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Abstract  

     To enhance patient outcomes, it is essential to diagnose hypertrophic 

cardiomyopathy (HCM) from cardiac magnetic resonance (CMR) images with 

precision, ensuring the process is swift and automated. This study investigates the 

impact of integrating Caputo derivatives into deep learning models to enhance their 

performance in classifying HCM. The study examines the performance of a tailored 

convolutional neural network (CNN), the advanced EfficientNetV2S architecture, 

and the improved CNN incorporating the Caputo derivative. Key pre-processing 

techniques included image resizing, normalization, and data augmentation. Caputo’s 

CNN performed best with 92.47% accuracy, 93.57% precision, and 89.36% F1 score 

with a slightly reduced recall of 85.68%, while EfficientNetV2S achieved the highest 

accuracy (98.62%), demonstrating exceptional feature extraction capabilities. The 

results suggest that fractional calculus combined with deep learning can deepen 

diagnostic accuracy in CMR while providing more effective and interpretable HCM 

classification frameworks. 

 

Keywords: Cardiac magnetic resonance (CMR), Caputo derivative, Deep learning 

models, EfficientNetV2S, Hypertrophic cardiomyopathy (HCM). 
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  الخلاصة 
( من صور الرنين  HCMتحسين نتائج المرضى، من الضروري تشخيص اعتلال عضلة القلب الضخامي ) ل     

( بدقة، مما يضمن سرعة العملية وأتمتتها. تبحث هذه الدراسة في تأثير دمج مشتقات  CMRالمغناطيسي للقلب ) 
كابوتو في نماذج التعلم العميق لتحسين أدائها في تصنيف اعتلال عضلة القلب الضخامي. تدرس الدراسة أداء  

  CNNالمتقدمة، وشبكة    EfficientNetV2S(، وهندسة  CNNالشبكة العصبية التلافيفية المصممة خصيصًا ) 
المحسنة التي تتضمن مشتق كابوتو. تضمنت تقنيات المعالجة المسبقة الرئيسية تغيير حجم الصورة والتطبيع  

٪ ودرجة  93.57٪ ودقة  92.47أفضل أداء بنسبة دقة    الخاصة بكابوتو   CNNوزيادة البيانات. حققت شبكة  
F1 89.36  بنسبة قليلًا  منخفض  استرجاع  مع  حققت  ٪85.68  بينما   ،٪EfficientNetV2S    دقة أعلى 

٪(، مما يدل على قدرات استخراج ميزات استثنائية. تشير النتائج إلى أن حساب الكسرات مع التعلم  98.62) 
العميق يمكن أن يعمق دقة التشخيص في تصوير القلب بالرنين المغناطيسي مع توفير أطر تصنيف اعتلال  

 عضلة القلب الضخامي أكثر فعالية وقابلية للتفسير.
 

1. Introduction 

     People with hypertrophic cardiomyopathy oftentimes protest of heart murmurs, increased 

heart rate, shortness of breath, abnormal heart rhythms, chest pain, and fainting. Hypertrophic 

cardiomyopathy is a condition in which the left ventricle muscle becomes enlarged, which can 

lead to sudden cardiac death [1]. Hypertrophic cardiomyopathy has a spread from 1 in a 

thousand cases to 200 cases per 100,000 subjects who need immediate diagnosis for the start 

of appropriate treatments, cardiovascular risks management, and periodically appropriate 

medical.  A traditional diagnostic method is echocardiography or CMR imaging.  From CMR 

images using specific pathological features, deep learning systems such as CNN can identify 

HCM patients [2]. Medicine uses cardiac CMR scans to diagnose complex heart defects and 

effectively separate healthy from abnormal heart parts.  However, compared to computed 

tomography (CT) or echocardiography, it takes more time to produce images. Most patients 

with hypertrophic cardiomyopathy never receive a diagnosis, which increases their chances of 

developing serious health problems worldwide. Medical progress has improved diagnosis; 

however, patients struggle to obtain the appropriate treatment methods they need. Modern 

artificial intelligence advancements use deep learning to make medical imaging analysis more 

effective. Using deep learning constructs such as convolutional neural networks, raw visual 

data is processed to extract and classify features, authorizing accurate detection of clinical 

problems.  Particularly,  the analysis of cardiac CMR finds heart conditions that 

echocardiography would overlook. Treatment of hypertrophic cardiomyopathy soon after 

detection helps protect patients against sudden cardiac death [3].  

This study explores the potential of deep learning in identifying hypertrophic cardiomyopathy 

by analyzing the interpretation of CMR images. The study analyses how three distinct CNN-

based methods perform their tasks. 

1. Model 1: A new five-block CNN structure is developed, incorporating diverse convolutional 

layers and skip connections, a characteristic also present in model 3. It improves feature 

extraction and the way input information connects to output results. Then utilizes a shallow 

artificial neural network (ANN) as the binary classifier. 

2. Model 2: This model combines two neural networks - an ANN and EfficientNetV2S - to 

classify binary images using transfer learning. New analysis provides superior results 

compared to past research. 

3. Model 3: This model retains the same structure as Model 1. The model structure includes a 

Caputo derivative layer placed after the second block. This additional experimental test was 

developed to enhance the capabilities of convolutional neural networks. To improve the 

model's ability to recognize and analyze complex patterns in data, the approach involves 

extending the model by incorporating the Caputo derivative. 
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     The evaluation metrics were instrumental in identifying the optimal model, which was 

subsequently analyzed compared to others. The major contributions of this study: 

• Through feature extraction and categorization, the novel CNN architecture can be improved. 

• EfficientNetV2S integration: By the usefulness of transfer learning, the categorization 

accuracy can be highly improved.  

• CNN model based on Caputo derivative layer: It makes the proposed model more capable 

of understanding and recognizing complex patterns in data. 

• The suggested models demonstrate improvement across the following performance criteria: 

F1 score, precision, AUC, recall, MCC, and accuracy. 

Related works, techniques and materials, proposed models, assessment criteria, analysis and 

results, and finally, conclusions are the sections of this study. 

 

2. Related Works 

     One possible method for diagnosing hypertrophic cardiomyopathy (HCM) is through a 

cardiac MRI scan. Utilizing newly developed deep convolutional neural networks (CNNs), an 

updated dataset achieved a classification accuracy of 98.53% [1]. 

 

     This paper sophisticated two machine learning models, LSTM and CNN, to be suitable for 

electrocardiogram (EKG) and cardiac magnetic resonance (CMR) scans, respectively. These 

models are designed to classify examinations into HCM and non-HCM classes. The LSTM 

model achieved an accuracy of 90.51%, precision of 60.31%, recall of 60.08, and F1 score of 

60.19. The CNN model achieved an accuracy of 94.71%, precision of 96.97%, recall of 

91.21%, and F1 score of 94.85%. These results can be used to apply the two models in the 

treatment of hypertrophic cardiomyopathy [5].  

 

     To evaluate left ventricular function in healthy persons and patients with hypertrophic 

cardiomyopathy and dilated cardiomyopathy, (2022) Guo et al. utilized a CNN model to 

analyze cardiac magnetic resonance (CMR) images. The model attains the ejection fraction 

sensitivity of approximately 92.31% in diagnosing HCM. However, in cardiomegaly cases, this 

degraded accuracy towards delineating cardiac boundaries in DCM. This study demonstrates a 

possible contribution of artificial intelligence (AI) in cardiac analysis and argues that models 

could be more accurate in assessing pathological cases [6]. 

For classifying gastrointestinal diseases from the Kvasir high-quality endoscopic image dataset 

in (2024), Demirbaş et al. suggested a new architecture depending on Spatial Attention 

ConvMixer (SAC).  They successfully implemented this architecture in SAM by integrating the 

spatial attention mechanism with ConvMixer layers. In the study, data augmentation 

techniques were used to balance the data distribution and add model generalization. Finally, 

the proposed SAC model not only achieved higher accuracy compared to ResNet50 (87.44%) 

and Vanilla Vision Transformer (79.52%) models but also significantly outperformed them, 

achieving 93.37%. This also confirms that it performs better than traditional methods in 

medical image classification [7].  

Using wireless capsule endoscopy (WCE), an innovative study was presented by Kim et al. 

(2024) for the utilization of deep learning for anatomical landmark marker classification of the 

upper gastrointestinal tract. The authors then applied color transfer techniques to improve the 

images studied in the study and create datasets resembling real WCE images. Applying the 

DenseNet169 model to such images, the research was able to achieve a classification accuracy 

of over 90%. This is significant as the use of image enhancement philters such as "Sharpen”, 

and "Detail" raised accuracy to 94.06% from 91.32%. The relevance of improving image 

quality, specifically to complement WCE diagnostics, is manifested in this work [8]. 
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To improve the classification of gastrointestinal diseases through deep learning, Mari et al. 

(2023) conducted a study on how their technique could enable this.  The researchers used the 

VGG-19 and ResNet-50 models to analyze and classify the Kvasir, using its dataset (3,500 

images in 7 categories, that is, 500 images of each category). The study then fine-tuned the 

models' weights through transfer learning over the ImageNet dataset with improved accuracy. 

From this analysis, the ResNet50 model was found to be better performant because of a recall 

of 95.28%, accuracy of 96.81%, and precision of 95. This is contradictory to that recall, 

accuracy, and precision for the VGG-19 model were 94%, 94.21%, and 94.28%, respectively. 

During this research, it appears that the utilization of CNN architectures, such as ResNet50 and 

VGG-19, can give significant aid to clinicians in the process of accurate, efficient medical 

image classification, thereby improving the accuracy of diagnosis [9].  

 

3. Materials and Methods 

      A detailed explanation of the methodology applied is provided in this section of the paper 

. How the classification network is developed, accompanied by a comprehensive description 

of the database and its processing. 

 

3.1 Dataset Description 

     Cardiac magnetic resonance (CMR) images of 59,267 in patients with cardiomyopathy were 

used for classification in this study sourced from Kaggle [10]. The dataset consists of 37,421 

images from healthy subjects and 21,846 images from patients with hypertrophic 

cardiomyopathy (HCM). The images in this dataset was collected between 2018 and 2020 at 

Omid Hospital, Tehran, under ethical approval, and underwent meticulous labelling by three 

cardiac imaging experts to attain high quality annotations. The average subject population age 

was 48.2 years (standard deviation 19.5 years and 53% female participation represents a 

diverse, representative sample. The dataset and sample images are shown in Figure 1, which 

includes some healthy samples and HCM. 

 

     In order to avoid any possible limitations on the level of the dataset size and to increase 

generalization, several data augmentation techniques like image rotation, flipping, and scaling 

were used. These methods attempted to improve model robustness without introducing bias or 

overfitting risk by introducing variability. Due to the size, diversity, and quality of the dataset 

it serves well as input for training convolutional neural network (CNN) models for CMR image 

classification. By including balanced and well labelled data, it is coupled with the fact that 

models do generalize well across different clinical settings and possible dataset insufficient and 

biased issues. 
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Figure 1: Sample of the dataset (CMR) images: (A) normal persons, (B) HCM patients 

 

3.2 Convolution Neural Network 

     Consequently, deep learning algorithms, especially convolutional neural networks (CNNs), 

have become a keystone in medical image analysis. Raw image data is used by these models 

to learn hierarchical features for diagnosis, where diagnostic accuracy outperforms traditional 

methods. Normalizations and augmentation techniques further help increase the model 

performance of such model by reducing overfitting and providing better generalization [11, 

12]. 

 

     One such neural network (NN), also known as Convolution neural networks (CNNs), can 

accomplish semantic segmentation, object detection, and classification, among other things 

[13]. These networks are much used in deep learning (DL) applications such as facial 

recognition, voice recognition, and computer vision. A major contribution of CNNs is their 

recent capability, without any human supervision, to learn autonomously to identify important 

features, which provide advantages such as parameter sharing, sparse interactions, and 

equivalent representation [14]. Multiple convolutional layers, fully connected layers, and 

pooling layers are the common components of convolutional neural networks.  They are very 

adaptable and train on very large datasets. However, they are readily available within the 

TensorFlow or the Keras frameworks, so they can be easily modified to serve any purpose. 

Figure 2 shows the CNN in action during picture. Categorization’s input x for every layer in a 

CNN model is structured in three dimensions, each represented as (m × m × r), where the height 

(m) is the same as the width. The RGB image depth is represented by the three channels. 

Multiple kernels, or filters, denoted by k, are used by each convolutional layer, just as in the 

input image. The dimensions of these layers are also three-dimensional, measuring n × n × q. 

Where q could be less than or equal to r, but n can't be more than m. Additionally, the input is 

transformed into k feature maps hk, where m is the minimum remoteness and n is the maximum 

dimension. The feature maps are created by combining the local connections made by the 

kernels with common parameters (bias bk and weight wk). In comparison to older, more 

traditional neural networks (NNs), (CNNs) have many advantages in computer vision (CV) 

tasks, such as the following [13, 14]: 
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1- The reduction number of trainable parameters due to the weight sharing function is the 

main advantage of using CNNs. As a result, generalization is improved, and overfitting is 

prevented . 

2- When the feature extraction and classification layers are trained simultaneously, the model 

produces output that is both highly feature-dependent and well-structured . 

3- It is simpler to deploy CNNs on a broad scale than other forms of neural networks . 

 

 
Figure 2: CNN architecture for image classification 

 

3.2.1 Batch Normalization  

     By standardizing and normalizing the input obtained from the previous layer, batch 

normalization (BN) improves the stabilization and quickness of deep NNs. It is an unsupervised 

learning approach. It provides a "smart initialization" that enhances DN learning performance 

by adjusting its spline division to match the input without relying on the gradient-based 

learning or DN's weights does so. Training incredibly deep networks is where BN shines since 

it reduces the impact of internal covariate variations. Following convolutional or fully linked 

layers but before activation functions is batch normalization. The process of normalizing 

activations in intermediary layers aids in preventing overfitting and speeds up training. 

Learnable parameters known as gamma and beta are used to accomplish scaling and offsetting. 

A linear modification that is applied to the output of the previous layer during inference is the 

batch normalization; this layer is usually a convolution. Introducing randomness and noise to 

the layer inputs may also serve as a regularization for artificial neural networks. Normalization 

is the first step in BN's process, including rescaling and compensation.  

 

     Batch normalization has many benefits. It can minimize internal covariate shifts, which 

speeds up learning. It can regularize the model by adding a small amount of noise. It can enable 

greater learning rates and serve as a smart initialization for supervised learning tasks like 

classification and regression. Batch normalization (BN) increases margins by introducing a 

random jitter perturbation to the decision boundary, which helps the model learn boundaries 

with larger margins to the nearest training samples. This can improve batch normalization. For 

example, adjusting the noise strength and the standard deviation of batch normalization 

parameters can help further control the margin of the decision boundary. One of the main 

reasons for developing BN was to reduce internal covariate shift (ICS). This reduction is widely 

considered the key factor behind the success of batch normalization [15-17]. 

 

3.2.2 Skip layer  

     With the use of shortcut connections, sometimes called skip connections, lower levels of a 

network may instantly join higher ones. The fact that this allows data to travel beyond defined 

levels is what the word "skipping" alludes to. To address the domain shift effectively at both 
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the image and instance levels, the skip layer modifies the multilayer domain in Domain 

Adaptive (DA) Faster R-CNN9. The domain classifier takes advantage of the convolutional 

layer's top-level feature maps despite their low resolution. Additionally, the high-resolution 

feature maps at lower levels are ignored. Because the domain classifiers do not take into 

account lower and higher feature maps, the adaptive model can't generalize as well. Multi-label 

classification techniques enable the effective analysis of complex medical images, such as chest 

X-rays, for cardiomegaly prediction. These deep learning models identify multiple 

abnormalities within a single image, improving prediction accuracy and enabling personalized 

treatment strategies based on the multifaceted nature of cardiovascular diseases [18]. 

Classifiers for domains that use just high-level feature maps will not be able to mitigate the 

distribution bias between the two domains. The Skip-Layer Network was developed to augment 

the data used by domain classifiers in light of these difficulties. One of the primary methods 

used by modern neural networks to address the issue of disappearing gradients is the usage of 

skip connections. In backpropagation, when a network employs skip connections to provide 

shorter pathways, the loss calculated at the output may have a greater impact on the layers that 

came before it. The benefits of skip connections are, therefore, as follows [19, 20]:  

1. ResNet improves deep neural networks' accuracy by avoiding the training-related vanishing 

gradient problem.  

2. To re-create pictures at a super-resolution, CNNs use skip connections with groups of layers.  

3. Skip connections with CNNs were implemented to address the issue of fading gradients.  

4. Skip connections allow CNNs to need fewer filters and weights, in contrast to architectures 

like VGG that do not use them.  

 

3.2.3 Dropout  

     To avoid the problem of overfitting while training neural network models, dropout 

regularization is widely utilized in academic settings. Among the many methods that make use 

of it are feedforward, convolutional, recurrent neural network, and transformer-based 

approaches, as well as AutoDrop Dropout (Attention Drop), Max Dropout, and Drop Block. 

Further study is necessary to thoroughly investigate the potential of dropout methods, and the 

selection of the best one is dependent on the particular situation and architecture. In deep 

learning models, dropout has been successful in reducing overfitting and enhancing 

performance [21]. Important difficulties in learning multi-layer neural networks, particularly 

in deep learning, include overfitting and lengthy training durations. It is well-known that 

regularization may be used to address these problems. Although dropout improves deep 

learning in its special way, it may cause convergence time to rise. Working with CNNs on 

dropouts requires care. One way to prevent overfitting, which (CNN) and many other DL 

models use, is the dropout layer. This layer is similar to that, where during the training of the 

network it randomly turns off some neurons, thus activating the network to interiorize more 

robust features [22]. 

 

3.3 The Proportional Caputo Derivative  

     Specifically, the Caputo derivative, a fractional derivative, is suitable for modeling 

processes having memory and hereditary properties and, consequently, is well matched to the 

complexity found in CMR image data.  In contrast to integer order derivatives that focus only 

on local changes, the Caputo derivative can include non-local correlations in the data, yielding 

improved feature extraction through the retention of the information from the spatially 

distributed patterns in CMR images. In comparison to standard optimization heuristics such as 

the gradient descent or L-BFGS, the Caputo derivative enhances the sensitivity to small 

perturbations in image features that are fundamental in discriminating HCM vs. non HCM. 

Fractional calculus based method Caputo derivative improves the performance of neural 
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networks, more specifically in image classification tasks. Inside neural network activation 

functions, especially MLPs scientists use Caputo and other fractional derivative operations. 

Training stability and model generalization performances improve using fractional derivatives, 

according to research. The Caputo derivative, a type of fractional derivative, is defined as [23]: 

 

𝐶 𝐷𝛼
𝛼𝑓(𝑡) =  

𝑑𝛼 𝑓(𝑡)

𝑑𝑡𝛼
=  

1

𝛤(𝑛 −  𝛼) 
∫

𝑓(𝑛) (𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝛼

𝑑𝑥   …..(1) 

Where,  

• n=⌈α⌉(the ceiling of α), 

• Γ(⋅) is the Gamma function, 

• α is the fractional order (0<α≤1). 

 

The importance of Caputo's derivative with neural networks: 

 

• Enhanced Generalization: Fractional activation functions, such as those derived from 

Caputo's approach, enhance the generalization capabilities of neural networks, thereby 

reducing the risk of overfitting. 

• Adaptability to Complex Patterns: Caputo activation functions enable networks to handle 

complex data patterns, such as medical images, more effectively than traditional activation 

functions. 

• Accelerated Convergence: The application of the Caputo derivative facilitates faster model 

convergence, thereby reducing the training time and enhancing the model's classification 

efficiency. 

 

3.3.1 Modified Convolution with Caputo Derivative 

     The best model performance, particularly in a medical image classification, combines 

Caputo’s derivative and Neural Networks. Let X (i, j) represent a pixel in the input feature map 

and W (k, l) the corresponding filter weight. The fractional convolution operation can be 

expressed as [23]: 

𝑌(𝑖, 𝑗) = ∑ ∑ 𝑊(𝑘, 𝑙)
𝑑𝛼𝑋(𝑖 − 𝑘, 𝑗 − 𝑙)

𝑑𝛼

𝑙

 

𝑘

 …..(2) 

Where 
𝑑𝛼𝑋

𝑑𝛼
 is the Caputo derivative applied along spatial dimensions. This operation allows the 

filter to consider non-local spatial dependencies, effectively capturing nuanced relationships in 

the input data. 

 

3.3.2 Advantages in Feature Extraction 

     The proposed improvement stems from the derivative's capacity to regulate the activation 

function's behavior through the fractional parameter. The main highlights are: 

 

• Control over Model Behavior: A fractional parameter is incorporated into the activation 

function behavior through the Caputo derivative. The control makes the model more responsive 

to data and improves generalization.  

• The Caputo derivatives are demonstrated to reduce overfitting, thereby enhancing model 

performance across a broad range of datasets. This enhances the model’s generalization ability. 

• Improved Stability: The derivatives are subsequently utilized to enhance training stability, 

accelerate convergence, and improve classification accuracy within the model. 

• Computational Efficiency: Comparison to traditional activation functions showed that 

Caputo based derivative models are computationally faster when finding optimal solutions. 
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     Thus, it is quite preferable to construct robust and efficient neural network models for 

medical image classification using a Caputo derivative [23]. 

 

3.3.3 Numerical Implementation 

     The finite differences approximation of the Caputo derivatives is used for computational 

efficiency. For an input sequence x[n] [23]: 

𝑑𝛼𝑥[𝑛]

𝑑𝑡𝛼
≈ ∑

(−1)𝑚𝛤(𝛼 + 1)

𝛤(𝑚 + 1)𝛤(𝛼 − 𝑚 + 1)

𝑛

𝑚=0

𝑥[𝑛 − 𝑚] …..(3) 

     This discrete representation is incorporated into the backpropagation algorithm, ensuring 

compatibility with standard gradient-based optimization techniques. 

 

3.4 Transfer learning 

     The convolution neural network CNN based models are performing better in image 

processing and classification tasks, and thus, they are not only responsible for revolutionizing 

medical imaging but also critical to the diagnosis and treatment of sickness. Transfer Learning 

(TL) presents an effective option to overcome difficulties in working with small datasets 

because developers can use pre-trained CNN models. TL is a way to teach a model to solve 

one problem and then apply that to another. Training a new model is better than starting from 

scratch when extracting features for it because it can use the existing model. Despite the CNN 

significant success, CNNs exhibit inductive biases, such as equivariance of the regional 

responsive field in translation, which limits their ability to learn long-range information [24]. 

 

     In general, TL models are trained with a large dataset, such as ImageNet. It is possible to 

use the model's parameters to build a custom neural network, which has several potential 

applications. These models may be used directly to make predictions about new tasks. Batch 

normalization is a popular approach to addressing the overfitting issue, dropout, and transfer 

learning. A synopsis of TL's key arguments is as follows: 

1. When learning new information, it is vital to build on one's present skills. 

2. A more efficient and accurate learning process is possible, or fewer training datasets are 

required. 

While many more transfer learning strategies will certainly be explored, the optimal approach 

to utilize such models in image categorization will depend on the size and similarity of the 

dataset. CNN development requires substantial computing power yet merging pre-trained 

models with transfer learning makes diagnosis stronger while lowering cost. When TL 

influences the use of additional training and testing samples, faster and more efficient results 

are obtained. As an improvement tool, TL may assist with the modeling performance of a 

secondary task. There are three distinct contexts for TL approaches due to variations in the 

domains of origin, destination, and tasks. 

Regarding the contributions of transfer learning in the medical sciences, medical imaging and 

MRI play a crucial role in daily clinical diagnosis and treatment. MRI distinguishes between 

healthy and diseased tissue. With the knowledge of machine learning and transfer learning, 

medical researchers can more effectively identify diseases. However, extensive training data 

can be costly to use. Therefore, transfer learning leverages medical imaging, making CNNs 

highly effective in analyzing medical images and refining medical imaging protocols [25, 26]. 

 

3.4.1 EfficientNetV2S 

     By adjusting depth, breadth, and resolution in equal measure, EfficientNet can achieve great 

accuracy while maintaining processing economy. The design is that of a CNN, or convolutional 
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neural network. In terms of efficient feature extraction, this newer model shows better 

performance than EfficientNetV1 across all important benchmarks. According to the authors, 

EfficientNet models have several drawbacks : 

• Training takes much longer when it works with big image files. 

• Using depth-wise convolutions causes a delay in the first layers . 

• Scaling consistently throughout all stages is not desirable . 

 

     The EfficientNetV2 network family aims to solve these problems. Training needs to 

optimize criteria for better performance accuracy, speed, and parameter size. These networks 

employ Fused-MBConv in combination with MBConv, they also make use of training-aware 

Neural Architecture Search (NAS) and scaling. Compared to EfficientNetV1 models, the 

resulting networks train four times faster and employ 6.8 times fewer parameters, as stated by 

the study's authors. In addition, as the size of the images increases, they use progressive 

learning techniques to systematically enhance data regularization and augmentation, leading to 

better model performance and efficiency. Unlike its predecessor, EfficientNetV2 extensively 

uses MBConv and Fused-MBConv in the first layers with a lower MBConv expansion ratio to 

minimize memory access demands. EfficientNetV2 has risen to the top of the convolutional 

classification network category thanks to its Fused-MBConv operation and small but 

painstaking optimization efforts. In the EfficientNetV2 family, there are three main models: 

EfficientNetV2 includes three network models: S, M, and L, they are: EfficientNetV2S, 

EfficientNetV2M, and EfficientNetV2L. The S model has two scaled-down versions, the M 

and the L. EfficientNetV2S is one in the family of EfficientNetV2 network models [27, 28]. 

 

4. Proposed Model 

     In this work, two novel CNNs based models and transfer learning architectures are 

presented. Then, present a CNN model based on Caputo's derivative, a fractional calculus style 

that grants the models more ability to recognize complex patterns and dependencies in the data. 

The application of the Caputo derivative leads to improved processing of non-local 

information, enabling the use of more robust models in addressing a number of challenges 

faced by traditional differential methods. This study explores the interaction between these 

advanced techniques in order to improve performance, efficiency, and accuracy of the proposed 

models, which can be applied to a variety of complex applications, including image processing 

and signal analysis, etc. Before constructing these architectures, the following mutual steps are 

included in the suggested system: 

1- Reading images from the dataset.  

2- Based on the directory for each image, create a class label. 

3- In Python, utilize the TensorFlow bunch : 

• Image files reading.  

• Image decoding (so that the content of the image file is converted into a three-dimensional 

tensor: width, height, color channels (where color channel = three).  

4- Pre-processing steps:  

• Image resizing to (300 by 300) fix square size.  

• Image augmentation using two methods: Randomly flip an image horizontally and 

vertically. These are medical images and any change in them affects the prediction decision. 

Therefore, the authenticity of the image must be ensured, and the images must be generated 

without changing the structure or content. Therefore, other methods cannot be used.  

5- Dataset splitting using 80:20 training and testing datasets, respectively.  

6- The two proposed architectural models are built one by one.  

7- As part of the training process, compile, and fitting the model on the training data.  
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8- Predictions are made using the trained model, and assess the model's accuracy, recall, 

precision, F1-score, MCC, and AUC measurements. 

• New CNN Architecture Based on Blocks Technique 

The first proposed model for detecting hypertrophic cardiomyopathy (HCM) is based on CNN 

layers arranged in blocks, as shown in Figure 3. Each block consists of the following 

components:  

1- Batch normalization layer followed by convolution layer with a filter size of (1, 1) and N 

filters.  

2- Batch normalization layer followed by convolution layer with a filter size of (3, 3) and (1.5 

* N) filters.  

3- The batch normalization layer followed the convolution layer with a filter size of (1, 1) and 

N filters.  

4- Skip the connection layer to avoid the vanishing gradient problem and extract additional 

features and knowledge at deeper layers.  

 

 
Figure 3: The CNN identity block 

 

The general CNN model used for feature engineering based on the blocks shown in Figure 3 

and constructed as shown in Figure 4, with the following steps:  

1- 2D convolution layer with 32 filters and a size of (3, 3) followed by batch normalization 

layer.  

2- 2D convolution layer with 64 filters followed by 2D max pooling layer with a size of (2, 2) 

and batch normalization layer.  

3- 2D convolution layer with 128 filters.  

4- Calling the CNN block with 128 filters followed by a 2D max pooling layer with a size of 

(2, 2) and batch normalization layer.  

5- 2D convolution layer with 256 filters.  

6- Calling the CNN block with 256 filters followed by a 2D max pooling layer with a size of 

(2, 2) and batch normalization layer.  

7- 2D convolution layer with 512 filters.  

8- Calling the CNN block with 512 filters.  
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Figure 4: The proposed CNN architecture. 

 

     The feature engineering process of CNN is now complete. As depicted in Figure 5, the CNN 

architecture serves as the basis for the entire proposed classification model. It will be structured 

using the CNN feature extraction and an additional ANN for classification purposes. The steps 

are as follows:  

1- Refer to the proposed block-based CNN in Figure 4 as the feature extraction network.  

2- After adding a dense layer with 512 units, use leaky ReLU activation then add dropout at 

rate 0.5. 

3- After adding another dense layer containing 256 units and a leaky ReLU activation function, 

a dropout layer with rate (0.3) is included. 

5- Finally, add an output layer with a dense layer with one unit and a sigmoid activation 

function. 

  

 
Figure 5: The proposed classification model using block-based CNN. 
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4.2 A New CNN Architecture Utilizing Transfer Learning 

      In this work, the EfficientNetV2S is used as a feature-engineering network followed by an 

ANN (Artificial Neural Network) classifier for HCM detection, as in Figure 6. The architecture 

of this model consists of:  

1- Utilizing EfficientNetV2S with convolution layers, excluding the top classifier. Only 

the top 400 layers are trainable.  

2- Additional layers are added and connected to the EfficientNetV2S shallow neural 

network as follows:  

• Add a dense layer with 512 units and a leaky ReLU activation function, then a dropout 

layer with a rate of 0.5. 

• A dense layer for output using one unit and a sigmoid activation function.  

 
Figure 6: The second proposed classification model based on efficientNetV2S. 

 

 

4.3 The Proposed CNN Based on a Caputo Derivative Layer Model 
     The third model maintains the same architecture as the first, with one significant 

modification: a Caputo derivative layer is integrated after the second block, as illustrated in 

Figure 7. To test new methods to improve the performance of the CNN, this layer was added 

to the network. The incorporation of Caputo derivative technology helps the model better 

recognize and process complex patterns within the data. 

 



Hilal and AlShemmary                                           Iraqi Journal of Science, 2026, Vol. xx, No. x, pp: xx 

 

 

 
 Figure 7: The suggested architecture for the convolutional neural network incorporates the 

Caputo derivative. 

 

5. Evaluation Metrics 

     Binary classification is a typical application of machine learning and computational 

statistics. As researchers use confusion matrices to quantify binary classification issues, it is 

vital to provide a consistent statistical rate that appropriately depicts the quality of a binary 

prediction. Depending on the goal of the experiment, researchers may use various statistical 

rates to assign values to binary classifications and the confusion matrices that go along with 

them. Although it is a significant problem in ML, no consensus has been achieved about this. 

Accuracy and F1 scores computed using confusion matrices are two often used metrics for 

binary classification issues. Matthews Correlation Coefficient (MCC) rates items correctly 

while considering the number of positives and negatives in available data. It earns a high score 

only if the prediction does well in all four categories of the confusion matrix: true positives, 

true negatives, false positives, and false negatives. An important evaluation tool, especially 

when we only know one confusion matrix threshold is the area under the receiver operating 

characteristic curve, which is also called ROC AUC or AUROC [28-30]. To produce a forecast 

about the category of the data case, the classification model assigns a positive or negative label 

to each sample. After the classification procedure is finished, there are four potential results for 

each sample, as shown in Figure 8.  

• Actual positives that are correctly predicted; true positives (TP).  

• Actual negatives that are correctly predicted; true negatives (TN).  

• Actual negatives that are wrongly predicted; false positives (FP). 

• Actual positives that are wrongly predicted; false negatives (FN).  
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Figure 8: The basic structure of a confusion matrix. 

Accuracy_ score: 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 …..(4) 

Precision score: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 …..(5) 

Recall score: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 …..(6) 

F1_score:  𝐹1_𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙
 …..(7) 

𝑨𝑼𝑪 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅)

1

0

 

Where: 

𝑻𝑷𝑹(True Positive Rate) is calculated as: 𝑇𝑃𝑅 =
  𝑇𝑃

𝑇𝑃+𝐹𝑁
 

FPR (False Positive Rate) is calculated as: 𝐹𝑃𝑅 =
  𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 

…..(8) 

MCC: 𝑴𝑪𝑪 =
 𝑻𝑵× 𝑻𝑷−𝑭𝑵×𝑭𝑷

√(𝑻𝑷+𝑭𝑷).(𝑻𝑷+𝑭𝑵).(𝑻𝑵+𝑭𝑷).(𝑻𝑵+𝑭𝑵)
 …..(9) 

 This evaluation metrics in Eques. (4 to 9), including accuracy, precision, recall, F1-score, 

AUC, and MCC, are critical in understanding the model's performance, particularly for 

hypertrophic cardiomyopathy (HCM) diagnosis. Each metric offers unique insights, and their 

significance in the context of HCM is as follows: 

1. Accuracy: To understand model performance accuracy, results can lose accuracy when 

used with datasets that contain an unbalanced number of classes. However, in conjunction with 

other metrics, it offers a baseline understanding of prediction success 

2. Precision: Precision highlights the proportion of correctly identified HCM cases among 

all samples predicted as HCM. At the level of clinic workflow, this corresponds directly to the 

minimization of false positives (FP), which is imperative to avoid unnecessary anxiety, further 

examinations as well as potential overtreatment of HCM negative patients. 

3. Recall (Sensitivity): The model's ability to correctly identify actual HCM cases is called 

recall. This is important to ensure that the false negatives (FN), where true HCM cases are 

missed, are minimized, which can delay a diagnosis and treatment, leading to worsening patient 

outcomes. 

4. F1-Score: is the harmonic mean between precision and recall, which makes a 

reasonable form of tradeoff between false positives and false negatives a good metric. This is 

https://www.google.com/search?sca_esv=b34798ba992e8189&q=TP+TN-FP%C3%97FN%0AMCC+%3D+%E2%88%9A(TP%2BFP)(TP%2BFN)(TN%2BFP)(TN%2BFN)&spell=1&sa=X&ved=2ahUKEwjjmc6KgZuHAxUlS_EDHeLMCd4QBXoECA0QAQ
https://www.google.com/search?sca_esv=b34798ba992e8189&q=TP+TN-FP%C3%97FN%0AMCC+%3D+%E2%88%9A(TP%2BFP)(TP%2BFN)(TN%2BFP)(TN%2BFN)&spell=1&sa=X&ved=2ahUKEwjjmc6KgZuHAxUlS_EDHeLMCd4QBXoECA0QAQ
https://www.google.com/search?sca_esv=b34798ba992e8189&q=TP+TN-FP%C3%97FN%0AMCC+%3D+%E2%88%9A(TP%2BFP)(TP%2BFN)(TN%2BFP)(TN%2BFN)&spell=1&sa=X&ved=2ahUKEwjjmc6KgZuHAxUlS_EDHeLMCd4QBXoECA0QAQ
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especially true when under diagnosis (FN) as well as over diagnosis (FP) has severe subsequent 

consequences. 

5. AUC (Area Under the ROC Curve): The model’s ability to classify HCM and non HCM 

cases across different decision thresholds is quantified by the AUC. It means a high AUC 

results in a strong discriminative ability, thus maintaining robustness in clinical settings. 

6. MCC (Matthews Correlation Coefficient): The MCC is a holistic measure of all four 

components of confusion matrix (TP, FP, TN, FN). Especially for imbalanced datasets, it gives 

a reliable way to understand how well the model can predict correctly. 

Clinical implications of false positives and false negatives must be carefully managed in HCM 

diagnosis since the tradeoffs between them are different. Missed diagnoses, including false 

negative results (FN), are correlated with miss diagnosis and can lead to delayed treatment and 

worsened outcomes for patients with HCM. This indicates that the recall has to be high. False 

positives (FP), however, can result in uselessly pursued follow-up tests and procedures, which 

increases healthcare costs and leads to an increase in patient stress. As mentioned, trading these 

off is balanced with metrics like F1 score and MCC, as these metrics give us a better picture of 

how the model performs. This points towards the need for fine tuning the thresholds to bridge 

the gap between model predictions and clinical priorities and comparative diagnostic sensitivity 

and specificity.  

 

6. Results and Discussion 

     The remainder of this paper includes a detailed analysis of the test results from the HCM 

dataset. The evaluation of the effectiveness and performance of the proposed classification 

models is the main objective. Each classification model's results are explained in detail for a 

complete comparison. The importance of adding a Caputo derivative layer to the convolutional 

neural network (CNN) based model will be drawn out in this comparison. This analysis shows 

how this novel contribution changes the overall classification accuracy and robustness of the 

approach. 

 

     The classification employed in this research paper is binary classification. The dataset 

utilized comprises 59,145 images of the human heart, divided into 37,290 images from healthy 

individuals and 21,855 images from patients with hypertrophic cardiomyopathy. Figure 9 

illustrates the distribution of the dataset. 

 

 
Figure 9: Distribution of samples on two classes of dataset. 
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     The data set was separated into training and testing, with a ratio of (8:2), and the function 

(stratify=dataset) is used to be able to maintain the division ratio for healthy people (label 0 for 

health) and patients (label 1 for sick) in the data set, in both, as shown in Figure 10.  

 

 
 

(a) Training data set. Label 0:29832, and 

Label 1:17484. 

(b) Testing data set. Label 0:7458, and 

Label 1:4371. 

Figure 10: (a) Ratio of healthy and sick people in the training dataset, (b) Ratio of healthy and 

sick people in the testing dataset. 

 

6.1 Performance Results of Block-Based CNN Model 

     Based on the presented results, it is clear that the CNN-based model achieved 91.60% 

accuracy in epoch 10, as in Figure 11, demonstrating the stability and superior performance of 

the model in less time. Figure 12 shows the confusion matrix to visualize the performance 

results of the proposed model, where the true positive (TP) achieved by the proposed block-

based CNN model is 7000 samples and the true negative (TN) is 3800, the analysis summary 

of the model in this work is shown in Table 1. 

 

  
Figure 11:  CNN training results with 

augmentation method 

Figure  12  :Confusion matrix of the first 

proposed CNN-based block model 

 

The results shown in Table 1 were achieved by: 

• Performing experiments under consistent computational conditions. 

• Ensuring that the model is tested on data that was not used for training to avoid any potential 

bias. 
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Table 1: Results of analysis of the proposed CNN model. 

Model Accuracy Precision Recall F1 Score AUC MCC 

 

CNN 

 

91.60 

 

90.25 

 

86.40 

 

88.36 

 

90.45 

 

81.71 

 

6.2 Performance Results of EfficientNetV2S Model  

     For the second model based on EfficientNetV2S, the training was performed for 5 epochs, 

which was enough for the model to reach a stable state with minimal error and achieve its 

highest accuracy of 98.62%. The same augmentation techniques were applied for the first 

CNN-based model to make a fair comparison. Figure 13 shows the training results of the 

EfficientNetV2S model. Based on the results provided, it is evident that the EfficientNetV2S 

model achieved the highest accuracy of 98.62%. It reached a stable state with this peak 

accuracy and minimal error by epoch 5. In contrast, the initial CNN-based model attained an 

accuracy of 91.60% by epoch 10, highlighting the stability and superior performance of the 

EfficientNetV2S model in a shorter timeframe. Figure 14 shows the confusion matrix to 

visualize the performance results of the proposed model EfficientNetV2S, where the true 

positive (TP) achieved by the EfficientNetV2S model is 7400 samples and the true negative 

(TN) is 4300. 

  

  
Figure 13:  EfficientNetV2S training 

results with augmentation method 

Figure  14  :Confusion matrix of the second 

proposed EfficientNetV2S model 

 

 

Table 2: Results of the analysis of the second proposed model EfficientNetV2S. 

Model Accuracy Precision Recall F1 Score AUC MCC 

EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03 

 

Table 3 presents a comparison between the CNN model and the EfficientNetV2S model. The 

EfficientNetV2S model's ability to extract deeper and more complex features through its pre-

trained network architecture accounts for its superior performance compared to the simpler 

CNN-based model. In other words, the second proposed model resulted in fewer misclassified 

samples, leading to improvements in all evaluation metrics utilized. This enhancement is 

attributed to the EfficientNetV2S model's capacity to extract deeper features and patterns, 

which were instrumental in decision-making through the robust pre-trained EfficientNetV2S 

network. 
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Table 3: Summary of the comparative analysis of the two proposed models (CNN and 

EfficientNetV2S) 

Model Accuracy Precision Recall F1 Score AUC MCC 

CNN 
 

91.60 

 

90.25 

 

86.40 

 

88.36 

 

90.45 

 

81.71 

EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03 

 

6.3 Performance Results of Block-Based CNN Model with Caputo Layer 

     This section presents a comprehensive analysis of the results obtained from the proposed 

model following the introduction of the Caputo layer. This addition has significantly improved 

the model's performance. Specifically, the effectiveness of the original CNN model will be 

highlighted, showing how this modification enhances its performance. Table 4 presents the 

results of incorporating the Caputo layer into the original CNN model. The results of this model 

are visualized in Figure 15. 

 

Table 4: Summary of the analysis results of the proposed CNN model with the Caputo layer. 

Model Accuracy Precision Recall F1 Score AUC MCC 

CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76 

 

 
Figure 15: Confusion matrix of the proposed CNN model with Caputo layer  

 

Table 5 presents a comparison between the traditional CNN model and the modified CNN 

model that utilizes the relative Caputo derivative. The results indicate that the CNN model 

incorporating the Caputo derivative achieved superior accuracy, precision, F1 score, AUC, and 

MCC compared to the traditional CNN model. However, it is noteworthy that the recall was 

slightly lower in the modified CNN model than in the traditional model. This comparison 

demonstrates that incorporating the Caputo derivative into the CNN model led to 

improvements in most metrics, suggesting that this modification is effective in enhancing the 

model's accuracy in classifying hypertrophic cardiomyopathy. To optimize the randomly 

initialized weights of neural networks (NNs), the fractional-order derivative technique can be 

applied to activation functions. Innovative adaptation strategies aimed at improving 

convergence, enhancing generative characteristics, and accelerating training are emerging in 

computer-assisted research fields due to the development of hybrid fractional-order derivative 

definitions. Signal processing and machine learning increasingly utilize gradient descent 

algorithms and fractional-order derivatives iteratively. 
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Table 5: Comparison of CNN and CNN with Caputo Derivative for HCM Classification 

Model Accuracy Precision Recall F1 Score AUC MCC 

CNN without Caputo 
 

91.60 

 

90.25 

 

86.40 

 

88.36 

 

90.45 

 

81.71 

CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76 

 

     The results indicated that incorporating the Caputo derivative with the convolutional neural 

network (CNN) significantly improved the model's performance across various evaluation 

metrics compared to the model that did not utilize the Caputo derivative. The Caputo derivative 

is particularly effective at capturing temporal and structural relationships within the data, 

thereby enhancing the model's capacity to represent complex patterns in cardiac CMR images. 

 

     In order to identify the more effective model, Table 6 presents the results of all proposed 

models and works as a comparative analysis. After checking, it was found that the better 

performing model via all assessment metrics used in this study is the second model, 

EfficientNetV2S. 

 

Table 6: Comparison analysis of all proposed models. 

Model Accuracy Precision Recall F1 Score AUC MCC 

CNN 
 

91.60 

 

90.25 

 

86.40 

 

88.36 

 

90.45 

 

81.71 

EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03 

CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76 

 

6.4 Evaluation and Comparison 

     In this section, a comparison study of the proposed classification models and the 

hypertrophy detection formerly studied is presented.  It also discusses the utilized classifiers 

and the classification accuracy. Table 7 compares the classification performance of the 

suggested model with that of similar studies. While some models demonstrate competitive 

performance, the EfficientNetV2S model outperforms most others in terms of accuracy and 

generalizability. It is important to note that some referenced studies employed augmentation 

techniques on the entire dataset before splitting the data, which may introduce bias in testing 

performance. In contrast, the proposed approach strictly applied augmentation after the dataset 

was split, ensuring that the test set remained unseen by the model. This method provides a more 

accurate reflection of real-world performance and generalizability. The newly proposed second 

classification technique demonstrates improved accuracy when compared to the methods 

referenced in Table 7. While Model 1 achieves a higher recall than the third proposed model 

and has an accuracy level comparable to that of the third model, it employs data augmentation 

on the original dataset before splitting the data into training and testing sets. Consequently, the 

testing dataset includes augmented images, which introduces bias since the model is evaluated 

on samples it has already encountered during training. As a result, Technique 1 lacks 

generalizability and realism in its testing performance. Therefore, the proposed technique is 

superior in terms of generalizability. 
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Table 7: The comparison between the proposed classification models and previous works 

Ref. Year Classifier Accuracy Precision Recall F1 Score AUC MCC 

[1] 2021 Deep CNN 98.53 / 98.70 / / / 

[6] 2022 Deep CNN / / 78.05 / 
0.69

5 
/ 

[9] 2023 
CNN/T.L(VGG-

19, ResNet-50) 

(94.21, 

96.81) 

(94.28, 

95.00) 

(94.00, 

95.28) 

(94.00, 

94.85) 
/ / 

[5] 2024 CNN 94.71 96.97 91.21 94.85 / / 

[7] 2024 CNN/T.L 93.37 93.66 93.37 93.42 / / 

[8] 2024 CNN / / / / 
94.0

6 
/ 

Propose

d 

Models 

 CNN-block 
 

91.60 

 

90.25 

 

86.40 

 

88.36 

 

90.4

5 

 

81.71 

 
EfficientNetV2

S 
98.62 98.50 97.82 98.21 

98.4

5 
97.03 

 
CNN with 

Caputo 
92.47 93.57 85.68 89.36 

91.1

4 
83.76 

 

6.4 Practical Implications and Real-World Deployment 

     The integration of deep learning models, such as the Caputo derivative-based CNN and 

EfficientNetV2S, into clinical workflows offers promising avenues for advancing healthcare 

diagnostics, particularly in the detection of hypertrophic cardiomyopathy (HCM) using CMR 

imaging. These models provide accurate and efficient classification, potentially serving as 

supplementary diagnostic tools for cardiologists. 

 

     These models will make real-world deployment possible by integrating into electronic 

health record (EHR) systems to access patient data and associated diagnostic results. 

Furthermore, these models could be easily included in picture archiving and communication 

systems (PACS) so that the analysis of medical images is streamlined within existing clinical 

infrastructure. Nevertheless, these concepts need to be addressed in real-world implementation. 

It is essential to ensure that the model remains robust to various imaging protocol variants, 

different scanner types, and patient demographics and adheres to regulations, including Health 

Insurance Portability and Accountability Act (HIPAA) for data security and patient privacy, 

General Data Protection Regulation (GDPR), and so on. However, more validation is needed 

with multicenter trials to confirm AI models for clinical adoption, as they need to be validated 

across various populations and imaging set up. 

These models can achieve high accuracy and handle augmented datasets, indicating they have 

the potential to minimize diagnostic errors, to discriminate between subtle features of HCM. 

These models integrate advanced preprocessing techniques and employ the Caputo derivative 

for improved generalization and form a building block to design scalable and interoperable 

solutions in healthcare. Future research will further extend their versatility to serve other 

medical imaging modalities and further expand disease classification capabilities for wider 

clinical impact. 

 

7. Conclusion 

     The objective of this research paper is to classify hypertrophic cardiomyopathy using 

cardiac magnetic resonance (CMR) imaging. The system was developed and evaluated using a 

deep learning architecture. Image scaling, normalization, and data augmentation techniques 

were applied in the pre-processing phase to improve the quality of the dataset. Three basic 

models were used to classify CMR images of cardiomyopathy: A Caputo derivative-based 
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model and a CNN-based model for comparison with the EfficientNetV2S-based model. The 

results show that the CNN model optimized with Caputo performed better compared with the 

standard CNN model. Key metrics for the CNN model without the Caputo derivative were as 

follows: Accuracy = 91.60, Precision = 90.25, Recall = 86.40, F1-Score = 88.36, AUC = 90.45, 

and MCC = 81.71. In comparison, the CNN model with the Caputo derivative achieved 

improved metrics: Accuracy = 92.47, Precision = 93.57, Recall = 85.68, F1-Score = 89.36, 

AUC = 91.14, and MCC = 83.76. In this work, it is shown that the use of fractional calculus, 

e.g., Caputo derivative increases the performance of deep learning-based models for medical 

image classification. Overall, the EfficientNetV2S-based model had very good performance, 

achieving metrics such as Accuracy = 98.62, Precision = 98.50, Recall = 97.82, F1-Score = 

98.21, AUC = 98.45, and MCC = 97.03, surpassing both CNN-based variants. In future work, 

CNNs will be generalized to other medical imaging modalities such as electrocardiograms 

(ECGs),  echocardiography,  computed tomography,  X-ray, and results will be increased by 

using Caputo derivative developments to increase the number of patients the models can be 

applied to. Real integration of these models with electronic health records and other diagnostic 

tools is further suggested for the complete patient evaluation. Yet, the trend will extend to other 

kinds of cardiomyopathy (restrictive, dilated cardiomyopathy). 
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