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Abstract

The process of combining images from multiple medical imaging sources while
minimizing distortion and loss of information is known as medical image fusion. It
improves the usefulness of medical imaging for diagnosing and treating medical
issues by maintaining every feature in the fused image. Many image fusion
techniques have been introduced recently, and significant progress has been made in
medical diagnosis. However, the fusion performance of these contemporary
methods may experience challenges such as distortion, noise, and blurring under
certain conditions. To address these drawbacks of the current methods, this work
presents a novel fusion methodology for enhanced visual clarity and detail
retention. A new decomposition technique with an edge-preserving smoother was
first described using Gaussian curvature and guided filters. The primary objective of
this approach is to preserve edge haloes while recovering the structural information.
The "weighted average" technique was used to merge source images based on the
weights computed based on significant edge details. This technique can enhance
contrast and highlight significant details in the fused image. The proposed
methodology was evaluated on multiple publicly available medical imaging
datasets. The quantitative evaluation indicates that the suggested fusion strategy for
multimodal image fusion improves the average image entropy (IE) by 5.8, Mutual
Information (MI) by 34.8%, Mean Structural Similarity Index Measure (MSSIM)
by 31%, and Edge Strength (Qasr) by 40% over the current methods,
demonstrating its potential applicability in clinical settings for accurate diagnosis.

Keywords: Gaussian curvature, Guided filter, Medical image fusion, Weighted
average, Qualitative, Quantitative evaluation.

1. Introduction

Medical imaging serves as a fundamental basis for clinical decision-making in the medical
journey of several patients. A wide range of clinical applications, including diagnosis,
computer-assisted detection, treatment planning, action, and therapy, can use medical
imagery. Medical imaging systems play a significant role in several clinical tasks. Still, the
increasing demand for the practical interpretation of complex medical images suggests that
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reliable automated methods are required to alleviate the growing burden on healthcare
professionals. Thus, Medical imaging science benefits from the development of advanced
computational tools for analyzing medical images [1,2]. Innovation, particularly in
registration, segmentation, reconstruction, fusion, detection, modeling, and tracking, is being
driven by the advancement of image capture, processing, and interpretation tools. Medical
images often present challenges such as noise, artifacts, and modal variability, and demand
prior knowledge to comprehend. Biomedical pictures can be noisy and contain many
modality-specific artifacts depending on the acquisition settings and techniques. For more
than two decades, research in medical image processing has diversified to include techniques
such as segmentation, enhancement, and fusion. Initially, it concentrated on standard image
analysis tasks, including segmentation, contrast enhancement, and registration. However, as
medical image processing has developed, the domain of imaging biomarker identification has
concentrated on converting functional data into pertinent biomarkers that can provide
information about a range of medical disorders [3-6].

Information from several multimodal images of the same scene is combined in image
fusion to create a single, cohesive image that is more detailed and clearer than the separate
images. This study's main topic is multimodal medical image fusion, integrating images of
the exact body location using techniques such as MRI, CT, PET, and SPECT. These medical
pictures depict a variety of characteristics, including metabolic activity, bone structure, and
other physiological specifics. Nonetheless, individual scans typically highlight specific
features, such as structural details or metabolic activity. For example, MRI provides high-
resolution structural details of soft tissues, while CT successfully distinguishes between
tissues with varied densities, including blood arteries and bones.

In contrast, PET and SPECT have low spatial resolution but concentrate on metabolic and

functional data. When combined, complementary qualities of these imaging
modalities improve spatial resolution and combine important features into a single image,
increasing diagnostic precision. These merged images help radiologists identify patients
thoroughly and create efficient treatment plans.
Traditional image fusion techniques, such as Non-Subsampled Contourlet Transform
(NSCT), Curvelet Transform (CVT), and Discrete Wavelet Transform (DWT), have been
widely used [7-8]. Nevertheless, these techniques frequently struggle to combine intricate
details from input imagery without adding artifacts. Deep learning approaches have become a
potent tool in combining images with the introduction of machine learning, which has
revolutionized the field [9]. In order to improve fusion quality in medical imaging, this work
presents a novel multimodal image fusion technique that uses progressive information
processing using Gaussian and guided filters. Numerous methods for fusing images have
been proposed over time. Agarwal et al. [10] created a hybrid medical image fusion method
incorporating wavelet transform and CVT. This technique produces high-quality fusion
outputs with fewer errors by employing CVT to segment input images onto overlapping tiles
and the wavelet transform to fuse sub-bands. A different method for multi-focus image fusion
combines Principal Component Analysis (PCA) with Stationary Wavelet Transform (SWT)
[11]. SWT breaks down images into smaller bands, but PCA-based algorithms prioritize
important features, resulting in images that are clearer and free of artifacts.

Bavirisetti and Dhuli [12] suggested an edge-preserving fusion technique for visible and
infrared pictures. In order to improve contrast and preserve important details, this technique
uses anisotropic diffusion to decompose images as approximation and detail layers, which are
then fused using the Karhunen-Lo¢ve transform using linear superposition. To minimize halo
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effects and preserve scale-specific details for more realistic fused images, another multiscale
decomposition technique separates base and detail layers using Gaussian filtering and Rolling
Guidance Filtering (RGF) [13]. Additionally, a rapid spatial filtering approach has been
presented [14], which evaluates image contrast with sharpness using gradient magnitude and
then creates a weight map using morphological operations and structure-preserving filters.
This procedure guarantees a natural-looking fused image. Lu et al. [15] suggested
optimization methods based on linked matrix and tensor factorization for multimodal picture
fusion, demonstrating improved reconstruction accuracy and noise resistance, as validated by
specific metrics.

Techniques like Laplacian re-decomposition (LRD) overcome the drawbacks of
conventional fusion methods, such as noise, blurring, and color distortion. LRD uses
Laplacian decision graph decomposition for picture improvement, combining overlapping
with non-overlapping domains to fuse complementary and redundant information efficiently.
For low-resolution pictures, Dogra et al. [16] presented a multimodal fusion technique
emphasizing ease of use and enhanced target detection for clinical applications. While Kumar
and Joshi [17] used NSCT to split images into sub-bands and extract features using
sophisticated inception models, Jose et al. [18] suggested an approach using Non-Subsampled
Shearlet Transform (NSST) for applications like adolescent identification. This technique
optimizes fusion decisions with multi-objective differential evolution, producing high-quality
images by inverse transformation. This article presents a mechanism of image fusion using a
novel image decomposition technique. The primary contributions of this work are as follows:
1. A novel method for image decomposition and extraction of detail layers of an image is
presented.

2. Detail layers were utilized to create weight maps for images that will be fused depending
on pixel significance.

3. Different benchmark datasets of brain tumors were used to evaluate the effectiveness of the
suggested mechanism.

2. Concepts of Proposed Method
2.1 Guided Image Filter
A method known as the guided filter (GF), which smooths images while preserving edge
information, analyzes the statistical properties of each pixel's immediate neighborhood to
determine the output of the guided filter [19, 20]. This technique smooths the input image
while maintaining the integrity of edge structures by connecting the output image to the
guiding image using a local linear model. Within a square window wy, with a guide image P
centered at pixel k, the output F of the filter at pixel i can be expressed mathematically as
follows:
FizmkPi+nk,Vi€Wk (1)
Where my, n;, are the coefficients that were computed using a local linear model within the
window w,, that were used to minimize the defined objective function related to image
smoothing and edge preservation as follows:
E(mi, i) = Tiew, (meP; +nye — 1) + emg) (2)
Where ¢ is the regularization control parameter. The optimal solution of equation (2) is given
by the following values of m;, and n,.
= Yiew, Pili—iE[Ik]
mg = = ka,%+s (3)

ng = E[l] — mypy 4)
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Where |w/| indicates the total count of pixels in wy, and y, o2 are the mean and variance in
wy while E[I,] is the expectation of I in wy. Once the linear coefficients were determined,
Equation (1) can be wused to solve for the output F; ; however, pixel-
distinct windows share with overlaps w;, Centered at k. To solve this problem, use the
filtered output from equation (5), which gives the average of all estimates of F;.

Fi = Wlpl + Tl_l (5)

2.2 Algorithm to compute the Gaussian curvature of an Image
Step 1: Let I is the image whose Gaussian curvature is to be computed.
Step 2: Gaussian curvature of [ is computed as follows:
(a) Obtain the smoothed image of I using equation (6)
I; = Gaussian(Iy, 3) (6)

2 2
Where Gaussian is a function of 2D, defined as (x,y,0) = 211102 exp (— ng ), with (x,y)

representing the spatial coordinates of an image.
(b) Compute the first-order partial derivatives of I along x and y directions to get a gradient.

al als
X = o and I, = ™ (7)
(c) Compute the second-order partial derivatives of I along x and y directions.
921 9?1 921
L, = EZS and I,, = WZS and I, = axa; )
(d) Compute the Gaussian curvature (K) of an image using the following relation
— Ixxlyy_la%y (9)

(A+IZ+13)?
The denominator (1 + 12 + 15)2 normalizes the curvature based on the image gradient.
2.3 Proposed algorithm of Image fusion
Step 1: Read the Input images [; and [, that needs to be fused.
Step 2: Compute the Gaussian curvatures of I; and I, and label them as K; and K.
Step 3: By taking Gaussian curvatures as guidance images, smooth each source image using a
guided filter.
I;1 = guided filter(I;,Kq,1,€) (10)
I, = guided filter(l,,K,,1,€) (11)

Where 7, € are the size of the neighborhood and regularization parameters of the guided
filter, which were taken as 15 and 0.01.
Step 4: Detail layers that capture significant intensity variations among pixels were obtained
for each source image by subtracting the guided filter output from the respective source
images.
Ipy =1 — Iy (12)
Ip; =1 = g2 (13)
Step 5: Compute the weight of each pixel of the detail layer in each source image based on
their horizontal and vertical strength obtained from the Eigenvalues of the covariance matrix
as described in equations (17) to (21).
Wi(p,q) = Horizontal strength of Ip,(p,q) + Vertical strength of Ip;(p,q  (14)
W,(p,q) = Horizontal strength of Ip,(p,q) + Vertical strength of Ip,(p,q)  (15)
Where (p, q) specify the pixel locations, with each p and q varied from 1 to 256 for a
256x256 image.
Step 6: The fused image was computed by taking the weighted average of the source images
using the weights W, and W,
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W1 (p,@) 11 (p,@) + W2 (p,a)*I2(p.9) (16)
W1(p.9)+W2(p.q))
The detailed flow diagram of the proposed fusion mechanism is illustrated in Figure 1.

Fused Image, Iz (p, q) =

2.4 Weight Computation Based on Pixel Significance
The weights were determined by using statistical characteristics of surrounding base
coefficients [21]. In order to get the optimal weight, a square window of size NxN was taken
into account around the surrounding area of the detail coefficients. Ip(p,q). This
neighborhood was treated as matrix A. By treating the row as an event and the column as a
parameter of matrix A, equations (17) and (18) may be used to determine the covariance
matrix of A and an unbiased estimate of its covariance matrix, Cg’q (A).
Covariance(A)) = E[(A — E[A])(A — E[A]DT (17)

Ch(A) == %0 (4, — A)(4, - A)T (18)

Where A, indicates z" observation of N-dimensional parameters while A indicates its
mean. It was determined that a vector of variances was provided for each column of matrix A
by the diagonal elements of the matrix C}pl’q. The eigenvalues were calculated for the matrix
Cf{q, and the number of eigenvalues is exactly equal to the size of the matrix Cﬁ'q.The
horizontal strength of the base coefficient at position (p, q) was described by the sum of all
these Eigenvalues. Similarly, the vertical strength of the base coefficient at position (p, q) was
described by the sum of all the Eigenvalues of the matrix C5'%, which is an unbiased estimate
of the covariance matrix generated from the matrix by now treating the row as a parameter
while treating the column as an event.

Horizontal strength (p,q) = Y)_, Eigen, of C51 (19)
Vertical strength (p,q) = Y3_, Eigen, of C}"* ©(20)

By adding the Horizontal strength and Vertical strength, the overall weight W of
the base coefficient at a location (p,q) can be estimated, which depends on the strengths of
pixels and their intensity values

W (p,q) = Horizontal strength (p,q) + Vertical strength (p, q) (21)

3. Results and Discussion
3.1 Subjective Analysis

Five MRI and CT scan datasets containing brain images, denoted as "Dataset-1" through
"Dataset-V," were chosen to assess the efficacy of the suggested image fusion technique.
These datasets consist of the following: sagittal perspective images of the brain as well as
skull (Dataset-IV), a brain having cerebellar metastases (Dataset-V), a brain of a patient with
fatal hemorrhage (Dataset-II), a brain that has neoplastic cancer (Dataset-11I), and a healthy
brain (Dataset-I). Every image was composed of 256 grayscale levels and measures 256 by
256 pixels. The Benchmark Atlas of the brain can be accessed at
[http://www.med.harvard.edu/aanlib’/home.html], where the datasets were obtained from [22].
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Figure 3: Fused results of Dataset-11 (CT-MRI of Fatal stroke)
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(c) SR (d) DWT

(e) NSST (f) LAP (g) Guided filter (h) Proposed
Figure 6: Fused results of Dataset-V (CT-MRI of Cerebella metastasis)
Figure 2 displays the fusion findings for Dataset-1, with corresponding MRI and CT

images in Figs. 2(a) and (b). The results of various fusion strategies are presented in Figs.
2(c) through (h), including guided filter approaches, the suggested method, Convolutional
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Neural Network (CNN), Sparse Representation (SR), Discrete Wavelet Transform (DWT),
and Non-Subsampled Shearlet Transform (NSST). Although the connective tissue details
obtained through the MRI and the skeletal structure from the CT were generally preserved,
there were observable differences in the preservation of detail and contrast across the
modalities. A yellow rectangle highlights the distinctions between the various fusion
techniques. The fused images, as displayed in Figs. 2(c) and (d) reveal a slightly faint
brightness in the highlighted area. However, information on the CT image is typically
preserved in the NSST and CNN fusion images, as seen in Figs. 2(e) and (f), but certain data
from the MRI image is typically lost. Compared to the suggested approach, which can retain
every aspect of the original image, the guided filter's visual clarity is equivalent. The contrast
of the guided filter was weaker than that of the proposed method, as seen in Figs. 2(g)—(h).
Dataset-II is the second set of medical images, and Fig. 3 shows the fusion results.

As seen in Fig. 3(d), using DWT leaves hard tissues, including bone structures, with little
visual impact and information. This low contrast issue is shown in Fig. 3(c). The other three
methods currently in use produced results that were not significantly different. The suggested
approach finds capturing pixel intensity fluctuations throughout rows and columns in CT
scans challenging, which results in a lower retention of CT information than the guided filter.
A third clinical dataset (Dataset-1I) was used in Figure 4(h) to compare the suggested method
with alternative methodologies. The fused image generated through the recommended
process exhibits strong contrast and meticulous preservation of soft tissue detail. Fusion
results for Datasets IV and V are shown in Figures 5 and 6. Techniques like NSST, DWT,
and SR do not accurately depict bone structures or retain important information from the
original pictures [23]. Conversely, the suggested approach demonstrates improved
performance, as indicated by higher scores in key evaluation metrics.

3.2 Objective Analysis

Qualitative and quantitative evaluation criteria must be applied to measure fusion
performance. In this paper, various fusion processes were assessed for their effectiveness
using quantitative assessment measures such as standard deviation (SD), mutual information
(MI), image entropy (IE), spatial frequency (SF), mean structural similarity (MSSIM), and
margin information retention (Qasr). Table 1 presents an explanation of these measurements.
Standard Deviation (SD), Mutual Information (MI), Spatial Frequency (SF), Image Entropy
(IE), Edge Strength (Qagr), and Mean Structural Similarity Index Measure (MSSIM) were
six commonly used metrics that were used to assess the quantitative performance of different
image fusion techniques across five benchmark datasets.
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Table 1: Formulae and significance of image quality assessment metrics

Performance Metric Mathematical formulae
For an image f (i, j) of size MXN, API = ﬁ DN WE((H)]
A higher value of API produces an image with more contrast.

It is a metric for the level of deviation in a mean collection of image
data.

1 M N
SD = mz Z(f(i, i) — API)?

i—1 j=1

Average Pixel Intensity (API)

Standard Deviation (SD)

It estimates the information content in an image. A larger value of H
indicates a greater amount of information content within the image. For
an image with a probability of pixel intensity distribution Py, entropy

Entropy (IE) was calculated as follows:
255

H= —Z P log (B
k=0

For two source images A4, B, and the fused image F , the Mutual
information is given as MI#? = MI(A,F) + MI(B,F)
AF
| MI(A,F) = ez Zyer P(A, Flog, 200
Mutual Information (MI) pp

B,F
MI(B, F) = Xzez Xyey (B, F)log, pz(oé)p(l)”)

The quantity of activity-level data transmitted from the source images
into the fused image was measured.
It measures the resolution level of an image. A higher value was
typically preferred for improved image quality.

SF(i,j) = JIRF(i, DI? + |CF (i, )2
Spatial Frequency (SF) RF(i,j) = ﬁ M, Z?’zz[l(i,j) —1(,j — D]?

CFG) = [y M, 1) = G = 1, )PP

Qagr represents the degree to which the edge information from the input
images transitions into the fused image. The evaluation is as follows:
Bdge Strength (Qasr )) 1 21 (Qar G DWa i ) + Qo (i W5 (i )

Qasr T I (Wa () + Wi (i, )
(2upapr + C1)(20yr + C2)

(1a® + pp® + C1)(04* + 052 + C2)
The variance of A is represented by ¢,2, the variance of F by o2, the
covariance of A and F by g5, and the mean of A and F by u, and yp,
Mean Structural Similarity Index respectively. Using two constants, C1 and C2, prevents the instability

Measure (MSSIM) that can arise from a division with a value close to zero. SSIM readings
are between 0 and 1, where 1 denotes exceptional quality and 0 denotes

poor quality. Less distortion is present in the fused image when the
MSSIM score is greater.

SSIM(A,F) + SSIM(B, F)

2

SSIM(A,F) =

MSSIM =

The results are summarized in Table 2. To make direct comparison easier, the best
values for each dataset were bolded. As demonstrated by its persistent superior results in M1,
IE, Qagr, and MSSIM, the suggested fusion method is successful at acquiring and retaining
important structural and visual information from the source images. The increased
information richness and decreased redundancy of fused output are indicated by larger Image
Entropy, while increased Mutual Information specifically shows a stronger preservation of
complementary information from both modalities. The enhanced Qagr values further support
the method's ability to preserve edge details with more accuracy. This is crucial in healthcare
and satellite images, in which boundary precision is essential. The structural integrity and
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perceived coherence of the fused results are highlighted by the high MSSIM ratings, which
are close to 1 across datasets. On the other hand, metrics such as SF and SD, which are
mostly related to texture sharpness and intensity fluctuation, display relatively similar values
among techniques. This implies that although conventional methods might preserve
fundamental levels of contrast and detail, they are unable to successfully incorporate the
semantic and perceptual quality of the input images, whereas the suggested method performs
better.

The average values of the four most important metrics (MI, IE, Qagpr, and MSSIM)
calculated over 30 typical slices from each of the five datasets are shown in Figure 7. The
suggested approach continuously outperforms current methods, such as transform-based
approaches (Discrete Wavelet Transform (DWT), Non-subsampled Shearlet Transform
(NSST)), deep learning models (Convolutional Neural Networks (CNN)), and filtering
strategies (Guided Filter), as the graphical comparison confirms. Notably, the suggested
approach more successfully preserves information substance, clarity, and structure across a
variety of fusion scenarios.

Table 2: Statistical evaluation of a proposed method for multimodal datasets

Standard InI}/(I)::::tlio Spatial Image Edge
Dataset type Method Deviation n Frequency Entropy Strength MSSIM
(SD) (MI) (SF) {E) (Qarr)

SR 30.82 2.57 11.68 5.80 0.5756 0.5122

DWT 4471 1.92 17.13 6.17 0.6073 0.5246

NSST 44.16 2.05 17.05 6.20 0.6816 0.5366

Dataset-I CNN 52.89 2.43 17.40 6.07 0.7184 0.5518
G““(ié‘;?“er 52.89 2.31 16.97 6.52 0.7210 0.5634

Proposed 57.79 4.43 21.00 6.80 0.9093 0.9922

SR 51.40 3.42 17.76 4.94 0.5178 0.8248

DWT 55.73 3.19 22.01 5.19 0.5051 0.7915

NSST 54.56 3.34 20.95 5.12 0.5887 0.8160

Dataset-IT CNN 59.92 3.34 21.93 4.89 0.5888 0.8146
G““gg‘;?“er 55.68 3.79 20.25 5.20 0.6028 0.8207

Proposed 59.05 4.76 21.48 4.82 0.8467 0.9941

SR 61.50 3.18 20.19 4.52 0.5157 0.7640

DWT 66.53 3.12 25.11 4.86 0.5473 0.7489

NSST 65.89 3.20 24.52 4.88 0.5971 0.7733

Dataset-IIT CNN 69.60 3.38 25.99 4.39 0.6042 0.7775
G““(lé‘gmer 69.63 3.34 24.39 5.05 0.6119 0.7762

Proposed 71.03 4.26 26.75 528 0.8363 0.9807

SR 69.84 3.33 28.98 7.56 0.4964 0.6532

DWT 76.80 3.08 35.94 7.41 0.4699 0.6263

NSST 79.49 3.23 34.60 7.44 0.5349 0.6628

Dataset-IV CNN 79.84 3.26 32.85 731 0.5171 0.6462
G““(ig;)ﬁ“er 75.36 3.52 34.30 7.60 0.5510 0.6602

Proposed 83.15 4.01 36.86 7.65 0.8631 0.9818

SR 51.71 3.19 17.58 5.4 0.4823 0.7427

DWT 55.72 2.80 22.28 536 0.4573 0.7098

NSST 53.79 2.94 21.47 5.44 0.5226 0.7311

Dataset-V CNN 61.11 3.18 23.06 4.83 0.5214 0.7448
G“‘C(lé‘;?lter 66.98 3.23 21.56 5.60 0.5330 0.7342

Proposed 72.91 4.20 26.07 5.62 0.8686 0.9895
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4. Result Analysis

According to the experimental results, low intensity and a lack of bone structural
knowledge lead to suboptimal fusion performance for (DWT) and Sparse Representation
(SR) methods. NSST and CNN do not effectively preserve textures and edges in the yellow-
highlighted area and guided filter techniques, although they produce a respectable visual
impression. On the other hand, the suggested technique successfully preserves critical
features of soft tissues and bone structure, leading to brighter and more vibrant fused images.
Standard deviation (SD), image entropy (IE), and spatial frequency (SF) are three of the six
metrics considered for evaluation. These metrics are frequently used to evaluate the quality of
fused images and identify intrinsic image features. IE measures the data entropy of the fused
image, SD indicates its contrast, and SF reflects its clarity. Higher SD values indicate a wider
gray-level distribution, which enhances contrast of the fused image. Current approaches often
include irrelevant details that artificially inflate these metrics.
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Figure 7: Comparative evaluation of the average value of quality assessment metrics

Three new metrics—Qagr, MSSIM, and MI—are introduced in this study to allow for a
more thorough objective assessment. In order to determine the quantity of information
retrieved, MI compares the pixel gray level distributions of the source image pair. MI rises
with the extraction of additional features and the increased clarity and activity of the fused
image. The source images' translation of edge information, including texture and
hard structures, into the fused output was evaluated by Qag/r, whereas MSSIM measures the
degree of distortion in the fused image. This metric becomes crucial in clinical applications
since larger values allow for more precise pathological evaluations based on edge details.
When compared to current methods, the suggested algorithm increases mutual information by
34.8%, image entropy by up to 5.8%, spatial frequency by about 27%, mean deviation by
22.8%, the structural similarity value by 31%, and edge sharpness by 40% compared to other
methods, according to statistical evaluation of experimental results. These enhancements
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show that the fused image has little distortion and a suitable balance of dense structures, soft
tissue details, prominent features, and important edge information.

5. Conclusion

This work presents a novel image decomposition technique for image fusion using a
Gaussian curvature filter and guided filter. In the proposed method, important details from
the source images are more efficiently extracted, and the weight of these details in the
original images was then calculated using image statistics. Utilizing the weighted average
approach, source images were combined to produce the fused image. The effectiveness of the
suggested method was validated through multiple comparative studies on CT and MR
images. Further research could look into various enhancements, such as incorporating deep
learning-based decomposition techniques or adaptation to optimize the real-time extraction of
relevant information. The method's versatility for therapeutic and diagnostic applications
could be increased by expanding it to incorporate additional imaging modalities or modifying
it for real-time fusion.
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