called expansion method 
(Dobrovolska et.al. (2002)). The eigenvalue 
problem for the Yukawa (or Debye-Huckel) 
potential falls into such a category (Rogers      
et.al. (1970), Iafrate (1969)). When a uniform 
static magnetic field act on the         
screened electron, the problem becomes much 
more complicated even for      
very weak screenings (Jiang (1987)). For 
example, the application of such a                        
field to the hydrogen atom breaks the orbital 
symmetry, thus destroying the                    
angular momentum as a good constant of motion 
(Mustafa and Chhajlany (1994)). 

                           (i)- The Coulmb screening 



                        

            

                            

         Consider a positive point charge (+Z) 
that is immersed in a plasma.                          
The Coulomb potential due to this charge, 
namely, Z/r is screened by the                          
electrons surrounding it so that an electron 
experiences the presence of                          
this positive charge as if Z is modified by 
this screening into an effective                          

charge , where s is a screening 

parameter. To see how this                          
comes about, consider the expression 
(Ashcroft and Mermin (1976)): 

  sr
eff ZeZ 

Conventional perturbation treatment of this 
problem can handle the weak and strong 
field limits where the problem becomes 
almost separable. However, the 
experimentally most important situation is 
the one in which the                             
magnetic and the Coulombic fields are 
comparable. To bridge the two limits                                    
of the magnetic field, one has to rely on      
various approximations and interpolation 
techniques. One of such techniques is the 
linear variational method (Villalba 
et.a1.(2001)) which proves efficient in 
dealing with 2D doner problems. The 3D 
problem is much more complicated because 
the hamiltomian in this case is no longer 
spherically symmetric as in the 2D. As          
we all know, that most numerical and 
perturbative techniques such as the                               
shifted 1/N method as an example, require 
spherical symmetric potentials as                            

a prerequisite intial condition. To overcome 
this difficulty reasonably well, we utilize the 
proposal due to Mustafa and Chhajlani 
(1994). This proposal enables one to 
consider initially a related spherical 
symmetric problem close to the real non-
spherical one and then account for the 
nonspherical character in an approximate 
manner.  In the next section, we outline the 
basic idea behind such strategy. In sec.3, we 
present our calculational procedure. In                          
sec.4, discuss our results and finally sec.5 
concludes the paper. 

      

                   

 
The method 
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and that in the Thomas-Femi approximation, the 
dielectric constant is given by 
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 Where 
22 / meao   

is the Bohr radius. The screened potential by 
using (2) gives: 

 
 rqie

sq
qd

Z
rV


.

22
3

3 )(
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)2(
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
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Therefore 
sre

r

Z
rV )(                                            (3) 

With  
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Corresponding to a screening length D=l/s. 
Taking into account that for               
most of cases, the ratio r

                      
s/ao is between 2 and 6, 

we have that 1.2 ≤ s ≤ 2.1.               
The influence of the applied magnetic field B is a 
nontrivial problem and in the present article we 
assume that s is the same for all values of B. 

                

 
(ii) The Hamiltonian 
         In the nonrelativistic scheme, the 
Hamiltonian for a screened hydrogen                           
atom when a constant magnetic field B is applied 
perpendicular to the (x,y) plane can be written as 

          

sre
r

Ze
rB

e
p

m
H 






 

22

22

1        (5)  

Using atomic units (see the appendix) H 
becomes: 

222

2

1

2

1 


r

Ze
H

sr               (6) 

Where  is a dimensionless parameter which 
can be taken as a measure of the magnetic field, 
(in cgs) Ω =B/4.7x109 G. It is clear that H is not 
a spherical symmetric because of the presence of 
the last term in (6) and so the orbital quantum 
number 1 is no longer a good quantum number, 
The angular  momentum  is  not  conserved  as  a 
consequence of the noncommutivity between Ĥ 
and Ĺ



2 namely [Ĥ, Ĺ2] ≠ 0. Furthermore, the 
solution of the eigenvalue problem with H 
defined by (6) cannot be                                     
obtained in a closed form or even numerically by 
conventional techniques,  instead, we start with 
the related spherical symmetric counterpart, 
namely; 

222

2

1

2

1
r

r

Ze
H

sr

sph 


     (7) 

and try to solve the corresponding schrodingcr 
equation 

 'EHsph        (8) 

Even so the exact solution of (8) cannot be 
expressed in a closed from                                     
in terms of special functions. In the present paper 
we choose to use a                               
mixed-basis variational method with trial 
function as linear combination                                         
of screened hydrogenic and 3D harmonic basis 
eigenfunction. Such a trial                             
function will reduce to the screened hydrogen 
atom when Ω=0 and to that 
of the 3D harmonic oscillator for large values of 

        

 . In order to obtain an                          
estimate to the actual energy E, we use the 
approximate formula (Mustafa                          
and Chhajlany (7994)) 

coulcoul EEEE  )'(
3

2
     (9) 

Equation (9) is based on the fact that the 
ground state energies of an                          
isotropic pure  2D  harmonic  oscillator,  

with  the  potential  term  2/)( 222 yx  , 
-thirds of the eigenvalues of 

an isotropic pure 3D harmonic oscillator 
with the potential term  2/)( 2222 zyx    

nd state and for isotropic    
harmonic oscillator, the eigenvalues of 

2/)( 222 yx   contribute 
those of the spherically symmetric one, 

2/22r , to the coul energy 
eigenvalues, To derive a formula for E

are equal to two

 r uThus for the g o

two- thirds of 

omb  
coul , 

we start from  EH   with H  
(6) and impose the normalization condition 

 given by

1|  , to obtain 

 )(
2

1

2

1 2222 yx
r

Ze sr

E    

   (10) 
 

sing  U
 

222

3

1
ryx         (11) 
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W
 

22

3

2
r         (12) 

 
sing(12) into (10) we get:  U
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2

2
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Using equation (7) and (8), we obtain:  



r

r
r

Ze sr

 22
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2

112

    (13) 
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
r
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1
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If we denote the second term by Ecoul, we finally 
obtain (9) and 
 


r

Ze
E

sr

coul



 2

2

1             (14) 

 
It is clear that (13) cannot be evaluated exactly 
since  is unknown. If      

is replaced by Φ from (8), we arrive at an 
approximate formula 

                              


sph

sr

coul r

Ze
E 


2

2

1
 

Where  denotes the ground state 

expectation value by using Φ                                      
instead of Ψ. In the weak field limit  , it 
can be shown (see the                                         
appendix) that 

sph

0

  sph

sr

coul r

eZ
E 



2
0      (15) 

The evaluation of Ecoul in either formula 
require the knowledge of the          
screened hydrogenic eigenfunctions 

                     

scH  

satisfying 

scHscHscH
sre

r

Z  





  2

2

1
     (16) 

Unfortunately (16) cannot be solved 
analytically to obtain exact                                                  

scH  it can, however, be solved by 

numerical integration (Rogers                                 
et.a1.(1970)) This would yield scH  in a 

form of tables only. 
 
Calculations: 
         If we attempt to apply the 
variational method using only scH  for      

the screened hydrogen atom. we will 
obtain a good agreement  with                                          
accurate results for small values of Ω, 
but  this approach fails for large Ω                                   
even if we consider a basis with many 
terms. Analogous situation occurs 
if we use pure oscillator basis for large 
Ω, which converges very slowly                                  
for small values of Ω. In order to 
overcome such difficulties, we use                                        

mixed basis approach to represent Φ of 
equation (8) 

                                 

 


i

iiC           (17)     

 
Φi either belongs to the screened hydrogen 
atom  scHi   or belongs to the 30 

harmonic oscillator  osci    where Ci are 

varied so as to get                          
minimum energy. It is worth noticing that 
our mixed basis are not                          
orthogonal under inner product i,e 

0|  ji   We proceed to minimize                          

the expectation  value    sphH   with  the  

normalization condition 
 
 1

2 
i

iC   fulfilled, 

After performing a variation on the basis 
coefficients Ci we reduce our                          
problem to that of solving the matrix equation 
 

   0 jijij CsH        (18) 

 

Where  jsphiij HH   and Sij =  ji   Using 

the definition (7) in (18) and solving the secular 

equation  0 ijij SH    to obtain the                          

lowest value of λ. E' ≤ λ can be obtained in terms 
of Hij and Sij. 
The advantage of this approach is two fold. 
First we have a lower                          
bound for our energy E'. Second we obtain a 
relatively simple expression                          
for the normalized eigenfunction. 
In this paper we choose to work with a two 
term mixed variational basis. In order to 
compute the binding energy for the ground 
state, we use a two term (1S) like states, 

namely  and  i.e s
scH
1 s

osc
1

 
s

osc
s

scHs cc 1
2

1
11          (19) 

 
substituting (19) into (18): we get 
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Where 
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 s
scHsph

s
scH HH 11

11                         (21) 

 s
oscsph

s
osc HH 11
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s
oscsss 11
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 s
oscsph

s
scH HHH 11
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The solution of the secular equation (18) is given 
by 

)())(()(
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122211
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122211

122211
2

12142

212

SHHHSSHHH

SHHHS



 

                (25) 
By solving (20) for Ci with the normalization 

 1
2
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H11, H12 and S for the screened hydrogen may by 

evaluated numerically since  is in the form 

of tables.  

s
scH
1

 
Results and discussion  
(i) Th s=0 case (the unscreened Coulomb 
potential) 

As a primenary stage let us start 
with the bare Coulomb potential                                      









r

Z i.e with s=0. The computation 

of the energy by equation (25) is                                   
greatly simplified for this special case. 

Using  and  given                                                    

by  
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Where S is given by: 
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dxeeS x
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(32) 
 
The details for getting (31) and (32) appear in the 
appendix. The integral in (31) and (32), as a 
function of the applied field, can either be                          
evaluated numerically or taken from tables. 
Using equation (25), we can evaluate an upper 
bound for   ss EE 11  and the eigenfunction 

s1  by using C1 and C2 from (26) and (27) 

respectively. Ecoul Reduces to: 
 

 sscoul r

Z
E 1

2
1 2

1   










 



2

2

3

2

1 2
221

2
1 CSCCC   (33) 

(see the appendix). 
The result (33) is suitable for intermediate 
Ω.  For very small Ω,  Ecoul ≈0.167, 

tion (15). For very large according to equa
  the Coulomb effect is negligible and we 

have approximately '
2

3
EE    .                          

In table (1), we list the results of our 
calculations for the special case s=0 
according to equations (29-33) for various 
values of Ω. E1s is                          
evaluated by using equation (9) and listed in 
the last two columns where it                          
has been obtained by using two sets of 
values for Ecoul as stated above. As seen, 
these sets are very close in the range 
(Ω=0.1-1.0) because the Coulomb 
interaction overwhelms the magnetic, As Ω 
grows up, the values calculated according to 
equation (33) becomes more valid. In table 
(2) these calculations are extended to higher 
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values of Ω. For such high values, Ecoul 
becomes negligible compared with the 
effect of the magnetic field and so E is 
approximately equals to 2E'/3. It is also 
shown in table (2) the results of other 
workers namely those due to Rosen (1986)      
and Mustafa and Chhajlani (1994), It is seen 
that our results indicate very close to those 
of Rosen in the low field region but Slightly 
differ from Mustafa and Chhajlani being 
lower than ours in the low field region. The 
latter authors used the shifted 1/N method 
due to Imbo et.a1(1984) and as      
pointed out by Villalba and Pino (1998) this 
method overestimate the      
energy of the ground state for low field and 
also in the high field. The      
variational  solution  obtained  using  the  
hydrogen  basis  is  in  good      
agreement with the results obtained by 
Martin et.al. . The impressive       
feature of our results as a whole is that the 
energies have the coulomb      
limit  of E

                                  

                                    

                                

                         

                         

                                     

                            

                         
1s=-0.5  at  very  low  field  and  

approach  the  outcome  of the      
Londau level E1s= Ω in the high field, thus 
describing the spectrum of the electron in a 
uniform large magnetic field strength. 
 
(ii) The screened electron 
In order to obtain in (9), we have to solve 

equation (16) numerically. 

s
scH
1

s
scH
1 is given by 

)(
1

4

1
1

1 rR
r s

s
scH 

      (34) 

Where R1s satisfies the radial schrodinger 
equation  

s
s

scHs

sr

RR
r

Ze

dr

d
1

1
12

2

2

1 











   (35) 

Equation (35) has no analytic solution in a closed 
form in terms of special                            
functions; It assumes an approximate analytic 
solution as a series in                                         
powers of the screening parameter, s but such 
solution is only valid in the                         
asymptotic region (Kasssim (1994)) In order to 

compute R1s and ,                                       

(35) has to be solved numerically using for 
example Numerov method                              

(Kassim(l976)).  All integrals involving    

will be evaluated numerically accordingly. To 

calculate E

s
scH
1

s
scH
1

1s variationally, we follow similar                          
steps using the relations (21-27) to obtain the 
matrix elements Hij and Sij,                          
and then λ by numerical integration. To calculate 
Ecoul we use equation (33) with suitable 
replacements, in the form: 


















osc

sr
s

osc

s
scHcoul

r
r

Ze
C

SCCCE





2212
2

21
2

1
1

2

1

2

3  

Where  and, S are obtained numerically and 

C

s
scH
1

i are calculated   accordingly, 
Evidently, the E1s, depends on two parameters, 
the screening length D=1/s and the magnetic 
field strength through Ω. The range of the former                          
is taken as 1≤ D ≤ 10. 
In table (3). We have listed the results of 
our calculations for the values 
s=0.1,0.2,....,1.0 for a wide range of Ω 
(0.05-103) .It can be seen that the Yukawa 
potential shifts up the energy  level as long 
as the screening parameters increases. For s-
1 the presence of the magnetic field shifts 
the E1s level away twords the continuum. 
As s increases, the contribution of the 
magnetic field becomes more important and 
the energy eigenvalues are closer to those 
give by he oscilla  energy expression                          
i.e to Landau levels. Therefore a critical 
value for s (or D≈1) for which                          
it stops binding the electron in the s-state. 

n t tor  

       As a whole, the above results show that 
the presence of bounded states                          
in a Yukawa hydrogenic atom strongly 
depends on the strength of the                          
screening. The inclusion of the magnetic 
field permits one to recover the                          
Landau energy levels. In summary, the 
mixed variational approach gives                          
the most accurate numerical results even for 
large Ω values.   
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Table (1): Hydrogenic ground state energy (in Hartees) E1s calculated by the method of the linear variation using a trial wave function as a mixture of pure 

hydrogenic and pure 3D harmonic oscillator of s-symmetry as a function of the external magnetic field strength represented by the unitless parameter Ω 

Ω H11 H22 S12 H12 E' C1 C2 Ecoul 

3

5.0
'

3

2
1  EE s couls EEE

3

1
'

3

2
1   

0.10 -0.48500 -0.20675 0.68722 -0.32011 -0.48567 1.03411 -0.05062 -0.49944 -0.49045 -0.49026 
0.15 -0.46630 -0.21119 0.79641 -0.34658 -0.46909 1.08870 -0.11435 -0.49770 -0.47939 -0.47863 
0.2 -0.44000 -0.20452 0.86412 -0.34546 -0.44682 1.16380 -0.19523 -0.49446 -0.46455 -0.46269 
0.25 -0.40630 -0.18908 0.90789 -0.32768 -0.41797 1.24960 -0.2874 -0.49013 -0.44531 -0.44202 
0.3 -0.36500 -0.16791 0.93662 -0.29914 -0.38035 1.32600 -0.36564 -0.48640 -0.42023 -0.41570 
0.35 -0.31630 -0.14242 0.95535 -0.26337 -0.33110 0.35770 -0.38103 -0.48620 -0.38741 -0.38281 
0.4 -0.26000 -0.11350 0.9672 -0.22265 -0.26910 1.30110 -0.31460 -0.49144 -0.346066 -0.343212 
0.45 -.196310 -0.08178 0.97414 -0.17847 -0.19805 1.13730 -0.14140 -0.49840 -0.29870 -0.29820 
0.5 -0.12500 -0.04772 0.97753 -0.13188 -0.12597 0.90140 0.10070 -0.49922 -0.2506 -0.25039 
0.6 0.03990 0.02614 0.97706 -0.03427 -0.00098 0.45110 0.55460 -0.47524 -0.16732 -0.15951 
0.7 0.23500 0.10612 0.97050 -0.06631 0.09941 0.18300 0.82160 -0.44524 -0.10039 -0.08214 
0.8 0.03980 0.02614 0.97707 0.16774 0.19012 0.05234 0.94960 -0.41799 -0.03991 -0.01258 
0.9 0.50210 0.29870 0.9534 0.21076 0.2325 0.04632 0.97670 -0.38761 0.03602 -0.06762 
1.0 1.00000 0.37184 0.93538 0.36867 0.37110 0.03540 1.03300 -0.36997 0.08074 -0.12408 
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Ω 

Mustafa and 

Chhajlany 

Ref (14) 

Rosen 

Ref (21) 
Present Work 

0.05 

0.25 

0.50 

1.00 

1.25 

2.50 

5.00 

25.0 

50.0 

500 

1000 

2000 

3000 

5000 

10000 

-0.49754 

-0.44872 

-0.33685 

-0.04429 

0.12078 

1.03356 

3.05150 

21.00130 

44.46250 

483.08610 

976.19370 

1966.45250 

2958.96550 

4947.10917 

9925.3057 

-0.498800 

-0.470300 

-0.331200 

-0.165200 

0.152450 

1.119600 

2.623000 

19.87000 

42.80000 

477.50000 

-0.49751 

-0.44202 

-0.25039 

-0.12408 

0.24045 

1.14126 

3.15018 

20.62900 

43.95300 

482.23900 

975.27000 

1965.29000 

2957.90700 

4945.52300 

9925.48000 

Table (2): E1s (in atomic units with Z =1), the energy of the ground state of an electron in (1s) state in 
the hydrogen atom that is subjected to an external magnetic field Ω compared the results of the 

references (14, 21)
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Table (3) E1s of an electron that is moving in a screened Coulomb potential under the action of an external 
magnetic field of strength Ω for various screening lengths D=1/s (All energies are measured in Hartrees) 

 

Ω D = 10 D= 5 D =3 D=2 D=1 
0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

1.25 

2.5 

5.00 

25.0 

50.0 

500 

1000 

-0.40447 

-0.39732 

-0.38609 

-0.37096 

-0.35122 

-0.32529 

-0.29127 

-0.24879 

-0.20102 

-0.18392 

-0.13793 

-0.09423 

-0.05491 

-0.01829 

0.01661 

0.05065 

0.08442 

0.11829 

0.15249 

0.18713 

0.36804 

1.23670 

3.24622 

21.16220 

44.61220 

483.110 

976.130 

-0.32414 

-0.31663 

-0.30491 

-0.28896 

-0.26774 

-0.23935 

-0.23937 

-0.15715 

-0.10910 

-0.11974 

-0.07332 

-0.03328 

0.00396 

0.03367 

0.07240 

0.10778 

0.14459 

0.17881 

0.20880 

0.24530 

0.42513 

1.46963 

3.33500 

21.26080 

44.70410 

483.202 

976.217 

-0.23383 

-0.22558 

-0.21263 

-0.19442 

-0.16910 

-0.13455 

-0.09112 

-0.04364 

0.00173 

0.04204 

0.07766 

0.11013 

0.14087 

0.17084 

0.20064 

0.23058 

0.26084 

0.29149 

0.32257 

0.35409 

0.49289 

1.54269 

3.9349 

21.3746 

44.82000 

483.313 

976.310 

-0.14445 

-0.13450 

-0.118120 

-0.09322 

-0.05720 

-0.01228 

0.03406 

0.07600 

0.11267 

0.14364 

0.17658 

0.20664 

0.23650 

0.26644 

0.29673 

0.32740 

0.35850 

0.39009 

0.42206 

0.45440 

0.62175 

1.62470 

4.02440 

21.50500 

44.95300 

483.455 

976.410 

0.01514 

0.05858 

0.09291 

0.12441 

0.15531 

0.18627 

0.21750 

0.24911 

0.28110 

0.31346 

0.34619 

0.37928 

0.41270 

0.44644 

0.48049 

0.51482 

0.54943 

0.58430 

0.61941 

0.65476 

0.83472 

1.82363 

4.25427 

21.83344 

45.29440 

483.543 

976.876 
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Appendix  
(i) Derivation of Equation (6) 

         By using in Equation (5), we 
obtain 

^^

 iP

 
r

eZe
rBei

m
H

sr





 

2^

2

1

2

1
    (A1) 

If the applied magnetic field is in the z- direction, 
then  

kBB        (A2) 
 
And  

eBxyBrB  )0,,(    (A3) 

Nothing 0).(
^

 e and employing 

,
^




 iL z  we get: 

r

eZe
B

m

e
L

m

eB

m
H

sr

z




2

22
2^^

2
2^

822
   

(A4) 
For states with s-symmetry, 

, we get   00,0
^

 szl Lml 

r

eZe

m

Be

m
H

sr


2

2
22

2
2^

82


  (A5) 

Expressing Ĥ in atomic units (energy in 
2

4



me
 

and distances in Bohr units 
2

2

me


), we get: 

r

Ze
H

sr

 222
^

2

1

2

1       (A6) 

Where Ω is measure of the strength of B and is 
given (in CGS) by  

G

B
9107.4 

      (A7) 

 
 
(ii) Derivation of Equations (12, 15) 

       The virial theorem  Vr.2/2 2                                                                         
with respect to Equation (14, 17) yield 
respectively:  
 

0)( 2222 


yx
r

Ze sr

    (A8) 

 
 
 

0222 


sph

sr

r
r

Ze
      (A9) 

Using the Hellmann - Feynman theorem on 
Equations (14, 17) we respectively                     
obtain 

 
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

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22,
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zE

r

e

z

zE sr
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and  

 
















 

sph

sph

sr

r
z

E
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e

z

zE
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     (A11) 

Provided all wave functions are normalized. 
 
The Euler homogeneity condition associated 
with Equations (A8, A9) yields: 













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E
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respectively. 
 
Using Equations (14, 17) we obtain 
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By substituting Equations (A14, A15) into 
Equation (15), we obtain 

coulE
E

z

E
z

E
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                                                                  (A16) 
Substituting Equations A12 and A13 into A16, 
we get:  

coulsphsph

sr

sr

Er
r

ez

yx
r

e
z

3

1

23

2

2

1
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222
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

)(

  

(A17) 
Consider now two limiting cases for Equation 
(A17). 
(a) The limit 0 : Equation (A17) reads 
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
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Provided that  
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2
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We obtain 
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(a) The limit : Equation (A17) reads 

sphryx  22222

3

2
  (A19) 

Provided that 

222

2

1

2

1
rH                                    

Equation (A19) furnish a sound justification for 
the validity of approximate formula  (15) and 
equation (A18) provides an approximation for 
Ecoul at low field  
 
(iii) Evaluation of S12 and H12 
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(A21) 
Integrating the second integral by parts once and 
the first integral twice, we finally obtain single 
integral of the form 

)(/)()(

a

b
erfce

a
dxe aacbcbxax

22

1 24

0

22 


 


         

             (A22) 
Where  
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   (A23) 

Using (A22), (A23) in (A20), (A21) obtain: 
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(iv) Derivation of Equation (46): 
  hEcoul     (A26) 
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The integral in the last step maybe evaluated as 
follows:  
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(A30) 
Using the result: 
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we finally obtain 
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