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Abstract 

     The process of combining images from multiple medical imaging sources while 

minimizing distortion and loss of information is known as medical image fusion. It 

improves the usefulness of medical imaging for diagnosing and treating medical 

issues by maintaining every feature in the fused image. Many image fusion 

techniques have been introduced recently, and significant progress has been made in 

medical diagnosis. However, the fusion performance of these contemporary 

methods may experience challenges such as distortion, noise, and blurring under 

certain conditions. To address these drawbacks of the current methods, this work 

presents a novel fusion methodology for enhanced visual clarity and detail 

retention. A new decomposition technique with an edge-preserving smoother was 

first described using Gaussian curvature and guided filters. The primary objective of 

this approach is to preserve edge haloes while recovering the structural information. 

The "weighted average" technique was used to merge source images based on the 

weights computed based on significant edge details. This technique can enhance 

contrast and highlight significant details in the fused image. The proposed 

methodology was evaluated on multiple publicly available medical imaging 

datasets. The quantitative evaluation indicates that the suggested fusion strategy for 

multimodal image fusion improves the average image entropy (IE) by 5.8, Mutual 

Information (MI) by 34.8%, Mean Structural Similarity Index Measure (MSSIM) 

by 31%, and Edge Strength  (QABF) by 40% over the current methods, 

demonstrating its potential applicability in clinical settings for accurate diagnosis.  

 

Keywords: Gaussian curvature, Guided filter, Medical image fusion, Weighted 

average, Qualitative, Quantitative evaluation. 

 

1. Introduction 

     Medical imaging serves as a fundamental basis for clinical decision-making in the medical 

journey of several patients. A wide range of clinical applications, including diagnosis, 

computer-assisted detection, treatment planning, action, and therapy, can use medical 

imagery. Medical imaging systems play a significant role in several clinical tasks. Still, the 

increasing demand for the practical interpretation of complex medical images suggests that 

              ISSN: 0067-2904 

mailto:sree.02476@gmail.com
https://sasi.ac.in/
https://sasi.ac.in/


Srikanth et al.                                       Iraqi Journal of Science, 2025, Vol. 66, No. 11, pp: 5271- 5283 

 

5272 

reliable automated methods are required to alleviate the growing burden on healthcare 

professionals. Thus, Medical imaging science benefits from the development of advanced 

computational tools for analyzing medical images [1,2]. Innovation, particularly in 

registration, segmentation, reconstruction, fusion, detection, modeling, and tracking, is being 

driven by the advancement of image capture, processing, and interpretation tools. Medical 

images often present challenges such as noise, artifacts, and modal variability, and demand 

prior knowledge to comprehend. Biomedical pictures can be noisy and contain many 

modality-specific artifacts depending on the acquisition settings and techniques. For more 

than two decades, research in medical image processing has diversified to include techniques 

such as segmentation, enhancement, and fusion. Initially, it concentrated on standard image 

analysis tasks, including segmentation, contrast enhancement, and registration. However, as 

medical image processing has developed, the domain of imaging biomarker identification has 

concentrated on converting functional data into pertinent biomarkers that can provide 

information about a range of medical disorders [3-6].  

 

     Information from several multimodal images of the same scene is combined in image 

fusion to create a single, cohesive image that is more detailed and clearer than the separate 

images. This study's main topic is multimodal medical image fusion, integrating images of 

the exact body location using techniques such as MRI, CT, PET, and SPECT. These medical 

pictures depict a variety of characteristics, including metabolic activity, bone structure, and 

other physiological specifics. Nonetheless, individual scans typically highlight specific 

features, such as structural details or metabolic activity. For example, MRI provides high-

resolution structural details of soft tissues, while CT successfully distinguishes between 

tissues with varied densities, including blood arteries and bones. 

 

     In contrast, PET and SPECT have low spatial resolution but concentrate on metabolic and 

functional data. When combined, complementary qualities of these imaging 

modalities improve spatial resolution and combine important features into a single image, 

increasing diagnostic precision. These merged images help radiologists identify patients 

thoroughly and create efficient treatment plans. 

Traditional image fusion techniques, such as Non-Subsampled Contourlet Transform 

(NSCT), Curvelet Transform (CVT), and Discrete Wavelet Transform (DWT), have been 

widely used [7-8]. Nevertheless, these techniques frequently struggle to combine intricate 

details from input imagery without adding artifacts. Deep learning approaches have become a 

potent tool in combining images with the introduction of machine learning, which has 

revolutionized the field [9]. In order to improve fusion quality in medical imaging, this work 

presents a novel multimodal image fusion technique that uses progressive information 

processing using Gaussian and guided filters. Numerous methods for fusing images have 

been proposed over time. Agarwal et al. [10] created a hybrid medical image fusion method 

incorporating wavelet transform and CVT. This technique produces high-quality fusion 

outputs with fewer errors by employing CVT to segment input images onto overlapping tiles 

and the wavelet transform to fuse sub-bands. A different method for multi-focus image fusion 

combines Principal Component Analysis (PCA) with Stationary Wavelet Transform (SWT) 

[11]. SWT breaks down images into smaller bands, but PCA-based algorithms prioritize 

important features, resulting in images that are clearer and free of artifacts. 

 

        Bavirisetti and Dhuli [12] suggested an edge-preserving fusion technique for visible and 

infrared pictures. In order to improve contrast and preserve important details, this technique 

uses anisotropic diffusion to decompose images as approximation and detail layers, which are 

then fused using the Karhunen-Loève transform using linear superposition. To minimize halo 
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effects and preserve scale-specific details for more realistic fused images, another multiscale 

decomposition technique separates base and detail layers using Gaussian filtering and Rolling 

Guidance Filtering (RGF) [13]. Additionally, a rapid spatial filtering approach has been 

presented [14], which evaluates image contrast with sharpness using gradient magnitude and 

then creates a weight map using morphological operations and structure-preserving filters. 

This procedure guarantees a natural-looking fused image. Lu et al. [15] suggested 

optimization methods based on linked matrix and tensor factorization for multimodal picture 

fusion, demonstrating improved reconstruction accuracy and noise resistance, as validated by 

specific metrics. 

 

        Techniques like Laplacian re-decomposition (LRD) overcome the drawbacks of 

conventional fusion methods, such as noise, blurring, and color distortion. LRD uses 

Laplacian decision graph decomposition for picture improvement, combining overlapping 

with non-overlapping domains to fuse complementary and redundant information efficiently. 

For low-resolution pictures, Dogra et al. [16] presented a multimodal fusion technique 

emphasizing ease of use and enhanced target detection for clinical applications. While Kumar 

and Joshi [17] used NSCT to split images into sub-bands and extract features using 

sophisticated inception models, Jose et al. [18] suggested an approach using Non-Subsampled 

Shearlet Transform (NSST) for applications like adolescent identification. This technique 

optimizes fusion decisions with multi-objective differential evolution, producing high-quality 

images by inverse transformation. This article presents a mechanism of image fusion using a 

novel image decomposition technique. The primary contributions of this work are as follows: 

1. A novel method for image decomposition and extraction of detail layers of an image is 

presented. 

2. Detail layers were utilized to create weight maps for images that will be fused depending 

on pixel significance.  

3. Different benchmark datasets of brain tumors were used to evaluate the effectiveness of the 

suggested mechanism.  

 

2. Concepts of Proposed Method 

2.1 Guided Image Filter 

     A method known as the guided filter (GF), which smooths images while preserving edge 

information, analyzes the statistical properties of each pixel's immediate neighborhood to 

determine the output of the guided filter [19, 20]. This technique smooths the input image 

while maintaining the integrity of edge structures by connecting the output image to the 

guiding image using a local linear model. Within a square window wk, with a guide image P 

centered at pixel 𝑘, the output 𝐹 of the filter at pixel 𝑖 can be expressed mathematically as 

follows: 

                                                       𝐹𝑖 = 𝑚𝑘𝑃𝑖 + 𝑛𝑘 , ∀𝑖 ∈ 𝑤𝑘                                                     (1) 

Where 𝑚𝑘, 𝑛𝑘  are the coefficients that were computed using a local linear model within the 

window 𝑤𝑘  that were used to minimize the defined objective function related to image 

smoothing and edge preservation as follows:  

                                          𝐸(𝑚𝑘, 𝑛𝑘 ) =  ∑ (𝑚𝑘𝑃𝑖 + 𝑛𝑘 − 𝐼𝑖)
2

𝑖∈𝑤𝑘
+ 𝜀𝑚𝑘

2)                          (2) 

Where 𝜀 is the regularization control parameter. The optimal solution of equation (2) is given 

by the following values of 𝑚𝑘 and 𝑛𝑘. 

                                                 𝑚𝑘 =

1

|𝑤|
∑ 𝑃𝑖𝐼𝑖−𝜇𝑘𝐸[𝐼𝑘]𝑖∈𝑤𝑘

𝜎𝑘
2+𝜀

                                                            (3) 

       𝑛𝑘 =  𝐸[𝐼𝑘] − 𝑚𝑘𝜇𝑘                                                                  (4) 
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Where |w| indicates the total count of pixels in 𝑤𝑘 and μk, σk
2 are the mean and variance in 

𝑤k while 𝐸[𝐼𝑘] is the expectation of I in wk. Once the linear coefficients were determined, 

Equation (1) can be used to solve for the output 𝐹𝑖 ; however, pixel-

distinct windows share with overlaps 𝑤𝑘  Centered at 𝑘 . To solve this problem, use the 

filtered output from equation (5), which gives the average of all estimates of 𝐹i. 

 

                                                            𝐹𝑖 = 𝑚𝑖𝑃𝑖 + 𝑛𝑖                                                                (5) 

 

2.2 Algorithm to compute the Gaussian curvature of an Image 

Step 1: Let 𝐼  is the image whose Gaussian curvature is to be computed. 

Step 2: Gaussian curvature of 𝐼 is computed as follows: 

(a)  Obtain the smoothed image of 𝐼 using equation (6) 

                                           𝐼𝑠 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝐼1, 3)                                                                   (6) 

Where 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is a function of 2D, defined as (𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 exp (−
𝑥2+𝑦2

2𝜎2 ), with (𝑥, 𝑦) 

representing the spatial coordinates of an image. 

(𝑏) Compute the first-order partial derivatives of 𝐼𝑠 along 𝑥 and 𝑦 directions to get a gradient. 

                                                        𝐼𝑥 =
𝜕𝐼𝑠

𝜕𝑥
       and  𝐼𝑦 =

𝜕𝐼𝑠

𝜕𝑦
                                                    (7) 

   (c) Compute the second-order partial derivatives of 𝐼𝑠 along 𝑥 and 𝑦 directions. 

                                                  𝐼𝑥𝑥 =
𝜕2𝐼𝑠

𝜕𝑥2       and   𝐼𝑦𝑦 =
𝜕2𝐼𝑠

𝜕𝑦2    and    𝐼𝑥𝑦 =
𝜕2𝐼𝑠

𝜕𝑥𝜕𝑦
                     (8) 

   (d) Compute the Gaussian curvature (𝐾) of an image using the following relation 

                                                       𝐾 =
𝐼𝑥𝑥𝐼𝑦𝑦−𝐼𝑥𝑦

2

(1+𝐼𝑥
2+𝐼𝑦

2)2                                                                          (9) 

The denominator (1 + 𝐼𝑥
2 + 𝐼𝑦

2)2 normalizes the curvature based on the image gradient. 

2.3 Proposed algorithm of Image fusion 

Step 1: Read the Input images I1 and I2 that needs to be fused. 

Step 2: Compute the Gaussian curvatures of I1 and I2 and label them as 𝐾1 and 𝐾2. 

Step 3: By taking Gaussian curvatures as guidance images, smooth each source image using a 

guided filter. 

                                                          𝐼𝐺1 = 𝑔𝑢𝑖𝑑𝑒𝑑 𝑓𝑖𝑙𝑡𝑒𝑟(𝐼1, 𝐾1, 𝑟, 𝜖)                                  (10) 

                                                          𝐼𝐺2 = 𝑔𝑢𝑖𝑑𝑒𝑑 𝑓𝑖𝑙𝑡𝑒𝑟(𝐼2, 𝐾2, 𝑟, 𝜖)                                 (11) 

 

      Where 𝑟, 𝜖 are the size of the neighborhood and regularization parameters of the guided 

filter, which were taken as 15 and 0.01. 

Step 4: Detail layers that capture significant intensity variations among pixels were obtained 

for each source image by subtracting the guided filter output from the respective source 

images. 

                                                      𝐼𝐷1 = 𝐼1 − 𝐼𝐺1                                                                  (12) 

                                                          𝐼𝐷2 = 𝐼2 − 𝐼𝐺2                                                               (13) 

Step 5: Compute the weight of each pixel of the detail layer in each source image based on 

their horizontal and vertical strength obtained from the Eigenvalues of the covariance matrix 

as described in equations (17) to (21). 

  𝑊1(𝑝, 𝑞) =  𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷1(𝑝, 𝑞) +  𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷1(𝑝, 𝑞       (14) 

 𝑊2(𝑝, 𝑞) =  𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷2(𝑝, 𝑞) + 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐼𝐷2(𝑝, 𝑞)       (15) 

Where (p, q)  specify the pixel locations, with each p and q  varied from 1 to 256 for a 

256x256 image. 

Step 6: The fused image was computed by taking the weighted average of the source images 

using the weights 𝑊1 and 𝑊2 
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Fused Image, 𝐼𝐹(𝑝, 𝑞) =  
(𝑊1(𝑝,𝑞)∗𝐼1(𝑝,𝑞)+𝑊2(𝑝,𝑞)∗𝐼2(𝑝,𝑞)

(𝑊1(𝑝,𝑞)+𝑊2(𝑝,𝑞))
                               (16) 

The detailed flow diagram of the proposed fusion mechanism is illustrated in Figure 1. 

 

2.4 Weight Computation Based on Pixel Significance 

     The weights were determined by using statistical characteristics of surrounding base 

coefficients [21]. In order to get the optimal weight, a square window of size NxN was taken 

into account around the surrounding area of the detail coefficients. 𝐼𝐷(p, q).  This 

neighborhood was treated as matrix A. By treating the row as an event and the column as a 

parameter of matrix A, equations (17) and (18) may be used to determine the covariance 

matrix of A and an unbiased estimate of its covariance matrix,  CH
p,q

(A). 

                      𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐴)) = 𝐸[(𝐴 − 𝐸[𝐴])(𝐴 − 𝐸[𝐴])𝑇                                              (17) 

 

                                                                 𝐶𝐻
𝑝,𝑞(𝐴) =

1

𝑁−1
∑ (𝐴𝑧 − 𝐴̅)(𝐴𝑧 − 𝐴̅)𝑇𝑁

𝑧=1                (18) 

 

        Where Az indicates zth  observation of N-dimensional parameters while A̅ indicates its 

mean. It was determined that a vector of variances was provided for each column of matrix A 

by the diagonal elements of the matrix CH
p,q

. The eigenvalues were calculated for the matrix  

CH
p,q

, and the number of eigenvalues is exactly equal to the size of the matrix CH
p,q

.The 

horizontal strength of the base coefficient at position (p, q) was described by the sum of all 

these Eigenvalues. Similarly, the vertical strength of the base coefficient at position (p, q) was 

described by the sum of all the Eigenvalues of the matrix  CV
p,q

, which is an unbiased estimate 

of the covariance matrix generated from the matrix by now treating the row as a parameter 

while treating the column as an event.  

                                            𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑝, 𝑞) = ∑ 𝐸𝑖𝑔𝑒𝑛𝑧 𝑜𝑓 𝐶𝐻
𝑝,𝑞 𝑁

𝑧=1                (19) 

 

                                            𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑝, 𝑞) = ∑ 𝐸𝑖𝑔𝑒𝑛𝑧 𝑜𝑓 𝐶𝑉
𝑝,𝑞 𝑁

𝑧=1              `    (20) 

 

        By adding the 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ and 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, the overall weight W of 

the base coefficient at a location (p, q) can be estimated, which depends on the strengths of 

pixels and their intensity values 

 

   𝑊(𝑝, 𝑞) =  𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑝, 𝑞) + 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ (𝑝, 𝑞)                          (21) 

 

3. Results and Discussion 

3.1 Subjective Analysis 

       Five MRI and CT scan datasets containing brain images, denoted as "Dataset-I" through 

"Dataset-V," were chosen to assess the efficacy of the suggested image fusion technique. 

These datasets consist of the following: sagittal perspective images of the brain as well as 

skull (Dataset-IV), a brain having cerebellar metastases (Dataset-V), a brain of a patient with 

fatal hemorrhage (Dataset-II), a brain that has neoplastic cancer (Dataset-III), and a healthy 

brain (Dataset-I). Every image was composed of 256 grayscale levels and measures 256 by 

256 pixels. The Benchmark Atlas of the brain can be accessed at 

[http://www.med.harvard.edu/aanlib/home.html], where the datasets were obtained from [22].



Srikanth et al.                                       Iraqi Journal of Science, 2025, Vol. 66, No. 11, pp: 5271- 5283 

 

5276 

 
Figure 1: Process flow proposed fusion mechanism 

 

 

       
          (a) MRI  image        (b) CT  image                    (c) SR                           (d) DWT 

 

         
               (e) NSST                 (f) CNN                        (g) Guided filter           (h) Proposed 

 

Figure 2: Fused results of Dataset-I (CT-MRI of healthy brain) 

 

        
          (a) MRI image          (b) CT  image                   (c) SR                            (d) DWT 

 

       
             (e) NSST                    (f) CNN                    g) Guided filter                  (h) Proposed 

Figure 3: Fused results of Dataset-II (CT-MRI of Fatal stroke) 
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(a) MRI image  

                                                 
            (b) CT image                (c)  SR  

 
      (d)  DWT 

 

             (e) NSST 
 

             (f) LAP 
 

(g) Guided filter           (h) Proposed 

 

Figure 4: Fused results of Dataset-III (CT-MRI of neoplastic tumor) 

 

     
        (a) MRI image           (b) CT image                     (c) SR                                (d) DWT 

 

 
             (e) NSST                      (f) CNN                  g) Guided filter                (h) Proposed 

 

Figure 5: Fused results of Dataset-IV (CT-MRI of brain skull) 

 

 
        (a) MRI  image          (b) CT  image                    (c)  SR 

 
     (d)  DWT  

 

 
      (e) NSST 

 
       (f) LAP 

 
 (g) Guided filter          (h) Proposed  

 

Figure 6: Fused results of Dataset-V (CT-MRI of Cerebella metastasis) 

 

        Figure 2 displays the fusion findings for Dataset-I, with corresponding MRI and CT 

images in Figs. 2(a) and (b). The results of various fusion strategies are presented in Figs. 

2(c) through (h), including guided filter approaches, the suggested method, Convolutional 
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Neural Network (CNN), Sparse Representation (SR), Discrete Wavelet Transform (DWT), 

and Non-Subsampled Shearlet Transform (NSST). Although the connective tissue details 

obtained through the MRI and the skeletal structure from the CT were generally preserved, 

there were observable differences in the preservation of detail and contrast across the 

modalities. A yellow rectangle highlights the distinctions between the various fusion 

techniques. The fused images, as displayed in Figs. 2(c) and (d) reveal a slightly faint 

brightness in the highlighted area. However, information on the CT image is typically 

preserved in the NSST and CNN fusion images, as seen in Figs. 2(e) and (f), but certain data 

from the MRI image is typically lost. Compared to the suggested approach, which can retain 

every aspect of the original image, the guided filter's visual clarity is equivalent. The contrast 

of the guided filter was weaker than that of the proposed method, as seen in Figs. 2(g)–(h). 

Dataset-II is the second set of medical images, and Fig. 3 shows the fusion results. 

As seen in Fig. 3(d), using DWT leaves hard tissues, including bone structures, with little 

visual impact and information. This low contrast issue is shown in Fig. 3(c). The other three 

methods currently in use produced results that were not significantly different. The suggested 

approach finds capturing pixel intensity fluctuations throughout rows and columns in CT 

scans challenging, which results in a lower retention of CT information than the guided filter. 

A third clinical dataset (Dataset-II) was used in Figure 4(h) to compare the suggested method 

with alternative methodologies. The fused image generated through the recommended 

process exhibits strong contrast and meticulous preservation of soft tissue detail. Fusion 

results for Datasets IV and V are shown in Figures 5 and 6. Techniques like NSST, DWT, 

and SR do not accurately depict bone structures or retain important information from the 

original pictures [23]. Conversely, the suggested approach demonstrates improved 

performance, as indicated by higher scores in key evaluation metrics. 

 

3.2 Objective Analysis 

       Qualitative and quantitative evaluation criteria must be applied to measure fusion 

performance. In this paper, various fusion processes were assessed for their effectiveness 

using quantitative assessment measures such as standard deviation (SD), mutual information 

(MI), image entropy (IE), spatial frequency (SF), mean structural similarity (MSSIM), and 

margin information retention (QABF). Table 1 presents an explanation of these measurements. 

Standard Deviation (SD), Mutual Information (MI), Spatial Frequency (SF), Image Entropy 

(IE), Edge Strength (QABF), and Mean Structural Similarity Index Measure (MSSIM) were 

six commonly used metrics that were used to assess the quantitative performance of different 

image fusion techniques across five benchmark datasets. 
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Table 1: Formulae and significance of image quality assessment metrics 
Performance Metric Mathematical formulae 

Average Pixel Intensity (API) 
For an image 𝑓(𝑖, 𝑗) of size 𝑀𝑋𝑁, 𝐴𝑃𝐼 =

1

𝑀𝑁
∑ ∑ f(𝑖, 𝑗)𝑁

𝑗=1
𝑀
𝑖=1  

A higher value of API produces an image with more contrast. 

Standard Deviation (SD) 

It is a metric for the level of deviation in a mean collection of image 

data. 

SD = √
1

MN
∑ ∑(f(i, j) − API)2

N

j=1

M

i−1

 

Entropy (IE) 

It estimates the information content in an image. A larger value of H 

indicates a greater amount of information content within the image. For 

an image with a probability of pixel intensity distribution Pk, entropy 

was calculated as follows: 

H = − ∑ Pk

255

k=0

log (Pk) 

Mutual Information (MI) 

For two source images 𝐴, 𝐵, and the fused image 𝐹 , the Mutual 

information is given as   𝑀𝐼𝐹
𝐴𝐵 = 𝑀𝐼(𝐴, 𝐹) + 𝑀𝐼(𝐵, 𝐹) 

𝑀𝐼(𝐴, 𝐹) = ∑ ∑ 𝑝(𝐴, 𝐹)𝑙𝑜𝑔2𝑦∈𝑌𝑧∈𝑍
𝑝(𝐴,𝐹)

𝑝(𝐴)𝑝(𝐹)
   

MI(𝐵, 𝐹) = ∑ ∑ 𝑝(𝐵, 𝐹)𝑙𝑜𝑔2𝑦∈𝑌𝑧∈𝑍
𝑝(𝐵,𝐹)

𝑝(𝐵)𝑝(𝐹)
 

The quantity of activity-level data transmitted from the source images 

into the fused image was measured. 

 

Spatial Frequency (SF) 

It measures the resolution level of an image. A higher value was 

typically preferred for improved image quality. 

𝑆𝐹(𝑖, 𝑗) = √|𝑅𝐹(𝑖, 𝑗)|2 + |𝐶𝐹(𝑖, 𝑗)|2 

𝑅𝐹(𝑖, 𝑗) = √
1

𝑀𝑥𝑁
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗 − 1)]2𝑁

𝑗=2
𝑀
𝑖=2                                  

𝐶𝐹(𝑖, 𝑗) = √
1

𝑀𝑥𝑁
∑ ∑ [𝐼(𝑖, 𝑗) − 𝐼(𝑖 − 1, 𝑗)]2𝑁

𝑗=2
𝑀
𝑖=2  

Edge Strength ((QABF )) 

QABF represents the degree to which the edge information from the input 

images transitions into the fused image. The evaluation is as follows: 

𝑄𝐴𝐵𝐹 =
∑ ∑ (𝑄𝐴𝐹(𝑖, 𝑗)𝑊𝐴(𝑖, 𝑗) + 𝑄𝐵𝐹(𝑖, 𝑗)𝑊𝐵(𝑖, 𝑗))𝑁

𝑗=1
𝑀
𝑖=1

∑ ∑ (𝑁
𝑗=1

𝑀
𝑖=1 𝑊𝐴(𝑖, 𝑗) + 𝑊𝐵(𝑖, 𝑗))

 

Mean Structural Similarity Index 

Measure (MSSIM) 

𝑆𝑆𝐼𝑀(𝐴, 𝐹) =
(2𝜇𝐴𝜇𝐹 + 𝐶1)(2𝜎𝐴𝐹 + 𝐶2)

(𝜇𝐴
2 + 𝜇𝐹

2 + 𝐶1)(𝜎𝐴
2 + 𝜎𝐹

2 + 𝐶2)
 

The variance of A is represented by 𝜎𝐴
2, the variance of F by  𝜎𝐹

2, the 

covariance of A and F by 𝜎𝐴𝐹 , and the mean of A and F by 𝜇𝐴 and 𝜇𝐹, 

respectively. Using two constants, 𝐶1 and 𝐶2, prevents the instability 

that can arise from a division with a value close to zero. SSIM readings 

are between 0 and 1, where 1 denotes exceptional quality and 0 denotes 

poor quality. Less distortion is present in the fused image when the 

MSSIM score is greater. 

𝑀𝑆𝑆𝐼𝑀 =
𝑆𝑆𝐼𝑀(𝐴, 𝐹) + 𝑆𝑆𝐼𝑀(𝐵, 𝐹)

2
 

 

        The results are summarized in Table 2. To make direct comparison easier, the best 

values for each dataset were bolded. As demonstrated by its persistent superior results in MI, 

IE, QABF, and MSSIM, the suggested fusion method is successful at acquiring and retaining 

important structural and visual information from the source images. The increased 

information richness and decreased redundancy of fused output are indicated by larger Image 

Entropy, while increased Mutual Information specifically shows a stronger preservation of 

complementary information from both modalities. The enhanced QABF values further support 

the method's ability to preserve edge details with more accuracy. This is crucial in healthcare 

and satellite images, in which boundary precision is essential. The structural integrity and 
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perceived coherence of the fused results are highlighted by the high MSSIM ratings, which 

are close to 1 across datasets. On the other hand, metrics such as SF and SD, which are 

mostly related to texture sharpness and intensity fluctuation, display relatively similar values 

among techniques. This implies that although conventional methods might preserve 

fundamental levels of contrast and detail, they are unable to successfully incorporate the 

semantic and perceptual quality of the input images, whereas the suggested method performs 

better.  

        The average values of the four most important metrics (MI, IE, QABF, and MSSIM) 

calculated over 30 typical slices from each of the five datasets are shown in Figure 7. The 

suggested approach continuously outperforms current methods, such as transform-based 

approaches (Discrete Wavelet Transform (DWT), Non-subsampled Shearlet Transform 

(NSST)), deep learning models (Convolutional Neural Networks (CNN)), and filtering 

strategies (Guided Filter), as the graphical comparison confirms. Notably, the suggested 

approach more successfully preserves information substance, clarity, and structure across a 

variety of fusion scenarios. 

 

Table 2: Statistical evaluation of a proposed method for multimodal datasets 

Dataset type Method 

Standard 

Deviation 

(SD) 

Mutual 

Informatio

n 

(MI) 

Spatial 

Frequency 

(SF) 

Image 

Entropy 

(IE) 

Edge 

Strength 

(QABF) 

MSSIM 

Dataset-I 

SR 30.82 2.57 11.68 5.80 0.5756 0.5122 

DWT 44.71 1.92 17.13 6.17 0.6073 0.5246 

NSST 44.16 2.05 17.05 6.20 0.6816 0.5366 

CNN 52.89 2.43 17.40 6.07 0.7184 0.5518 

Guided filter 

(GF) 
52.89 2.31 16.97 6.52 0.7210 0.5634 

Proposed 57.79 4.43 21.00 6.80 0.9093 0.9922 

Dataset-II 

SR 51.40 3.42 17.76 4.94 0.5178 0.8248 

DWT 55.73 3.19 22.01 5.19 0.5051 0.7915 

NSST 54.56 3.34 20.95 5.12 0.5887 0.8160 

CNN 59.92 3.34 21.93 4.89 0.5888 0.8146 

Guided filter 

(GF) 
55.68 3.79 20.25 5.20 0.6028 0.8207 

Proposed 59.05 4.76 21.48 4.82 0.8467 0.9941 

Dataset-III 

SR 61.50 3.18 20.19 4.52 0.5157 0.7640 

DWT 66.53 3.12 25.11 4.86 0.5473 0.7489 

NSST 65.89 3.20 24.52 4.88 0.5971 0.7733 

CNN 69.60 3.38 25.99 4.39 0.6042 0.7775 

Guided filter 

(GF) 
69.63 3.34 24.39 5.05 0.6119 0.7762 

Proposed 71.03 4.26 26.75 5.28 0.8363 0.9807 

Dataset-IV 

SR 69.84 3.33 28.98 7.56 0.4964 0.6532 

DWT 76.80 3.08 35.94 7.41 0.4699 0.6263 

NSST 79.49 3.23 34.60 7.44 0.5349 0.6628 

CNN 79.84 3.26 32.85 7.31 0.5171 0.6462 

Guided filter 

(GF) 
75.36 3.52 34.30 7.60 0.5510 0.6602 

Proposed 83.15 4.01 36.86 7.65 0.8631 0.9818 

Dataset-V 

SR 51.71 3.19 17.58 5.24 0.4823 0.7427 

DWT 55.72 2.80 22.28 5.36 0.4573 0.7098 

NSST 53.79 2.94 21.47 5.44 0.5226 0.7311 

CNN 61.11 3.18 23.06 4.83 0.5214 0.7448 

Guided filter 

(GF) 
66.98 3.23 21.56 5.60 0.5330 0.7342 

Proposed 72.91 4.20 26.07 5.62 0.8686 0.9895 
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4. Result Analysis 

       According to the experimental results, low intensity and a lack of bone structural 

knowledge lead to suboptimal fusion performance for (DWT) and Sparse Representation 

(SR) methods. NSST and CNN do not effectively preserve textures and edges in the yellow-

highlighted area and guided filter techniques, although they produce a respectable visual 

impression. On the other hand, the suggested technique successfully preserves critical 

features of soft tissues and bone structure, leading to brighter and more vibrant fused images. 

Standard deviation (SD), image entropy (IE), and spatial frequency (SF) are three of the six 

metrics considered for evaluation. These metrics are frequently used to evaluate the quality of 

fused images and identify intrinsic image features. IE measures the data entropy of the fused 

image, SD indicates its contrast, and SF reflects its clarity. Higher SD values indicate a wider 

gray-level distribution, which enhances contrast of the fused image. Current approaches often 

include irrelevant details that artificially inflate these metrics. 

 

    
Figure 7: Comparative evaluation of the average value of quality assessment metrics 

 

       Three new metrics—QABF, MSSIM, and MI—are introduced in this study to allow for a 

more thorough objective assessment. In order to determine the quantity of information 

retrieved, MI compares the pixel gray level distributions of the source image pair. MI rises 

with the extraction of additional features and the increased clarity and activity of the fused 

image. The source images' translation of edge information, including texture and 

hard structures, into the fused output was evaluated by QAB/F, whereas MSSIM measures the 

degree of distortion in the fused image. This metric becomes crucial in clinical applications 

since larger values allow for more precise pathological evaluations based on edge details. 

When compared to current methods, the suggested algorithm increases mutual information by 

34.8%, image entropy by up to 5.8%, spatial frequency by about 27%, mean deviation by 

22.8%, the structural similarity value by 31%, and edge sharpness by 40% compared to other 

methods, according to statistical evaluation of experimental results. These enhancements 
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show that the fused image has little distortion and a suitable balance of dense structures, soft 

tissue details, prominent features, and important edge information. 

 

5. Conclusion 

        This work presents a novel image decomposition technique for image fusion using a 

Gaussian curvature filter and guided filter. In the proposed method, important details from 

the source images are more efficiently extracted, and the weight of these details in the 

original images was then calculated using image statistics. Utilizing the weighted average 

approach, source images were combined to produce the fused image. The effectiveness of the 

suggested method was validated through multiple comparative studies on CT and MR 

images. Further research could look into various enhancements, such as incorporating deep 

learning-based decomposition techniques or adaptation to optimize the real-time extraction of 

relevant information. The method's versatility for therapeutic and diagnostic applications 

could be increased by expanding it to incorporate additional imaging modalities or modifying 

it for real-time fusion. 
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