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Abstract

This study is concerned with the unsteady flow of non-Newtonian, viscous,
incompressible fluid in a curved pipe with rectangular cross-section, under the action of
pressure gradient. An orthogonal coordinate system has been used to describe the fluid
motion and it is found that the motion equations are controlled by three parameters namely;
Dean number, non-Newtonian parameter and frequency parameter. Solution for the
secondary flow and the axial velocity are droved as perturbation over straight pipe. Firstly
the expansion was in terms of Dean number and secondly in terms of frequency
parameter. Perturbation equations are solved by using variation method namely, Galerkin's
method, after eliminating the dependency on time. The solutions have been developed
in Cartesian coordinate for harmonic and biharmonic equations. The effect of the non-
dimensional parameters mentioned above on the secondary flow, the axial velocity and
the flow in the centre plane is considered. In this study we covered the steady state under
consideration.
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Introduction

Viscous flow through straight ducts of various
cross-section forms is well understood. The flow in a
gently curved duct may be considered as a
modification of straight axial flow in which the
effect of centrifugal forces must be considered.
Dean, [5]; is that first researcher who works in flow
analysis of Newtonian fluids in curved pipes. He
introduced a toroidal coordinate system to show that
the relation between pressure gradient and the rate
of flow through a curved pipe with circular cross-
section of incompressible Newtonian fluid is
dependant on the curvature. In that paper he could
not show this dependence but he did it in his second
paper, [6]; where he modified his analysis by

including higher order terms to be able to show
that the rate of flow is slightly reduced by
curvature.

Dean and Harst ,[7] ;obtained an approximate
solution of Newtonian fluid flow in a curved pipe
with rectangular cross- section assuming that the
secondary motion is a uniformly stream from inner
to outer bend. They modeled the equations of motion
by using cylindrical coordinates. This assumption
enabled them to obtain Bessel's function solution.
They argued that the secondary motion decreases
the rate of flow produced by a given pressure
gradient and causes an outward movement at the
region where the prime motion is the greatest.
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In his paper Jones, [11]; makes a theoretical analysis
of the flow of incompressible Non-Newtonian
viscous liquid in a curved pipe with circular cross-
section keeping only the first order terms. He shows
that the secondary motion consists of two
symmetrical vortices and the distance of the stream
lines from the central plane decreases as the Non-
Newtonian parameter increases.

Past work on fully developed flow in a curved
square duct includes numerical studies by Mori,
Uchida & Ukon, [13]; who obtained a numerical
solution by using boundary-layer approximation
(valid for large Dean numbers); Cheng. Lin & Ou,
[4]; Ghia & Shokhey, [9]; and Joseph Smith &
Adler, [12]; who obtained solutions which
predicted the existence of a weak second vortex
pair near the outer wall above a certain value of the
Dean number. This second vortex pair was found to
rotate in the opposite manner to the primary vortex
pair. Cheng et al, [4]; predicted the onset of second
vortex pair to occur when a Dean number is>150.
Ghia & Sokhey,[9] predict in it to occur above a
Dean number of 143 while the calculations of
Joseph et a/,[18] give a threshold Dean number of
152 since the curvature ratio (whose effect is
embedded in the Dean number) may itself play an
important role for highly curved ducts. The
suitability of the Dean number as the sole parameter
to characterize the onset of the second vortex pair is
unclear.

For curved rectangular ducts Cheng et al ,[4] ;
performed calculation for duct aspect ratio
(defined as the ratio of height H to the width B) of
0.5, 2 and 5 for the range of the Dean number 15.9
to 312.7 at curvature ratios of 100 and 30. They
reported that for an aspect ratio of 0.5 at L=176 there
were no additional vortices and at L=200 there was
a pair of very weak vortices close to the outer wall.
In addition they found that for an aspect ratio of 5a
pair of secondary vortices appeared at a rather low
Dean number of 76 and the eye of the primary vortex
moved toward the upper and the lower walls with the
increase of Dean number.

Winters, K. H., [18]; considers the bifurcation of
secondary solutions for fully developed laminar
flow in curved rectangular ducts. The study is based
on finite-element analysis and shows the existence
of the multiple solutions arising from the non-linear
equations for the range of aspect ratio from 0.8 to 1.6.
Ravi Sankar, Nandakumar & Masliyah, [14];
consider the related problems of developing flow in
curved ducts. They have shown that for a range of
curvature ratios and Dean numbers the flow develop
into previously known two-and four- cell patterns
based on fully three-dimensional calculations
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using the parabolized form of the Navier-Stokes
equations. They have also shown that for loosely
coiled ducts (of curvature ratio of 100) outside a
narrow range of Dean number the solution exhibits
sustained oscillations in the axial direction and that
no stable steady solutions could be predicted.
Thangam and Hur, [17]; analyzed the secondary
flow of incompressible viscous fluid in a curved
duct by using a finite-volume method. It is shown
that as Dean number is increased the secondary
flow structure evolves into a double vortex pair for
low -aspect- ratio duct and roll cell for duct of high
aspect ratio. They found that for ducts of high
curvature the onset of transition from single vortex
pair to a double vortex pair or roll cells depends
on the Dean number and the curvature ratio
while for ducts of small curvature the onset can be
characterized by Dean number alone.

Jing-Wu Wang and Andrews, [10] ; use a non-
orthogonal coordinate system to study the effect of
the pitch ratio and curvature on the velocity
distribution of fully developed laminar flow of an
incompressible fluid in a helical duct with
rectangular cross-section. They used a numerical
method to solve the motion equations, they find that
the pitch ratio affects the pattern of the secondary
flow, two-vortex become a single vortex if the pitch
ratio is greater than 10 and for a certain level there
will be four vortexes to appear on the plan of the
cross-section.

Yakhot A., et al, [19]; studied a pulsating laminar
flow of a viscous, incompressible liquid in a
rectangular duct. The motion is induced under an
imposed pulsating pressure difference. The
problem is solved numerically. Difference flow
regimes are characterized by non-dimensional
parameters based on the frequency of the imposed
pressure gradient oscillation and the width of the
duct. The influence of the aspect ratio of the
rectangular duct and the pulsating pressure gradient
frequency on the phase lag, the amplitude of the
induced oscillating velocity, and the wall shear were
analyzed.

Abdul-Hadi, [1]; studied the unsteady flow of
incompressible non-Newtonian fluid in a curved pipe
with a square cross-section. He used a Galerkin
method which is variational method to solve the
equation of Navier-Stokes. He shown that a
secondary motion depends on three dimensional
parameters namely Dean number, non-Newtonian
and frequency parameters, also he studied the effect
of these three parameters on the secondary flow, axial
velocity and some other relation.

AL-Musawy, [2]; studied the flow of non-Newtonian
fluid in a curved duct with vary aspect ratio. In his
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computation he used a Galerkin method and finite-
difference to solve the equations of Navier-stokes.
He was shown that a secondary motion depend on
two dimensional parameters, also he studied the
effect of non-Newtonian and aspect ratio parameters
on the secondary flow and axial velocity.

Mathematical Consideration

Unsteady flow of non-Newtonian fluid in
curved pipe is considered. The non-Newtonian
fluid is characterized by equation of state of the form:

T, =2ne, +4§eijejk - (1)

Where T,,e,,n & are the stress, rate of strain,

viscosity  coefficient and normal  stress
respectively. [16]. Fig. (1) ,illustrates the
coordinates system that has been used. OZ is the
axis of the circle formed by the wall of the pipe. C
is the center of the section of the pipe by a plane
through OZ making an angle 6 with a fixed axial
plane. CO is the perpendicular drawn from C upon
OZ and is of length R .The plane through O
perpendicular to OZ and the line traced out by C
will be called the central plane and the central line
of the pipe respectively. Cartesian coordinates x
and z are drawn in the section of the pipe, where x
is parallel to OC and z parallel to OZ. The position
of any point Q is then specified by cylindrical
coordinate (x,0 , z), -d < x<dand -h <z <h
where d and £ are the length and height of the
cross-section respectively. The Cartesian system
(X,Y,Z) is related to the coordinate system in the
cross-section by the relations

X =R + x) Cos (0), Y=(R+x)Sin(0),Z=z ...(2)
where 0< 0 <27
Two cases will be examined for convenient length:

casel when d = 3, 1 = 2, see Fig. (1), and case2
when d=2, h=3 see Fig. (2)

&
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Fig. (1): Coordinates System
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Fig. (2): coordinates System

The equation of continuity is satisfied by the
introduction of a stream function y(X, z) such that

U=-Y - e
Oz ox
If we introduce non-dimensional variables for

casel by the equations

X z v V
X =—,z=—,r=ta,f=—,v=— ... (4
R L)
And for case 2
X v V
xi=—,zy=—,7=ta, f =—,v=— ... (5
=3 fEv-r )

Where h is the characteristic length instead of d
.Then from the stream function and the non-
dimensional variables, it can be shown that the
equations of motion may be reduce to the
following partial differential equations

vif=k? %sz + Lvﬂ{ii—iiJWf—

0z \Ox; 0zy 0Oz Ox
2 2
| OV OV v oy .. (6)
ox) 0x0z, 0Oz; ox}
V4v——2.31k2Cos(r)+kzav+(af6—6faJV+
T \Ox 0z; 0Oz Ox
o 0 ov o o*v (o*f o7
Bl ————— |V f+2p {— { +
Ox; 0z, 0z, Ox ox 0z \ dzf  Oxj
o*v [0°v o°v
Yi; —-— (D
ax1821 6x1 621
And the boundary conditions are:
= ai = l = 0,ontheboundary
ox, oz - (8)

v=0,ontheboundary

These equations can be seen to be controlled by
three parameters, a non-dimensional frequency
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2
parameter, k = d [ﬁ) the non- Newtonian
\4

2 53
parameter S = iz and Dean number L = 220; .
Where
2 2 4 4 4
vi= 9 +a— 4 _6_+ 0 0

PR - _
b

ot ozt ox' oxitozt oz

We impose a sinusoidal pressure gradient in time

with zero mean on the flow in the form of

_li( J JV,aCos(at) ... (9)

R 00
for convenient computation we will choose J=
23 1.
Where JV, o the amplitude of the applied pressure

gradient and a is is the angular frequency.

In what follows we shall omit the index of
coordinate system, it is understood that all
variables are non-dimensional form. To solve the
above system, (6)-(8), we will use successive
approximation method, which is equivalent to the
perturbation solutions of f and v in ascending
power of L . So the solution of the above system
can be developed by using

[zt =LA(z0)+L 5 (x20)+.

V(X, 2,£) =V (X, z,)+Lv, (x, 2,7) +L2V2 (x5, z,0)+.. .
We will limit ourselves to find the solution up to
the first order in L , similar procedures can be used
for higher order solutions, and the first order
solution provide good accuracy for the purpose. If
we substitute (10) in (6) - (8), and equate
coefficients of equal power in L; we obtain a series

.. (10)

of relations from which v,,f],v,,..can be
successively found .The equations are
— 2 Yo 231 Cos(r) . (11
20, &, v, N, &, 0
V=R SV, Sy EXEZ S azzj -.(12)
Py o @fa & )V &, 0, o, v,
et ék& & ox xax & & ...(13)

ol iy

The boundary conditions associated with the
above equations, (11)-(13) are:-
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o
ox Oz
v,=0,n=0.1.... ontheboundary

=0,ontheboundary

.. (14)

By similar procedure the equations of motion
for case 2 may be written as

2 0=k2%—2.31k2C0s(r) .. (15)
wﬁzkzavzflwo@n_ﬂ[zg;z 0;26;} .. (16)
kﬁ(gg @fa}, N, 0 &0
w\aa aa)’ \aa aa .(17)
ﬂazv ﬁ_g ﬁé‘zﬁ) 82\70_62\10
o\ & of ax| o &
273
Wherek:h( ] B = iz, —2;:0? and the
|4

boundary conditions associated with this system,
(15)-(17) are

9% _ o
h= Ty = = Qontheboundary [ gy
v,=0,n=0,L... ontheboundary

Method of solution

Galerkin's method is employed to solve the
equations of motion subjected to the associated
boundary conditions. [3], [8], [15]
1- Solution of Casel

The motion equations (11)-(13) are solved
subject to the boundary conditions (14), and as
follows

1-1 Solution for v,

If we substitute for v, by the expression
v, =k*vo +k*vg, + vy + kv, + OK') ... (19)
and equate the coefficient of equal power in k for
equation (11), then the following set of equations
are obtained

V2v,y, =—2Cos(7) .. (20)
V2, = o e
or
V2y,, = o .. (22)
or
2 N3
V2, = ..(23)
or
With vy =0, 1 =1,2,3,4 on the boundary.... (24)

Solution of (20) can be developed by assuming
that
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Vor = Vor1(x,2)Cos(7) ... (25
Substituting equation (25) in (20) we get
V2vy, =231 ... (26)

So the employed Galerkin's method is equivalent to
the assuming of solution in the form

Voui :ao(l—xz)(g—zz)

Where ay is a constant to be determined. It is found
that the solution of (27) is

.. (27)

VOH:(l—xz)(g—ﬁ] ... (28)
Thus the complete zeroth order solution is
Voi :(l—x2 )(%—zszos(f) ...(29)

If we substitute equation (29) in equation (21) and
using the procedure of Galerkin's method, the
solution of V, is found to be of the form

Vo :(l—xz)[g—zzj(al +a,x’ +a,z’ +a4xzzz)Sin(T)

... (30)
Where a; a,, a; and a4 are constants.
Similarly, solution for vo; and vo4 can be found.
Finally zero order solution for v, is obtained.
The substituting of these solutions into equation (19)
give; the solution for v, ,as

Vo :kz(l—xz(g—zzJ[COS(T)+k2(al +a2x2 +

a3z +a,x 2% Sin(t) + k* (b, + byx? + byz? +byx?z?

byx* +bex*z? + bzt +bex?z* + boxz*)Cos(z) +
6 2 2 22 4 4_2
k' (c,+cy)x” +cz” +e,x"z" +ex” +egx'zT +
ezt +egxzt +egxtzt 4o px® + o X027 +
6 6 26 4_6 6_6
CX'ZHCRZ X 20 +05X 20 40X 27)

Sin(t)]+ O(k'®) ... (31)

1-2 Solution for f;:

The equation (12) contains the function v,,
which is now known through the solution (31). If
we substitute v, into (12), then that equation will
contain only one unknown function which isf,, the
solution for f is obtained as a perturbation in terms
of the parameter k as follows:-

fi =k, +k° £, + O®) ... (32)
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The recursive equations for fi,i =1,2are obtained on
equating the coefficients of equal powers in k. Again, we
proceed to eliminate the time variable and generate a
solution as an expansion in non-dimensional parameter
S5. Then the solution for f; is found to be of the form

A :k4(f111 +ﬁf112)C0S2(T)+k6(f121 +

... (33)
Bf122)Cos(7)Sin(t) + O(k*)
1-3 Solution for vi:

Assume that

v, = kOvy +kBv,, +O(K') ... (3%

Then the solution for v, is found to be of the form

Vi = K l(Vm + Vi +:32V113 )C0S3(T) + kZ(VIZI + BVin

+ B2V, JCos> (0)Sin(z)Sin(r) + Ok ... (35)
Finally, substitute the solutions vy, f; and v, into
(10), the stream function and the axial velocity can
be written in a convent form

Sf(x,z,7) = Lfi(x,2,7)
[(x,2,7) = LI (fi11 + Bfi12)Cos” (0) + k°(fi
+ fi12)Cos(2)Sin(2)]
... (36)
v=vy+Lv,
BVin +,32V113)COS3(T)+Lk8(V121 + Vi +
B2V123)1Cos(7)? Sin(7) ...(37)
where all the above f's and v's are polynomials in x
and z.
If f and v are independent of t and &k = 1 the system

(11)-(13) will be reduced to corresponding system in
case of steady state.

2- Solution of case2
By similar procedure the solution of case 2 for
the stream function and the axial velocity are

f(x,z,7)=Lf (x,2,7)
ez, 7) = LIk (fiy + Bfi1n)Cos” (0) + kO (fi
+ Bf112)Cos(z)Sin(r)]
... (38)

v=vy+Lv,
Biiz + B7v113)Cos™ (2) + Lk (Vi) + Bvyn +
BV123)Cos(z)’ Sin(r) ... (39)
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Where all the above f's and v's are polynomials in
x and z.

Also if f and v are independent of t and k£ = 1 the
system (15)-(17) will be reduced to corresponding
system in case of steady state.

Results and Discussion

The secondary flow occurs in curved ducts or
curved pipes. Physically the parameter L (Dean
number) can be considered as the ratio of the
centrifugal force induced by circular motion of the
fluid to viscous force when a fluid flows through a
curved pipe. Pressure gradient directed towards the
center of curvature, is setup across the pipe to
balance the centrifugal force arising from
curvature. The fluid near the wall of the pipe is
moving more slowly than the fluid some way from
the wall owing to viscosity and therefore require
small pressure gradient to balance the local
centrifugal force. As a result of these different
pressure gradients, the faster-flowing fluid moves
outwards, whilst the slower-flowing fluid moves
inward. This flow is known as the secondary flow
and it is superposed on the main stream region
towards the outer wall and creating a much thicker
layer of slowly moving fluid at the inner wall,
however, owing the enhanced mixing and
momentum transfer due to the secondary flow, the
total frictional loss of energy near the wall
increases and the fluid experiences more resistance
in posing through the pipe.

1- Streamline Projection for Casel
The differential equations of the streamline is,

X _Rixdd 42 ... (40)
U 14 w
The velocity components, (U, V, W) are to be
obtained from equations (36) and (37). Up to
sufficient accuracy equation (40) may be written as

“ . o I

It is clear that all the wvariables are in the
dimensional form.

1-1 Streamline Projection in the Central
Plane:

The motion of the liquid in the central plane of
the pipe is of special simplicity .At any point on
OC we have z =0 and Oy/0x =0, -1 <x < 1 which
mean that w vanishes; (i.e. the liquid particles
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located in the central plane do not possess the w
component of velocity which is responsible of
moving them out of this (x = 0) plane). As a result
the direction of the velocity at such point in the
liquid lies in the central plane. Thus the motion in
the upper half of the pipe is quite distinct from that
in the lower half and it is clear that the central
plane is the plane of symmetry for the motion.

The differential equation of the streamline in the
central plane is

dx Rd*dO
TSR . - ... (42)
VO diz (d - X )
From the dimensional analysis we have
vu
U=— ... (43
: 43)

Then by suing equations (43) and (10) we obtain

YL
d oz

Where L =2R? (%j

atz=0 ... (44)

Substituting equation (44) into equation (42) we
obtain

dy __ -2R, 9| ... (45)
o 2 (  ,\ ozl
diz (l — xl )
Where Re = V,, d/v , is Reynolds number which
specify the nature of flow.

Substituting for f; from (36) into (45) and solving
the resulting differential equation we obtain

1 1+x h h+x
9=16 , n [pxj '[hfx)
3Re(aﬁ ﬂbl)h(h —1)

.. (46)
Where
he [“_1 + s J <0, fe(~0,00)/[-0.16,0.044]
a, + pb,
And
5 h
0= T —h .|:ln(1+xj +tan'l(xﬂ
ERe(a2+ﬁbl)h(h2+l) I-x h
.. (47)
Where
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h =(M]<o,—o.16sp’<o.o44
ay + pby
Here 0 is measured from the point where the
streamline cross the central plane (x = 0) . The (x,
0) relation is independent of the dimension of the
cross-section.
For a given value of x, the range of 0 varies with
the dimensionless parameters Re and £; in the case
of Newtonian fluid (/= 0)the range of 6 varies
inversely with Re and for a fixed value of Re the
range of 0 increase as £ decreases. It is found that
an increase in £ leads to a decrease in the curvature
of the streamlines in the central plane.
It is noted that the value of 0 increases steadily
with x and tends to infinity as x tends to unity and
0 tends to minus infinity as x tends to minus one.
Numerical illustration is now given for a particular
boundary and Reynolds number considered by

1
Dean [5], namely Re =63.3, EZgand for

different values of the parameters Sk L and time
T

Fig. (3, 4), illustrate the streamline projection in
the central plane. The streamline grows smoothly
along the central plane and merges with the outer
wall of the pipe. This shape is greatly affected by
the nonlinear stresses. The non-linear stresses
force the flow to be around the inner wall for a
quite angular distance, the flow centrifugal force
forces the direction to sharply move in a radial
direction but the flow steers near the outer wall
again. This phenomenon becomes very clear asp,
the non-Newtonian parameter, increase through
the interval (-oo,00)\ [-0.16, 0.044], see Fig. (3).
inversely it is disappearing as £ varies from -0.16
to 0.044 Fig. (4)

1-2 Streamline Projection on the Cross-
Section of the Pipe:

The streamline projection on the cross-section
for a curved pipe are represented by

f; = Constant
Where f; is given by (36), which is combination of
the radial and vertical velocity. The nature of the
closed curved streamline for various fluid changes
because of the non-Newtonian parameter.
The factors that affected on the secondary flow
and 6 -component velocity as can be seen from
equations (36) and (37) are the frequency
parameter %, the non-Newtonian parameter3, Dean
number D and the timez.
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Sixty eight cases have been studied to cover the
effect of each of these factors on the secondary
flow and 6 -component velocity. All figures (7-30)
show that, there are two symmetrical regimes of
secondary flow to appear in the cross-section in
curved pipe. Also, it is noted that the intensity of the
secondary flow is stronger in the middle of each of
the upper and lower of the cross-section and
becomes weaker when the more toward the
boundary and the central plane.

For f increase through the interval (-co,0)\  [-
0.16, 0.044], £ =1.77 and L = 0.01 it is found that
there is small vertical displacement away from the
central plane, and the intensity of the secondary
flow increases, see Fig. (7, 8).

In fig. (9-12) when =1 and for k and L greater
than zero, it is noted that the effect of £ and L on
the displacement of the secondary flow is the same
as the effect of £ and the intensity of secondary
flow increase as k and L increase, but when ft is
small, e.g. f= 0.044 and different values of £ and
L, there is no displacement but there is change in
intensity of the stream function, see Fig. (13-16).
Fig. (17-30) illustrated the effect of time on the
streamline projection on the cross-section in
curved pipe. In fig. (17-24), the values of Sk and L
are 1, 1.77, and 0.01 respectively and 7 varies from
0 to 6.28. As rvaries from 0 to 2.05 (7 is measured
in radian) there is displacement toward the central
plane and the streamline become thicker near the
central plane, see Fig. (17-19).

The transition stage from a two-vortex structure to
a four-vertex structure occurs at 7= 2.061; where
two additional vortices start to grow near the
corner of the inner and outer walls, see Fig (20).
They are clearer at 7= 2.07, see Fig. (21) and the
twin vortices rotating in opposite direction of the
main vortices appear. Also, at 7 increase it is noted
that there are two stagnation regions near the
corner of the inner and outer walls, Fig. (20),
moving toward the center of the cross-section, Fig.
(21). As rincreases, it is observed that the vortices
in upper and lower half of cross-section near the
corner of the inner and outer walls of the pipe
expand and make another secondary flow, because
of continuity displacement of the main vortices
toward the central plane as 7 increase, the new
vortices control to the flow in pipe and become the
main vortices, Fig.(22-24).

When the value of £ is small, e. g. 0.044, and for
the same values of £k and L (i.e. kK =1.77 and L =
0.01), the increasing in 7 from 0 to 6.28 lead to
growth one vertex in each halve of the cross-
section (upper and lower the central plane) near
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the boundaries, the vertices appear at 7 = 1.75,
Fig.(26), and its direction opposite to main
vortices. At 7 varies from 0 to 6.28, the main
vertices displace to the central plane. So it reaches
to stagnation regions, inversely the vertices that
appear in upper and lower cross-section growth to
take the location of the main vertices, see Fig. (25-
30).

1-3 The Effect of Parameters, (8,k,L)and

time 7) on 6- Component Velocity:

The effect of parameters, (4L and 7) on 6-
component velocity illustrated in Fig.(35-47). It is
noted that, parametersf, £k andr have weak
effect on the location of center of axial velocity,
and the increase in fand k leads to an increase on
the value of the axial velocity. For increasing L
there is horizontal displacement in the center of the
axial velocity toward the outer wall of the pipe, see
Fig.(31-38). In Fig.(40-43) we noted that for small
value for £, (= 0.044), and the increase in k leads
to increase in the intensity of the axial velocity but

the increase in £ and L have not effected, see
Fig.(41,42).

2- Streamline Projection for Case2
As in casel, the differential equations of the
streamline are

dX (R+x)d6 dZ

uorv W
The velocity components, (U, V, W) are to be
obtained from equations (38) and (39). Up to
sufficient accuracy equation (48) may be written as

... (48)

4
dx _ Rd'de _dz . (49)

U > W
(5
Also the expressions here appear in dimensional
form.

2-1 Streamline Projection in the Central
Plane:

This section has the same properties in the
previous section for casel and the differential
equation of the streamline in the central plane is

dx _ Rd’d
U Vo (dz - x2 )
In case 2 equation (43) becomes

... (50)
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vu
U=— ... (581
: (51)

Using equations (51) and (10) we obtain

YL
h oz

Where L = 2Re2(%j

atz=0 ... (52)
Substituting equation (52) into equation (50), gives
dx, _ —2Re 0f,

do _(hz ZJ'a_z _
L
dz

Substituting for f; from (38) into (53) and solving
the resulting differential equation gives

... (53)

1

2 +Xx ' —
0= T ;m[zé J +2 tan*'(;’—xj
4.Re(a, + i, )h(hz + 5] % A

... (59)
Where
h= [M] <0, 8 & (~0,0)/[~0.16,0.025]
a, + by
And
—h? 3 %*x}h o x
0= n| =In +2tan”" | =
4Re(a2+ﬂb1)h(h2+i) L [%‘x [h]}
9
... (55)
Where
a, + fbs
h=|—+—"2|<0,and —0.16 < £ <0.025
a, + pb,

It noted that 0 has the same properties as in section
(4.2.1), but it tends to infinity as x tends to %

and it is tend to minus infinity as x tends to - % .

From fig. (5, 6), we noted that the stream line
projection in the center plane has the same
phenomenon describe in section (4.2.1) associated
with similar effect of Sbut in slowly form.

2-2 Streamline Projection on the Cross-
Section of the Pipe:

Figures (44-60) illustrate the effect of 5, k, L
and T on the stream line projection’ on the cross-
section in a curved pipe. It is found that there is no
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displacement in a secondary flow as £, k and L
increase.

In addition, it is found that the intensity of the
secondary flow increases as f, k and L increase,
see Fig.(44-49). Also, it is noted that there are two
stagnation regions near the inner and outer walls
moving toward the center of cross-section as 3, k
and L increase.

As 7 increases and the values of S, k and L are 10,
1.77 and 0.01 respectively, there is displacement
toward the boundaries and the streamlines become
thicker near the boundaries, Fig. (50). The
transition stage from a stage from a two-vortex
structure to a four-vertex structure occurs at 1= 1
.85 ; where two additional vortices start to grow
near the inner and outer walls, see Fig.(51), the
twin vortices rotating in opposite direction of the
main vortices appear. Also, at T increase it is noted
that there are two stagnation regions near the inner
and outer walls moving toward the center of the
cross-section, see Fig.(50).

For t >1.85, the stagnation regions start to move
toward the center of cross-section causes
displacement to main vortices toward the
boundaries with the new vortices near the inner and
outer walls move toward the center of cross-section
to reach the main vortices, see Fig.(52-54).
Fig.(55-60), illustrate the effect of k, L and 7
when £ is small such as £=0.024, it is noted that
there is small displacement toward the central plane
as 3, k, L and rincreases and the intensity increase
as these factors increase.

Finally, it is observed that the effect of each of
the factors (£, k,L and 1) on EGcomponent
velocity have the same effect in casel (except L has
stronger effected than in casel) see Fig.(61-74).

Comparison between Casel and Case2 with
Some Conclusions

For streamline projection in a central plane of
the pipe, it is noted that as g increases, the effect
in casel is stronger than case2.
Regarding streamline projection in the cross-
section, in case | it is noted that the increase in S,
k and L lead to a weak displacement away from
center plane and the intensity increases as these
factors increase, while in case2, the increase in
these factors lead to increase in the intensity
(different from that in case 1) of the secondary flow
but there is no displacement.
In addition to that, in casel the increase in 7 leads
to a displacement toward the central plane and the
streamline become thicker near central plane.

Iraqi Journal of Science, Vol.48, No.1, 2007, PP. 182-199

At 7=2.061 -there exist four-vortex structure near
the corner of the inner and outer walls of the pipe;
while in case2, the displacement was toward the
boundaries occur and the streamline become thicker
near the boundaries as t increase. The four-
vortex structure near the inner and outer wall
appear at 7=1.85. Also, for small values of 4 in
casel it is noted that there exist two-vortex
structure and the displacement toward the central
plane but there is no such they in case2.
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