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Abstract 
        This study is concerned with the unsteady flow of non-Newtonian, viscous, 
incompressible fluid in a curved pipe with rectangular cross-section, under the action of 
pressure gradient. An orthogonal coordinate system has been used to describe the fluid 
motion and it is found that the motion equations are controlled by three parameters namely; 
Dean number, non-Newtonian parameter and frequency parameter. Solution for the 
secondary flow and the axial velocity are droved as perturbation over straight pipe. Firstly 
the expansion was in terms of Dean number and secondly in terms of frequency 
parameter. Perturbation equations are solved by using variation method namely, Galerkin's 
method, after eliminating the dependency on time. The solutions have been developed 
in Cartesian coordinate for harmonic and biharmonic equations. The effect of the non-
dimensional parameters mentioned above on the secondary flow, the axial velocity and 
the flow in the centre plane is considered. In this study we covered the steady state under 
consideration. 

  
  الخلاصة             

في هذا البحـث نتنـاول تحليـل الجريـان اللامـستقر لمـائع لا نيـوتيني فـي أنبـوب منحنـى ذو مقطـع مـستطيل       
العــدد الــلا نيــوتيني ومتغيــر ,عــدد ديــن,لقــد بينــا أن ثلاثــة أعــداد لابعديــة تــتحكم بمعــادلات الحركــة وهــي .الــشكل
ــأثير الاعــداد الانفــة ).ريكنكــال(أســتخدمت طريقــة تكراريــة لحــل معــادلات الحركــة.التكــرار قــدمنا دراســة تحليليــة لت

  .الذكر على كل من الحركة الثانوية والسرعة المحورية
 

Introduction 
        Viscous flow through straight ducts of various 
cross-section forms is well understood. The flow in a 
gently curved duct may be considered as a 
modification of straight axial flow in which the 
effect of centrifugal forces must be considered. 
Dean, [5]; is that first researcher who works in flow 
analysis of Newtonian fluids in curved pipes. He 
introduced a toroidal coordinate system to show that 
the relation between pressure gradient and the rate 
of flow through a curved pipe with circular cross-
section of incompressible Newtonian fluid is 
dependant on the curvature. In that paper he could 
not show this dependence but he did it in his second 
paper, [6]; where he modified his analysis by 

including higher order terms to be able to show 
that the rate of flow is slightly reduced by 
curvature. 
Dean and Harst ,[7] ;obtained an approximate 
solution of Newtonian fluid flow in a curved pipe 
with rectangular cross- section assuming that the 
secondary motion is a uniformly stream from inner 
to outer bend. They modeled the equations of motion 
by using cylindrical coordinates. This assumption 
enabled them to obtain Bessel's function solution. 
They argued that the secondary motion decreases 
the rate of flow produced by a given pressure 
gradient and causes an outward movement at the 
region where the prime motion is the greatest. 
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In his paper Jones, [11]; makes a theoretical analysis 
of the flow of incompressible Non-Newtonian 
viscous liquid in a curved pipe with circular cross-
section keeping only the first order terms. He shows 
that the secondary motion consists of two 
symmetrical vortices and the distance of the stream 
lines from the central plane decreases as the Non-
Newtonian parameter increases. 
Past work on fully developed flow in a curved 
square duct includes numerical studies by Mori, 
Uchida & Ukon, [13]; who obtained a numerical 
solution by using boundary-layer approximation 
(valid for large Dean numbers); Cheng. Lin & Ou, 
[4]; Ghia & Shokhey, [9]; and Joseph Smith & 
Adler, [12]; who obtained solutions which 
predicted the existence of a weak second vortex 
pair near the outer wall above a certain value of the 
Dean number. This second vortex pair was found to 
rotate in the opposite manner to the primary vortex 
pair. Cheng et al, [4]; predicted the onset of second 
vortex pair to occur when a Dean number is>150. 
Ghia & Sokhey,[9] predict in it to occur above a 
Dean number of 143 while the calculations of 
Joseph et a/,[18] give a threshold Dean number of 
152 since the curvature ratio (whose effect is 
embedded in the Dean number) may itself play an 
important role for highly curved ducts. The 
suitability of the Dean number as the sole parameter 
to characterize the onset of the second vortex pair is 
unclear. 
For curved rectangular ducts Cheng et al ,[4] ; 
performed calculation for duct aspect ratio 
(defined as the ratio of height H to the width B) of 
0.5, 2 and 5 for the range of the Dean number 15.9 
to 312.7 at curvature ratios of 100 and 30. They 
reported that for an aspect ratio of 0.5 at L=176 there 
were no additional vortices and at L=200 there was 
a pair of very weak vortices close to the outer wall. 
In addition they found that for an aspect ratio of 5a 
pair of secondary vortices appeared at a rather low 
Dean number of 76 and the eye of the primary vortex 
moved toward the upper and the lower walls with the 
increase of Dean number. 
Winters, K. H., [18]; considers the bifurcation of 
secondary solutions for fully developed laminar 
flow in curved rectangular ducts. The study is based 
on finite-element analysis and shows the existence 
of the multiple solutions arising from the non-linear 
equations for the range of aspect ratio from 0.8 to 1.6. 
Ravi Sankar, Nandakumar & Masliyah, [14]; 
consider the related problems of developing flow in 
curved ducts. They have shown that for a range of 
curvature ratios and Dean numbers the flow develop 
into previously known two-and four- cell patterns 
based on fully three-dimensional calculations 

using the parabolized form of the Navier-Stokes 
equations. They have also shown that for loosely 
coiled ducts (of curvature ratio of 100) outside a 
narrow range of Dean number the solution exhibits 
sustained oscillations in the axial direction and that 
no stable steady solutions could be predicted. 
Thangam and Hur, [17]; analyzed the secondary 
flow of incompressible viscous fluid in a curved 
duct by using a finite-volume method. It is shown 
that as Dean number is increased the secondary 
flow structure evolves into a double vortex pair for 
low -aspect- ratio duct and roll cell for duct of high 
aspect ratio. They found that for ducts of high 
curvature the onset of transition from single vortex 
pair to a double vortex pair or roll cells depends 
on the Dean number and the curvature ratio 
while for ducts of small curvature the onset can be 
characterized by Dean number alone. 
Jing-Wu Wang and Andrews, [10] ; use a non-
orthogonal coordinate system to study the effect of 
the pitch ratio and curvature on the velocity 
distribution of fully developed laminar flow of an 
incompressible fluid in a helical duct with 
rectangular cross-section. They used a numerical 
method to solve the motion equations, they find that 
the pitch ratio affects the pattern of the secondary 
flow, two-vortex become a single vortex if the pitch 
ratio is greater than 10 and for a certain level there 
will be four vortexes to appear on the plan of the 
cross-section. 
Yakhot A., et al, [19]; studied a pulsating laminar 
flow of a viscous, incompressible liquid in a 
rectangular duct. The motion is induced under an 
imposed pulsating pressure difference. The 
problem is solved numerically. Difference flow 
regimes are characterized by non-dimensional 
parameters based on the frequency of the imposed 
pressure gradient oscillation and the width of the 
duct. The influence of the aspect ratio of the 
rectangular duct and the pulsating pressure gradient 
frequency on the phase lag, the amplitude of the 
induced oscillating velocity, and the wall shear were 
analyzed. 
Abdul-Hadi, [1]; studied the unsteady flow of 
incompressible non-Newtonian fluid in a curved pipe 
with a square cross-section. He used a Galerkin 
method which is variational method to solve the 
equation of Navier-Stokes. He shown that a 
secondary motion depends on three dimensional 
parameters namely Dean number, non-Newtonian 
and frequency parameters, also he studied the effect 
of these three parameters on the secondary flow, axial 
velocity and some other relation. 
AL-Musawy, [2]; studied the flow of non-Newtonian 
fluid in a curved duct with vary aspect ratio. In his 
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computation he used a Galerkin method and finite-
difference to solve the equations of Navier-stokes. 
He was shown that a secondary motion depend on 
two dimensional parameters, also he studied the 
effect of non-Newtonian and aspect ratio parameters 
on the secondary flow and axial velocity. 

Mathematical Consideration 
Unsteady flow of non-Newtonian fluid in 

curved pipe is considered. The non-Newtonian 
fluid is characterized by equation of state of the form: 

 

jkijikik eeeT  42                         ... (1) 

Where ,, ikik eT are the stress, rate of strain, 
viscosity coefficient and normal stress 
respectively. [16]. Fig. (l) ,illustrates the 
coordinates system that has been used. OZ is the 
axis of the circle formed by the wall of the pipe. C 
is the center of the section of the pipe by a plane 
through OZ making an angle θ with a fixed axial 
plane. CO is the perpendicular drawn from C upon 
OZ and is of length R .The plane through O 
perpendicular to OZ and the line traced out by C 
will be called the central plane and the central line 
of the pipe respectively. Cartesian coordinates x 
and z are drawn in the section of the pipe, where x 
is parallel to OC and z parallel to OZ. The position 
of any point Q is then specified by cylindrical 
coordinate (x,θ , z), -d < x < d and -h < z < h 
where d and h are the length and height of the 
cross-section respectively. The Cartesian system 
(X,Y,Z) is related to the coordinate system in the 
cross-section by the relations 

 

X = (R + x) Cos (θ), Y=(R+x)Sin(θ),Z=z ...(2) 
where   o< θ < 2π. 

Two cases will be examined for convenient length: 
case1 when d = 3, h = 2, see Fig. (1), and case2 
when d=2, h=3 see Fig. (2) 

 

 

 

 

 

 

 
Fig. (1): Coordinates System 

 
 
 

 
 
 
 

 
 
 
 
 

Fig. (2): coordinates System 
 

The equation of continuity is satisfied by the 
introduction of a stream function ψ(x, z) such that 
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If we introduce non-dimensional variables for 
case1 by the equations 
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And for case 2 
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Where h is the characteristic length instead of d 
.Then from the stream function and the non-
dimensional variables, it can be shown that the 
equations of motion may be reduce to the 
following partial differential equations 
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And the boundary conditions are: 
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These equations can be seen to be controlled by 
three parameters, a non-dimensional frequency 
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parameter,
2
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We impose a sinusoidal pressure gradient in time 
with zero mean on the flow in the form of 
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for convenient computation we will choose J= 
2.3 1. 
Where  the amplitude of the applied pressure αVJ o

gradient and α is is the angular frequency. 
In what follows we shall omit the index of 
coordinate system, it is understood that all 
variables are non-dimensional form. To solve the 
above system, (6)-(8), we will use successive 
approximation method, which is equivalent to the 
perturbation solutions of f and v in ascending 
power of L . So the solution of the above system 
can be developed by using 
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We will limit ourselves to find the solution up to 
the first order in L , similar procedures can be used 
for higher order solutions, and the first order 
solution provide good accuracy for the purpose. If 
we substitute (10) in (6) - (8), and equate 
coefficients of equal power in L; we obtain a series 
of relations from which ...can be ,v,,v 110 f

successively found .The equations are 
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The boundary conditions associated with the 
above equations, (11)-(13) are:- 
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By similar procedure the equations of motion 
for case 2 may be written as  
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boundary conditions associated with this system, 
(15)-(17) are 
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Method of solution 

Galerkin's method is employed to solve the 
equations of motion subjected to the associated 
boundary conditions. [3], [8], [15] 
1- Solution of Case1  
     The motion equations (11)-(13) are solved 
subject to the boundary conditions (14), and as 
follows 
 
1-1 Solution for vo  

If we substitute for v0 by the expression 
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and equate the coefficient of equal power in k for 
equation (11), then the following set of equations 
are obtained 
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With voi =0, i =1,2,3,4  on the boundary.… (24) 
Solution of (20) can be developed by assuming 
that 
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)(),(vv 01101 Coszx    … (25) 
Substituting equation (25) in (20) we get 
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So the employed Galerkin's method is equivalent to 
the assuming of solution in the form 
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Where a0 is a constant to be determined. It is found 
that the solution of (27) is  
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Thus the complete zeroth order solution is 
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If we substitute equation (29) in equation (21) and 
using the procedure of Galerkin's method, the 
solution of Vo2 is found to be of the form  
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Where a1 a2, a3 and a4 are constants. 
Similarly, solution for v03 and vo4 can be found. 
Finally zero order solution for vo is obtained. 
The substituting of these solutions into equation (19) 
give; the solution for vo ,as 
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1-2 Solution for f1: 

The equation (12) contains the function vo, 
which is now known through the solution (31). If 
we substitute vo into (12), then that equation will 
contain only one unknown function which isf1 , the 
solution for f1 is obtained as a perturbation in terms 
of the parameter k as follows:- 
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The recursive equations for f1,i =1,2are obtained on 
equating the coefficients of equal powers in k. Again, we 
proceed to eliminate the time variable and generate a 
solution as an expansion in non-dimensional parameter 
β. Then the solution for f1 is found to be of the form 
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  … (33) 

 
1-3 Solution for v1: 

Assume that 
 

)(vvv 10
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8
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6
1 kOkk            … (34) 

Then the solution for v1 is found to be of the form 
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        … (35) )()()()(v 42
123

2 kOSinSinCos  

Finally, substitute the solutions v0, f1 and v1 into 
(10), the stream function and the axial velocity can 
be written in a convent form 
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                                                          … (36)  
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                     … (37) )()()}v 2
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2  SinCos

 where all the above f 's and v's are polynomials in x 
and z. 
If f and v are independent of t and k = l the system 
(11)-(13) will be reduced to corresponding system in 
case of steady state. 

 
2- Solution of case2 

By similar procedure the solution of case 2 for 
the stream function and the axial velocity are 
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Where all the above f's and v's are polynomials in 
x and z. 
Also if f and v are independent of t and k = 1 the 
system (15)-(17) will be reduced to corresponding 
system in case of steady state. 
 
Results and Discussion 

The secondary flow occurs in curved ducts or 
curved pipes. Physically the parameter L (Dean 
number) can be considered as the ratio of the 
centrifugal force induced by circular motion of the 
fluid to viscous force when a fluid flows through a 
curved pipe. Pressure gradient directed towards the 
center of curvature, is setup across the pipe to 
balance the centrifugal force arising from 
curvature. The fluid near the wall of the pipe is 
moving more slowly than the fluid some way from 
the wall owing to viscosity and therefore require 
small pressure gradient to balance the local 
centrifugal force. As a result of these different 
pressure gradients, the faster-flowing fluid moves 
outwards, whilst the slower-flowing fluid moves 
inward. This flow is known as the secondary flow 
and it is superposed on the main stream region 
towards the outer wall and creating a much thicker 
layer of slowly moving fluid at the inner wall, 
however, owing the enhanced mixing and 
momentum transfer due to the secondary flow, the 
total frictional loss of energy near the wall 
increases and the fluid experiences more resistance 
in posing through the pipe. 
 
1- Streamline Projection for Case1 

The differential equations of the streamline is, 
  

W

dZ

V

dxR

U

dX





)(   … (40) 

The velocity components, (U, V, W) are to be 
obtained from equations (36) and (37). Up to 
sufficient accuracy equation (40) may be written as 
 

  W

dZ

z
d

h
xV

dRd

U

dX

o
















2

2

2
2

4

1
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It is clear that all the variables are in the 
dimensional form. 

 
1-1 Streamline Projection in the Central 
Plane: 

The motion of the liquid in the central plane of 
the pipe is of special simplicity .At any point on 
OC we have z = 0 and /x = 0, -1 < x < 1 which 
mean that w vanishes; (i.e. the liquid particles 

located in the central plane do not possess the w 
component of velocity which is responsible of 
moving them out of this (x = 0) plane). As a result 
the direction of the velocity at such point in the 
liquid lies in the central plane. Thus the motion in 
the upper half of the pipe is quite distinct from that 
in the lower half and it is clear that the central 
plane is the plane of symmetry for the motion. 
The differential equation of the streamline in the 
central plane is 
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               … (42) 

From the dimensional analysis we have 
 

d

vu
U                 … (43) 

Then by suing equations (43) and (10) we obtain 
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Where 


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


R

d
RL e

22  

Substituting equation (44) into equation (42) we 
obtain 
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Where Re = Vo d/  , is Reynolds number which 
specify the nature of flow. 
Substituting for f1 from (36) into (45) and solving 
the resulting differential equation we obtain 
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... (46) 
Where 
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And  
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                                                              ... (47) 
Where  
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h




, 044.016.0    

Here  is measured from the point where the 
streamline cross the central plane (x = 0) . The (x, 
) relation is independent of the dimension of the 
cross-section. 
For a given value of x, the range of  varies with 
the dimensionless parameters Re and ; in the case 
of Newtonian fluid (= 0)the range of  varies 
inversely with Re and for a fixed value of Re the 
range of  increase as  decreases. It is found that 
an increase in  leads to a decrease in the curvature 
of the streamlines in the central plane. 
It is noted that the value of  increases steadily 
with x and tends to infinity as x tends to unity and 
 tends to minus infinity as x tends to minus one. 
Numerical illustration is now given for a particular 
boundary and Reynolds number considered by 

Dean [5], namely Re =63.3, 
3

1


R

d
and for 

different values of the parameters ,k,L and   time 
. 
Fig. (3, 4), illustrate the streamline projection in 
the central plane. The streamline grows smoothly 
along the central plane and merges with the outer 
wall of the pipe. This shape is greatly affected by 
the nonlinear stresses. The non-linear stresses 
force the flow to be around the inner wall for a 
quite angular distance, the flow centrifugal force 
forces the direction to sharply move in a radial 
direction but the flow steers near the outer wall 
again. This phenomenon becomes very clear as, 
the non-Newtonian parameter, increase through 
the interval (-,)\ [-0.16, 0.044], see Fig. (3). 
inversely it is disappearing as  varies from -0.16 
to 0.044 Fig. (4)  

 
1-2 Streamline Projection on the Cross-
Section of the Pipe: 

The streamline projection on the cross-section 
for a curved pipe are represented by   

f1 = Constant 
Where f1 is given by (36), which is combination of 
the radial and vertical velocity. The nature of the 
closed curved streamline for various fluid changes 
because of the non-Newtonian parameter. 
The factors that affected on the secondary flow 
and  -component velocity as can be seen from 
equations (36) and (37) are the frequency 
parameter k, the non-Newtonian parameter, Dean 
number D and the time. 

Sixty eight cases have been studied to cover the 
effect of each of these factors on the secondary 
flow and  -component velocity. All figures (7-30) 
show that, there are two symmetrical regimes of 
secondary flow to appear in the cross-section in 
curved pipe. Also, it is noted that the intensity of the 
secondary flow is stronger in the middle of each of 
the upper and lower of the cross-section and 
becomes weaker when the more toward the 
boundary and the central plane. 
For  increase through the interval (-,)\    [-
0.16, 0.044], k = l.77 and L = 0.01 it is found that 
there is small vertical displacement away from the 
central plane, and the intensity of the secondary 
flow increases, see Fig. (7, 8). 
In fig. (9-12) when  = 1 and for k and L greater 
than zero, it is noted that the effect of k and L on 
the displacement of the secondary flow is the same 
as the effect of  and the intensity of secondary 
flow increase as k and L increase, but when ft is 
small, e.g.  = 0.044 and different values of k and 
L, there is no displacement but there is change in 
intensity of the stream function, see Fig. (13-16). 
Fig. (17-30) illustrated the effect of time on the 
streamline projection on the cross-section in 
curved pipe. In fig. (17-24), the values of ,k and L 
are 1, 1.77, and 0.01 respectively and  varies from 
0 to 6.28. As  varies from 0 to 2.05 ( is measured 
in radian) there is displacement toward the central 
plane and the streamline become thicker near the 
central plane, see Fig. (17-19). 
The transition stage from a two-vortex structure to 
a four-vertex structure occurs at  = 2.061; where 
two additional vortices start to grow near the 
corner of the inner and outer walls, see Fig (20). 
They are clearer at  = 2.07, see Fig. (21) and the 
twin vortices rotating in opposite direction of the 
main vortices appear. Also, at  increase it is noted 
that there are two stagnation regions near the 
corner of the inner and outer walls, Fig. (20), 
moving toward the center of the cross-section, Fig. 
(21). As  increases, it is observed that the vortices 
in upper and lower half of cross-section near the 
corner of the inner and outer walls of the pipe 
expand and make another secondary flow, because 
of continuity displacement of the main vortices 
toward the central plane as  increase, the new 
vortices control to the flow in pipe and become the 
main vortices, Fig.(22-24). 
When the value of  is small, e. g. 0.044, and for 
the same values of k and L (i.e. k = l.77 and L = 
0.01), the increasing in  from 0 to 6.28 lead to 
growth one vertex in each halve of the cross-
section (upper and lower the central plane) near 
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the boundaries, the vertices appear at   1.75, 
Fig.(26), and its direction opposite to main 
vortices. At  varies from 0 to 6.28, the main 
vertices displace to the central plane. So it reaches 
to stagnation regions, inversely the vertices that 
appear in upper and lower cross-section growth to 
take the location of the main vertices, see Fig. (25-
30). 

1-3 The Effect of Parameters, (β ,k ,L)and 
time ) on - Component Velocity: 

The effect of parameters, (,k,L and ) on -
component velocity illustrated in Fig.(35-47). It is 
noted that, parameters, k  a n d   have weak 
effect on the location of center of axial velocity, 
and the increase in  and k leads to an increase on 
the value of the axial velocity. For increasing L 
there is horizontal displacement in the center of the 
axial velocity toward the outer wall of the pipe, see 
Fig.(31-38). In Fig.(40-43) we noted that for small 
value for  , ( = 0.044), and the increase in k leads 
to increase in the intensity of the axial velocity but 
the increase in  and L have not effected, see 
Fig.(41,42). 

 
2- Streamline Projection for Case2 

As in case1, the differential equations of the 
streamline are 
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dxR

U

dX





)(   … (48) 

The velocity components, (U, V, W) are to be 
obtained from equations (38) and (39). Up to 
sufficient accuracy equation (48) may be written as 
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Also the expressions here appear in dimensional 
form. 
 
2-1 Streamline Projection in the Central 
Plane: 

This section has the same properties in the 
previous section for case1 and the differential 
equation of the streamline in the central plane is 
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In case 2 equation (43) becomes 
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Using equations (51) and (10) we obtain 
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Substituting equation (52) into equation (50), gives 
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Substituting for f1 from (38) into (53) and solving 
the resulting differential equation gives 
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And  
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Where  
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It noted that 0 has the same properties as in section 

(4.2.1), but it tends to infinity as x tends to 3
2  

and it is tend to minus infinity as x tends to - 3
2 . 

From fig. (5, 6), we noted that the stream line 
projection in the center plane has the same 
phenomenon describe in section (4.2.1) associated 
with similar effect of  but in slowly form. 
 
2-2 Streamline Projection on the Cross-
Section of the Pipe: 

Figures (44-60) illustrate the effect of  , k , L 
and  on the stream line projection' on the cross-
section in a curved pipe. It is found that there is no 
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displacement in a secondary flow as  , k and L 
increase. 
In addition, it is found that the intensity of the 
secondary flow increases as , k and L increase, 
see Fig.(44-49). Also, it is noted that there are two 
stagnation regions near the inner and outer walls 
moving toward the center of cross-section as  , k 
and L increase. 
As  increases and the values of , k and L are 10, 
1.77 and 0.01 respectively, there is displacement 
toward the boundaries and the streamlines become 
thicker near the boundaries, Fig. (50). The 
transition stage from a stage from a two-vortex 
structure to a four-vertex structure occurs at = 1 
.85 ; where two additional vortices start to grow 
near the inner and outer walls, see Fig.(51), the 
twin vortices rotating in opposite direction of the 
main vortices appear. Also, at  increase it is noted 
that there are two stagnation regions near the inner 
and outer walls moving toward the center of the 
cross-section, see Fig.(50). 
For  >1.85, the stagnation regions start to move 
toward the center of cross-section causes 
displacement to main vortices toward the 
boundaries with the new vortices near the inner and 
outer walls move toward the center of cross-section 
to reach the main vortices, see Fig.(52-54). 
Fig.(55-60), illustrate the effect of k, L and  
when  is small such as =0.024, it is noted that 
there is small displacement toward the central plane 
as  , k , L and  increases and the intensity increase 
as these factors increase. 
Finally, it is observed that the effect of each of 
the factors (, k , L  and ) on -component 
velocity have the same effect in case1 (except L has 
stronger effected than in case1) see Fig.(61-74). 
 
Comparison between Case1 and Case2 with 
Some Conclusions 

For streamline projection in a central plane of 
the pipe, it is noted that as  increases, the effect 
in case1 is stronger than case2. 
Regarding streamline projection in the cross-
section, in case l it is noted that the increase in , 
k and L lead to a weak displacement away from 
center plane and the intensity increases as these 
factors increase, while in case2, the increase in 
these factors lead to increase in the intensity 
(different from that in case l) of the secondary flow 
but there is no displacement. 
In addition to that, in case1 the increase in  leads 
to a displacement toward the central plane and the 
streamline become thicker near central plane. 

At  = 2.061 -there exist four-vortex structure near 
the corner of the inner and outer walls of the pipe; 
while in case2, the displacement was toward the 
boundaries occur and the streamline become thicker 
near the boundaries as  increase. The four-
vortex structure near the inner and outer wall 
appear at  =1.85. Also, for small values of , in 
case1 it is noted that there exist two-vortex 
structure and the displacement toward the central 
plane but there is no such they in case2. 
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