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Abstract
The s-level of a screened hydogenic atom in a uniform magnetic field  of
arbitrary strength B have been calculated accurately. First, the related spherical
symmetric case lerz(QNB)has been treated by using the linear variational
2

method. The trial wave function is taken as linear mixture of hydogenic and 3D
harmonic ascillator wave functions of s-symmetry. Second, the actual nonspherical

case%QZ(XZ +y?) is studied by adopting the correction proposed by Mustafa

and  Chhajlany  (Phys. Rev.A,50,(1994),2926). The latter accounts for the
difference between the two cases in an appaximate way by utilizing the properties of
the 2D and 3D harmonic oscillators.

We start our study with the unsceened hydrogen case to recover their shifted

1 results and deal then with the more involved case of the screened hydrogen atom
covering wide ranges of the applied field and of the screening length.
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Introduction spherically symmetric potential in order to
A large number of physical problems determine the energy eigenvalues and
require solving the schrodinger equation for  eigenfunctions.
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Since only a handful of potentials is exactly
solvable, in general, one has to resort to
numerical techniques or approximation schemes.
A typical example of such a potential the one
that arise in an atomic system under the
effect of an external magnetic field B. The
treatment of the quadratic Zeeman effect (~B?)
attracts most available perturbative techniques.

1
These include the shifted W expansion method

based on logarithmic perturbation theory (Impo
et. al.(1984), Mustafa (1993), Mustafa et.al.
(1994), Villalba et.al. (1998), (2001), (2002),
Pino (1999), Elsaid (2002)), the shifted 1-
expansion technique (Mustafa et.al. (1999), Odeh
et,al, (2004), Mustafa (2004)) and the
so called PT-symmetric pseudo perturbation
(Bender et.al. (1998,1999)), the semiclassical
quantization method (Hasegawa et.al. (1998))
and the so called 7 expansion method
(Dobrovolska et.al. (2002)). The -eigenvalue
problem for the Yukawa (or Debye-Huckel)
potential falls into such a category (Rogers
et.al. (1970), lafrate (1969)). When a uniform
static ~ magnetic field act on  the
screened electron, the problem becomes much

more complicated even for
very weak screenings (Jiang (1987)). For
example, the application of such a

field to the hydrogen atom breaks the orbital
symmetry, thus destroying the
angular momentum as a good constant of motion
(Mustafa and Chhajlany (1994)).

Conventional perturbation treatment of this

problem can handle the weak and strong
field limits where the problem becomes
almost separable. However, the

experimentally most important situation is

the one in which the
magnetic and the Coulombic fields are
comparable. To bridge the two limits

of the magnetic field, one has to rely on

various approximations and interpolation
techniques. One of such techniques is the
linear variational method (Villalba

et.al.(2001)) which proves efficient in
dealing with 2D doner problems. The 3D
problem is much more complicated because
the hamiltomian in this case is no longer

spherically symmetric as in the 2D. As
we all know, that most numerical and
perturbative  techniques  such as  the

shifted 1/N method as an example, require
spherical symmetric potentials as
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a prerequisite intial condition. To overcome
this difficulty reasonably well, we utilize the

proposal due to Mustafa and Chhajlani
(1994). This proposal enables one to
consider  initially a  related  spherical

symmetric problem close to the real non-
spherical one and then account for the
nonspherical character in an approximate
manner. In the next section, we outline the
basic idea behind such strategy. In sec.3, we
present our calculational procedure. In
sec.4, discuss our results and finally sec.5
concludes the paper.

The method
(i)- The Coulmb screening

Consider a positive point charge (+72)
that is immersed in a plasma.
The Coulomb potential due to this charge,

namely, Z/r is screened by the
electrons surrounding it so that an electron
experiences the presence of
this positive charge as if Z is modified by
this screening into an effective
charge Z, =Ze ™™, where s is a screening
parameter. To see how this
comes about, consider the expression
(Ashcroft and Mermin (1976)):

V()= s aq e M

(2m) 9’(q)

and that in the Thomas-Femi approximation, the

dielectric constant is given by
— Sz
@ =1+—
¢ 2)
and
7,

0

Where

a, =h’e/me’

is the Bohr radius. The screened potential by
using (2) gives:

Z 4
V(r) = d° el
=) e
Therefore
V(r)= %e €)
With
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(r;/a,)?

Corresponding to a screening length D=l/s.
Taking into account that for
most of cases, the ratio ry/a, is between 2 and 6,
we have that 12 < s < 2.1,
The influence of the applied magnetic field B is a
nontrivial problem and in the present article we
assume that s is the same for all values of B.

(ii) The Hamiltonian

In the nonrelativistic scheme, the
Hamiltonian for a screened hydrogen
atom when a constant magnetic field B is applied
perpendicular to the (x,y) plane can be written as

H:L[p+Eerj 2 g &)
2m 2 r
Using atomic units (see the appendix) H
becomes:
H :,lv2,£+lgzp2 (6)
2 r 2

Where () is a dimensionless parameter which
can be taken as a measure of the magnetic field,
(in cgs) Q =B/4.7x109 G. It is clear that H is not
a spherical symmetric because of the presence of
the last term in (6) and so the orbital quantum
number 1 is no longer a good quantum number,
The angular momentum is not conserved as a
consequence of the noncommutivity between H
and L? namely [H, L?] # 0. Furthermore, the
solution of the eigenvalue problem with H
defined by (6) cannot be
obtained in a closed form or even numerically by
conventional techniques, instead, we start with
the related spherical symmetric counterpart,
namely;

o Lyt Lo (7

2 r 2

and try to solve the corresponding schrodingcr
equation

Hsph¢ = E'¢ (8)

Even so the exact solution of (8) cannot be
expressed in a closed from
in terms of special functions. In the present paper
we choose to use a
mixed-basis variational method with trial
function as linear combination
of screened hydrogenic and 3D harmonic basis
eigenfunction. Such a trial
function will reduce to the screened hydrogen
atom when Q=0 and to that
of the 3D harmonic oscillator for large values of

H
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Q. In order to obtain an
estimate to the actual energy E, we use the
approximate formula (Mustafa
and Chhajlany (7994))
2 o

E~ E(E _Ecoul)+ Ecoul (9)
Equation (9) is based on the fact that the
ground state energies of an
isotropic pure 2D  harmonic  oscillator,

with the potential term Q°(X* +y*)/2,

are equal to two-thirds of the eigenvalues of
an isotropic pure 3D harmonic oscillator
with the potential term  Q*(x* +y? +2%)/2
Thus for the ground state and for isotropic

harmonic  oscillator, the eigenvalues of
Q*(x> +y?)/2 contribute two- thirds of
those of the spherically symmetric one,
Q’r*/2, to the coulomb energy

eigenvalues, To derive a formula for E. ,
we start from Hy =Ey with H given by

(6) and impose the normalization condition
<l//|l//>=1,t0 obtain
W>

E =<y/‘lv2 - Zer +%Qz(x2 +y?)

2
(10)
Using
2 2 1 2
X" )= =—(r 11
() =(y)=3{r’) (an
We obtain
2 ~2 2
v)=2) a2
Using(12) into (10) we get:
1 Ze™ 2(1
E~(y|=V’ - +=| =Q°r?
<W2 r 3(2 jw>
_2 y/—lvz—ze_ +ler2l/I +
3 2 r 2 (13)

1 1 Ze™™
Nwl-=Vv?*=

Using equation (7) and (8), we obtain:
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2 1 1 Ze ™™
ExZE4+—(yl-—V*-——

3 3<W 2 r W>

If we denote the second term by E..,, we finally
obtain (9) and
1//> (14)

It is clear that (13) cannot be evaluated exactly
since 4 is unknown. If
Wis replaced by @ from (8), we arrive at an
approximate formula

1 Ze™
Ecoul = <l//_2v2 - r

1 Ze™
Er:oul ~ <_EV2 _—>Sph
Where ( )g, denotes the ground state
expectation value by using 0]
instead of W. In the weak field limit (Q — O), it
can be shown (see the
appendix) that

Z e—sr

Ecoul (Q_)O)z_E<T>Sph (15)

The evaluation of E., in either formula

require the knowledge of the
screened  hydrogenic  eigenfunctions @,
satisfying

1 2 Z —Ssr
(_EV _Te ¢scH :8scH¢scH (16)
Unfortunately  (16) cannot be  solved
analytically to obtain exact
.y it can, however, be solved by
numerical integration (Rogers
et.al.(1970)) This would yield ¢, in a
form of tables only.

Calculations:

If we attempt to apply the
variational method wusing only ¢, for
the screened hydrogen atom. we will
obtain a  good  agreement with
accurate results for small values of Q,
but this approach fails for large Q
even if we consider a basis with many
terms. Analogous situation occurs
if we use pure oscillator basis for large
Q, which converges very slowly
for small values of Q. In order to
overcome such difficulties, we use
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mixed basis
equation (8)

¢:ZCi¢i

approach to represent ® of

(17)

®; cither belongs to the screened hydrogen
atom (¢, :¢50H)0r belongs to the 30

harmonic oscillator (¢, = ¢OSC) where C; are

varied o) as to get
minimum energy. It is worth noticing that
our mixed basis are not
orthogonal  under  inner  product i,e
(¢ | ¢J> 0 We proceed to minimize
the expectation value (¢‘Hsph @) with the

normalization condition

Z‘Ci‘z =1 fulfilled,
After performing a variation on the basis
coefficients Ci we reduce our
problem to that of solving the matrix equation

\_Hij _ﬂsijlcjjzo (18)

Where H; =(¢,|H, ¢, and S;= (¢ ‘¢l> Using
the definition (7) in (18) and solving the secular

equation ‘Hij —/18”‘:0 to obtain the
lowest value of A. E' <A can be obtained in terms
of Hjj and Sj.

The advantage of this approach is two fold.
First we have a lower
bound for our energy E'. Second we obtain a
relatively simple expression

for the normalized eigenfunction.

In this paper we choose to work with a two
term mixed variational basis. In order to
compute the binding energy for the ground
state, we use a two term (1S) like states,

namely @5, and @) i.e
Is 1s
b =C, *CyPosc (19)

scH

substituting (19) into (18): we get

Hy-4 H,-1s,)C) (0
H, —4s,, H,-4 \C,) (0

Where

(20)

100



Kassim
1| = <¢scH sph ¢scH > (21)
22 = <¢osc sph ¢osc (22)
S= = 21 = <¢osc ¢SCH> (23)
H21 = H12 = <¢sc sph ¢osc (24)

The solution of the secular equation (18) is given
by
2(1-S*)A=H,, +H,, —2SH,, -

\/(Hn + sz _2SH12)2 _4(1 - Sz)(Hnsz - H122)2(1 - Sz)

(25)
By solving (20) for C; with the normalization
el
) -1/2

C =14 Huzt | pgf Huz? |1 (26)
H,—-A4S H,-AS
2
H(WJ _
c __( Hn—ﬂj Hy, - 28 27)
, = =
Hy, - 4S 23 H,-1
H, - A4S

Hyy, Hy; and S for the screened hydrogen may by

=1, wget:

12

evaluated numerically since @, is in the form
of tables.

Results and discussion
(i) Th s=0 case (the unscreened Coulomb

potential)
As a primenary stage let us start
with the bare Coulomb potential

(_ zji.e with s=0. The computation
.

of the energy by equation (25) is
greatly simplified for this special case.
Using N and dos. given
by
34
| Q —or?
W T r,¢;:c=(;j e’ (28)
We get
11 _14_192(2 |145>
2 (29)
:_l__Qz
2
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= <¢osc 1 1 -+ IQZ ? ¢osc>
r 2 (30)
=_EQ_2\E
2 V4
3
le :EQS-’-

1y 2 toe | D
4[&} {1—\/;&9 wj% |

Where S is given by:
1
1\ 1) o e 1
S= 4\/5( ) (1+je29 e dx———
<y’ { Q) JITQ V20

(32)

The details for getting (31) and (32) appear in the
appendix. The integral in (31) and (32), as a
function of the applied field, can either be
evaluated numerically or taken from tables.
Using equation (25), we can evaluate an upper

bound for E/ (E/, <A) and the eigenfunction

@, by using C; and C, from (26) and (27)
E.ou Reduces to:

respectively.

1 Z
coul ~ <¢ls E r ¢ls>

_ler_ces-c ig—z\E (33)
2 2 V4

(see the appendix).

The result (33) is suitable for intermediate
Q. For very small Q, Ecouw =0.167,
according to equation (15). For very large
QQ the Coulomb effect is negligible and we

approximately ~ have E~ % E'

In table (1), we list the results of our
calculations for the special case s=0
according to equations (29-33) for various
values of Q. Ei is
evaluated by using equation (9) and listed in
the last two columns where it
has been obtained by using two sets of

as stated above. As seen,
these sets are very close in the range
(Q=0.1-1.0) because the Coulomb
interaction overwhelms the magnetic, As Q
grows up, the values calculated according to
equation (33) becomes more valid. In table
(2) these calculations are extended to higher

values for E.u
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values of Q. For such high values, E
becomes negligible compared with the
effect of the magnetic field and so E is
approximately equals to 2EY3. It is also
shown in table (2) the results of other
workers namely those due to Rosen (1986)
and Mustafa and Chhajlani (1994), It is seen
that our results indicate very close to those
of Rosen in the low field region but Slightly
differ from Mustafa and Chhajlani being
lower than ours in the low field region. The
latter authors used the shifted 1/N method

due to Imbo etal(1984) and as
pointed out by Villalba and Pino (1998) this
method overestimate the

energy of the ground state for low field and

also in the high field. The
variational ~ solution obtained using the
hydrogen basis is in good
agreement with the results obtained by
Martin et.al. The impressive
feature of our results as a whole is that the
energies have the coulomb
limit of E=-0.5 at very low field and
approach the outcome of the

Londau level E;;== Q in the high field, thus
describing the spectrum of the electron in a
uniform large magnetic field strength.

(ii) The screened electron
In order to obtain ¢ - In (9), we have to solve
equation (16) numerically.
4L is given by
I 1

1s
=——R . (r 34
¢SCH \/E r lS( ) ( )
Where R, satisfies the radial schrodinger
equation
1d> ze™

= = R.=gt R (35)

[ 2 dr2 r ] ls scH

Equation (35) has no analytic solution in a closed

form in terms of special
functions; It assumes an approximate analytic
solution as a series in

powers of the screening parameter, s but such
solution is only valid in the
asymptotic region (Kasssim (1994)) In order to

Is

compute Ry and EscH >
(35) has to be solved numerically using for
example Numerov method
(Kassim(1976)). All integrals involving ¢ScH

will be evaluated numerically accordingly. To
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calculate E; variationally, we follow similar
steps using the relations (21-27) to obtain the
matrix elements Hj; and Sii,
and then A by numerical integration. To calculate

Ecu we use equation (33) with suitable
replacements, in the form:
Ecoul _ESISch CC S +

{ Q- (g ;Q“¢OSC>}

Where &5, and, S are obtained numerically and

C; are calculated accordingly,
Evidently, the E;, depends on two parameters,
the screening length D=1/s and the magnetic
field strength through Q. The range of the former
is taken as 1< D < 10.
In table (3). We have listed the results of
our calculations for the values
s=0.1,0.2,....,1.0 for a wide range of Q
(0.05-10%) It can be seen that the Yukawa
potential shifts up the energy level as long
as the screening parameters increases. For s-
1 the presence of the magnetic field shifts
the E;; level away twords the continuum.
As s increases, the contribution of the
magnetic field becomes more important and
the energy eigenvalues are closer to those
given by the oscillator energy expression
i.e to Landau levels. Therefore a critical
value for s (or D=1) for which
it stops binding the electron in the s-state.

As a whole, the above results show that

the presence of bounded states
in a Yukawa hydrogenic atom strongly
depends on the strength of  the

screening. The inclusion of the magnetic

field permits one to  recover the
Landau energy levels. In summary, the
mixed variational approach gives

the most accurate numerical results even for
large Q values.
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Table (1): Hydrogenic ground state energy (in Hartees) E; calculated by the method of the linear variation using a trial wave function as a mixture of pure
hydrogenic and pure 3D harmonic oscillator of s-symmetry as a function of the external magnetic field strength represented by the unitless parameter Q

Q Hu H»; Stz Hi, E' C C; Ecou E, ~ EE,_E E, ~ 2 E'+l E_
3 3 3 3
0.10 | -0.48500 | -0.20675 | 0.68722 | -0.32011 -0.48567 | 1.03411 | -0.05062 | -0.49944 -0.49045 -0.49026
0.15 -0.46630 -0.21119 | 0.79641 | -0.34658 -0.46909 | 1.08870 | -0.11435 -0.49770 -0.47939 -0.47863
0.2 -0.44000 -0.20452 | 0.86412 | -0.34546 -0.44682 | 1.16380 | -0.19523 -0.49446 -0.46455 -0.46269
0.25 | -0.40630 | -0.18908 | 0.90789 | -0.32768 | -0.41797 | 1.24960 | -0.2874 -0.49013 -0.44531 -0.44202
0.3 -0.36500 | -0.16791 | 0.93662 | -0.29914 | -0.38035 | 1.32600 | -0.36564 | -0.48640 -0.42023 -0.41570
0.35 -0.31630 -0.14242 | 0.95535 | -0.26337 -0.33110 | 0.35770 | -0.38103 -0.48620 -0.38741 -0.38281
0.4 -0.26000 -0.11350 | 0.9672 | -0.22265 -0.26910 | 1.30110 | -0.31460 -0.49144 -0.346066 -0.343212
0.45 | -.196310 | -0.08178 | 0.97414 | -0.17847 | -0.19805 | 1.13730 | -0.14140 | -0.49840 -0.29870 -0.29820
0.5 -0.12500 | -0.04772 | 0.97753 | -0.13188 | -0.12597 | 0.90140 | 0.10070 -0.49922 -0.2506 -0.25039
0.6 0.03990 0.02614 | 0.97706 | -0.03427 -0.00098 | 0.45110 | 0.55460 -0.47524 -0.16732 -0.15951
0.7 0.23500 0.10612 | 0.97050 | -0.06631 0.09941 | 0.18300 | 0.82160 -0.44524 -0.10039 -0.08214
0.8 0.03980 0.02614 | 0.97707 | 0.16774 0.19012 | 0.05234 | 0.94960 -0.41799 -0.03991 -0.01258
0.9 0.50210 0.29870 0.9534 0.21076 0.2325 | 0.04632 | 0.97670 -0.38761 0.03602 -0.06762
1.0 1.00000 0.37184 | 0.93538 | 0.36867 0.37110 | 0.03540 | 1.03300 -0.36997 0.08074 -0.12408
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Table (2): E¢ (in atomic units with Z =1), the energy of the ground state of an electron in (1s) state in
the hydrogen atom that is subjected to an external magnetic field Q compared the results of the
references (14, 21)

Mustafa and
Rosen

Chhajlany Ref (21) Present Work
e

Ref (14)
-0.49754 -0.498800 -0.49751

-0.44872 -0.470300 -0.44202
-0.33685 -0.331200 -0.25039
-0.04429 -0.165200 -0.12408
0.12078 0.152450 0.24045
1.03356 1.119600 1.14126
3.05150 2.623000 3.15018
21.00130 19.87000 20.62900
44.46250 42.80000 43.95300
483.08610 477.50000 482.23900
976.19370 975.27000
1966.45250 1965.29000
2958.96550 2957.90700
4947.10917 4945.52300

9925.3057 9925.48000
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Table (3) E of an electron that is moving in a screened Coulomb potential under the action of an external
magnetic field of strength Q for various screening lengths D=1/s (All energies are measured in Hartrees)

D=10

D=5

D =3

D=2

D=1

-0.40447
-0.39732
-0.38609
-0.37096
-0.35122
-0.32529
-0.29127
-0.24879
-0.20102
-0.18392
-0.13793
-0.09423
-0.05491
-0.01829
0.01661
0.05065
0.08442
0.11829
0.15249
0.18713
0.36804
1.23670
3.24622
21.16220
44.61220
483.110
976.130

-0.32414
-0.31663
-0.30491
-0.28896
-0.26774
-0.23935
-0.23937
-0.15715
-0.10910
-0.11974
-0.07332
-0.03328
0.00396
0.03367
0.07240
0.10778
0.14459
0.17881
0.20880
0.24530
0.42513
1.46963
3.33500
21.26080
44.70410
483.202
976.217

105

-0.23383
-0.22558
-0.21263
-0.19442
-0.16910
-0.13455
-0.09112
-0.04364
0.00173
0.04204
0.07766
0.11013
0.14087
0.17084
0.20064
0.23058
0.26084
0.29149
0.32257
0.35409
0.49289
1.54269
3.9349
21.3746
44.82000
483.313
976.310

-0.14445
-0.13450
-0.118120
-0.09322
-0.05720
-0.01228
0.03406
0.07600
0.11267
0.14364
0.17658
0.20664
0.23650
0.26644
0.29673
0.32740
0.35850
0.39009
0.42206
0.45440
0.62175
1.62470
4.02440
21.50500
44.95300
483.455
976.410

0.01514
0.05858
0.09291
0.12441
0.15531
0.18627
0.21750
0.24911
0.28110
0.31346
0.34619
0.37928
0.41270
0.44644
0.48049
0.51482
0.54943
0.58430
0.61941
0.65476
0.83472
1.82363
4.25427
21.83344
45.29440
483.543
976.876
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Appendix
(i) Derivation of Equation (6)

By using P =-i%V in Equation (5), we
obtain

A 2SI
H :i[—ihwle(sx r)}— zee
2m 2 r

If the applied magnetic field is in the z- direction,
then

(A1)

B =Bk (A2)
And

Bxr=B(-y,x,0)=Bpe, (A3)
Nothing V.( p%) =0and employing
; G

L; =—1h—, we get:

0
A 2 A A 2 2 —Sr
Ho M g2, 88 & poy 288
2m 2m 8m r
(A4)

For states with s-symmetry,
(I1=0,m, =0)L. ¢, =0, we get

A 2 e2 BZ Z —sr
Ho-lly2, BB, zee (A5)

2m 8m
i 4
Expressing H in atomic units (energy in 2
2
and distances in Bohr units ——-), we get:
me
H :—%V2+%sz2—ze (A6)

Where Q is measure of the strength of B and is
given (in CGS) by
B

= > A7
4.7x10°G (A7)

(ii) Derivation of Equations (12, 15)
The virial theorem 2 < —=V? /2 >=<r.W >

with respect to Equation (14, 17) yield
respectively:

Ze™™
<V?+ +Q*(X*+y?)>=0 (A)
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—Sr

<V + +Qr* > =0 (A9)
r

Using the Hellmann - Feynman theorem on
Equations (14, 17)  we  respectively
obtain
aE(Q,z):_< e

oz r (10)
EQ.2)_ Q<x’+y*>

oQ
and
E'(Q,z) e
=25,

oz r (A11)
oE' 2
El

Provided all wave functions are normalized.

The Euler homogeneity condition associated
with Equations (A8, A9) yields:

<V?>= Z(Ej —Q[@j (A12)
oz oz
OE' oE'
<Vi>_ =7 — |-Q — Al3
" (azj [azJ (A1)
respectively.
Using Equations (14, 17) we obtain
N "
2 oz 0Q
E=1,E % (Al3)
2 oz 0Q

By substituting Equations (Al4, A1l5) into
Equation (15), we obtain

lza—E+Qa—E ~ z(lza—E+Qa—E)+lECoul
2 0z 0Q 32 oz oQ 3

(A16)
Substituting Equations A12 and A13 into A16,
we get:

1 e—sr
2 r

2 -z e 1
>+ <r? >sph)+§E

>+ < x4y >~

coul

(A17)
Consider now two limiting cases for Equation
(A17).
(a) The limit  — 0: Equation (A17) reads

Ecoul z32{l< ¢ > goh —l< ¢ >}
3

2
Assuming

—Ssr

r
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e—sr —Sr
< e > on &<
Provided that

H ~ _lvz _ze
2 r
We obtain

Z €
—<

>
r

—Sr

—sr

E

coul ~ sph (Al 8)

r
(a) The limit € — oo : Equation (A17) reads
2
Q> <x>+y’ >z392 <r’s>. (A19)
Provided that

1

H z—Vz-i-l
2

2022
2

Equation (A19) furnish a sound justification for
the validity of approximate formula (15) and
equation (A18) provides an approximation for
E.ou at low field

(iii) Evaluation of S, and H;

3 1 15
—(=Qr?+r)
S12 :<¢ ¢osc> 4( ) j 2e ? dr
0
(A20)
Q3 Lo (= Qr2+r)
H, = —SIZQ 4! jr e dr

(A21)
Integrating the second integral by parts once and
the first integral twice, we finally obtain single
integral of the form

]Ee(ax2+bx+c)dle\/ze(b24ac)/2aerfc( b )
0 2Va 2\/a

(A22)
Where
2 % .
erfc(p)=—=|e™ dx (A23)
7!

Using (A22), (A23) in (A20), (A21) obtain:

1

312=\/3—2 (1+1/Q)e29 je x—ﬁ
JE
(A24)
H :EQS -4 L —\/zeZlQ Te‘xzdx
12 P 12 ﬂQg 0 1
V20
(A25)
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(iv) Derivation of Equation (46):

Ecoul =< !//|h|l// > (A26)
where
hely2_2 (A27)
2 r
y=C ¢H +C2 0sC (A28)
Ecoul ~ C < ¢ |h|¢
2CC <¢ |h| osc > +C <¢osc|h| osc
1,
=——C, —CC,S,, +
2 1 172%12
3 ) 1 5,
cQ-c; < +—=Q°r >
2 ¢OSC 2 ¢OSC
(A29)

The integral in the last step maybe evaluated as
follows:

< ¢OSC Qz : ¢OSC >
3 0 0
= 4(9—)”2 zjre’“r'dr +lejr e dr
T 0 2 0
(A30)
Using the result:
m+1
R e
[xmedx=—2 (A31)
0 22 2

we finally obtain

E cou zlclz -C,C, 5, +C§(§Q_2\/§
2 2 T

(A32)
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