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Abstract

To enhance patient outcomes, it is essential to diagnose hypertrophic
cardiomyopathy (HCM) from cardiac magnetic resonance (CMR) images with
precision, ensuring the process is swift and automated. This study investigates the
impact of integrating Caputo derivatives into deep learning models to enhance their
performance in classifying HCM. The study examines the performance of a tailored
convolutional neural network (CNN), the advanced EfficientNetV2S architecture,
and the improved CNN incorporating the Caputo derivative. Key pre-processing
techniques included image resizing, normalization, and data augmentation. Caputo’s
CNN performed best with 92.47% accuracy, 93.57% precision, and 89.36% F1 score
with a slightly reduced recall of 85.68%, while EfficientNetV2S achieved the highest
accuracy (98.62%), demonstrating exceptional feature extraction capabilities. The
results suggest that fractional calculus combined with deep learning can deepen
diagnostic accuracy in CMR while providing more effective and interpretable HCM
classification frameworks.

Keywords: Cardiac magnetic resonance (CMR), Caputo derivative, Deep learning
models, EfficientNetV2S, Hypertrophic cardiomyopathy (HCM).
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1. Introduction

People with hypertrophic cardiomyopathy oftentimes protest of heart murmurs, increased
heart rate, shortness of breath, abnormal heart rhythms, chest pain, and fainting. Hypertrophic
cardiomyopathy is a condition in which the left ventricle muscle becomes enlarged, which can
lead to sudden cardiac death [1]. Hypertrophic cardiomyopathy has a spread from 1 in a
thousand cases to 200 cases per 100,000 subjects who need immediate diagnosis for the start
of appropriate treatments, cardiovascular risks management, and periodically appropriate
medical. A traditional diagnostic method is echocardiography or CMR imaging. From CMR
images using specific pathological features, deep learning systems such as CNN can identify
HCM patients [2]. Medicine uses cardiac CMR scans to diagnose complex heart defects and
effectively separate healthy from abnormal heart parts. However, compared to computed
tomography (CT) or echocardiography, it takes more time to produce images. Most patients
with hypertrophic cardiomyopathy never receive a diagnosis, which increases their chances of
developing serious health problems worldwide. Medical progress has improved diagnosis;
however, patients struggle to obtain the appropriate treatment methods they need. Modern
artificial intelligence advancements use deep learning to make medical imaging analysis more
effective. Using deep learning constructs such as convolutional neural networks, raw visual
data is processed to extract and classify features, authorizing accurate detection of clinical
problems.  Particularly, the analysis of cardiac CMR finds heart conditions that
echocardiography would overlook. Treatment of hypertrophic cardiomyopathy soon after
detection helps protect patients against sudden cardiac death [3].
This study explores the potential of deep learning in identifying hypertrophic cardiomyopathy
by analyzing the interpretation of CMR images. The study analyses how three distinct CNN-
based methods perform their tasks.
1. Model 1: A new five-block CNN structure is developed, incorporating diverse convolutional
layers and skip connections, a characteristic also present in model 3. It improves feature
extraction and the way input information connects to output results. Then utilizes a shallow
artificial neural network (ANN) as the binary classifier.
2. Model 2: This model combines two neural networks - an ANN and EfficientNetV2S - to
classify binary images using transfer learning. New analysis provides superior results
compared to past research.
3. Model 3: This model retains the same structure as Model 1. The model structure includes a
Caputo derivative layer placed after the second block. This additional experimental test was
developed to enhance the capabilities of convolutional neural networks. To improve the
model's ability to recognize and analyze complex patterns in data, the approach involves
extending the model by incorporating the Caputo derivative.
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The evaluation metrics were instrumental in identifying the optimal model, which was
subsequently analyzed compared to others. The major contributions of this study:
e Through feature extraction and categorization, the novel CNN architecture can be improved.
e EfficientNetV2S integration: By the usefulness of transfer learning, the categorization
accuracy can be highly improved.
e CNN model based on Caputo derivative layer: It makes the proposed model more capable
of understanding and recognizing complex patterns in data.
e The suggested models demonstrate improvement across the following performance criteria:
F1 score, precision, AUC, recall, MCC, and accuracy.
Related works, techniques and materials, proposed models, assessment criteria, analysis and
results, and finally, conclusions are the sections of this study.

2. Related Works

One possible method for diagnosing hypertrophic cardiomyopathy (HCM) is through a
cardiac MRI scan. Utilizing newly developed deep convolutional neural networks (CNNs), an
updated dataset achieved a classification accuracy of 98.53% [1].

This paper sophisticated two machine learning models, LSTM and CNN, to be suitable for
electrocardiogram (EKG) and cardiac magnetic resonance (CMR) scans, respectively. These
models are designed to classify examinations into HCM and non-HCM classes. The LSTM
model achieved an accuracy of 90.51%, precision of 60.31%, recall of 60.08, and F1 score of
60.19. The CNN model achieved an accuracy of 94.71%, precision of 96.97%, recall of
91.21%, and F1 score of 94.85%. These results can be used to apply the two models in the
treatment of hypertrophic cardiomyopathy [5].

To evaluate left ventricular function in healthy persons and patients with hypertrophic
cardiomyopathy and dilated cardiomyopathy, (2022) Guo et al. utilized a CNN model to
analyze cardiac magnetic resonance (CMR) images. The model attains the ejection fraction
sensitivity of approximately 92.31% in diagnosing HCM. However, in cardiomegaly cases, this
degraded accuracy towards delineating cardiac boundaries in DCM. This study demonstrates a
possible contribution of artificial intelligence (Al) in cardiac analysis and argues that models
could be more accurate in assessing pathological cases [6].

For classifying gastrointestinal diseases from the Kvasir high-quality endoscopic image dataset
in (2024), Demirbas et al. suggested a new architecture depending on Spatial Attention
ConvMixer (SAC). They successfully implemented this architecture in SAM by integrating the
spatial attention mechanism with ConvMixer layers. In the study, data augmentation
techniques were used to balance the data distribution and add model generalization. Finally,
the proposed SAC model not only achieved higher accuracy compared to ResNet50 (87.44%)
and Vanilla Vision Transformer (79.52%) models but also significantly outperformed them,
achieving 93.37%. This also confirms that it performs better than traditional methods in
medical image classification [7].

Using wireless capsule endoscopy (WCE), an innovative study was presented by Kim et al.
(2024) for the utilization of deep learning for anatomical landmark marker classification of the
upper gastrointestinal tract. The authors then applied color transfer techniques to improve the
images studied in the study and create datasets resembling real WCE images. Applying the
DenseNet169 model to such images, the research was able to achieve a classification accuracy
of over 90%. This is significant as the use of image enhancement philters such as "Sharpen”,
and "Detail" raised accuracy to 94.06% from 91.32%. The relevance of improving image
quality, specifically to complement WCE diagnostics, is manifested in this work [8].
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To improve the classification of gastrointestinal diseases through deep learning, Mari et al.
(2023) conducted a study on how their technique could enable this. The researchers used the
VGG-19 and ResNet-50 models to analyze and classify the Kvasir, using its dataset (3,500
images in 7 categories, that is, 500 images of each category). The study then fine-tuned the
models' weights through transfer learning over the ImageNet dataset with improved accuracy.
From this analysis, the ResNet50 model was found to be better performant because of a recall
of 95.28%, accuracy of 96.81%, and precision of 95. This is contradictory to that recall,
accuracy, and precision for the VGG-19 model were 94%, 94.21%, and 94.28%, respectively.
During this research, it appears that the utilization of CNN architectures, such as ResNet50 and
VGG-19, can give significant aid to clinicians in the process of accurate, efficient medical
image classification, thereby improving the accuracy of diagnosis [9].

3. Materials and Methods

A detailed explanation of the methodology applied is provided in this section of the paper
. How the classification network is developed, accompanied by a comprehensive description
of the database and its processing.

3.1 Dataset Description

Cardiac magnetic resonance (CMR) images of 59,267 in patients with cardiomyopathy were
used for classification in this study sourced from Kaggle [10]. The dataset consists of 37,421
images from healthy subjects and 21,846 images from patients with hypertrophic
cardiomyopathy (HCM). The images in this dataset was collected between 2018 and 2020 at
Omid Hospital, Tehran, under ethical approval, and underwent meticulous labelling by three
cardiac imaging experts to attain high quality annotations. The average subject population age
was 48.2 years (standard deviation 19.5 years and 53% female participation represents a
diverse, representative sample. The dataset and sample images are shown in Figure 1, which
includes some healthy samples and HCM.

In order to avoid any possible limitations on the level of the dataset size and to increase
generalization, several data augmentation techniques like image rotation, flipping, and scaling
were used. These methods attempted to improve model robustness without introducing bias or
overfitting risk by introducing variability. Due to the size, diversity, and quality of the dataset
it serves well as input for training convolutional neural network (CNN) models for CMR image
classification. By including balanced and well labelled data, it is coupled with the fact that
models do generalize well across different clinical settings and possible dataset insufficient and
biased issues.
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Figure 1: Sample of the dataset (CMR) images: (A) normal persons, (B) HCM patients

3.2 Convolution Neural Network

Consequently, deep learning algorithms, especially convolutional neural networks (CNNs),
have become a keystone in medical image analysis. Raw image data is used by these models
to learn hierarchical features for diagnosis, where diagnostic accuracy outperforms traditional
methods. Normalizations and augmentation techniques further help increase the model
performance of such model by reducing overfitting and providing better generalization [11,
12].

One such neural network (NN), also known as Convolution neural networks (CNNs), can
accomplish semantic segmentation, object detection, and classification, among other things
[13]. These networks are much used in deep learning (DL) applications such as facial
recognition, voice recognition, and computer vision. A major contribution of CNNs is their
recent capability, without any human supervision, to learn autonomously to identify important
features, which provide advantages such as parameter sharing, sparse interactions, and
equivalent representation [14]. Multiple convolutional layers, fully connected layers, and
pooling layers are the common components of convolutional neural networks. They are very
adaptable and train on very large datasets. However, they are readily available within the
TensorFlow or the Keras frameworks, so they can be easily modified to serve any purpose.
Figure 2 shows the CNN in action during picture. Categorization’s input x for every layer in a
CNN model is structured in three dimensions, each represented as (m x m x r), where the height
(m) is the same as the width. The RGB image depth is represented by the three channels.
Multiple kernels, or filters, denoted by k, are used by each convolutional layer, just as in the
input image. The dimensions of these layers are also three-dimensional, measuring n X n x q.
Where q could be less than or equal to r, but n can't be more than m. Additionally, the input is
transformed into k feature maps hx, where m is the minimum remoteness and n is the maximum
dimension. The feature maps are created by combining the local connections made by the
kernels with common parameters (bias bk and weight wk). In comparison to older, more
traditional neural networks (NNs), (CNNs) have many advantages in computer vision (CV)
tasks, such as the following [13, 14]:
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1- The reduction number of trainable parameters due to the weight sharing function is the
main advantage of using CNNs. As a result, generalization is improved, and overfitting is
prevented.

2-  When the feature extraction and classification layers are trained simultaneously, the model
produces output that is both highly feature-dependent and well-structured.

3- It is simpler to deploy CNNs on a broad scale than other forms of neural networks.
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Figure 2: CNN architecture for image classification

3.2.1 Batch Normalization

By standardizing and normalizing the input obtained from the previous layer, batch
normalization (BN) improves the stabilization and quickness of deep NNs. It is an unsupervised
learning approach. It provides a "smart initialization" that enhances DN learning performance
by adjusting its spline division to match the input without relying on the gradient-based
learning or DN's weights does so. Training incredibly deep networks is where BN shines since
it reduces the impact of internal covariate variations. Following convolutional or fully linked
layers but before activation functions is batch normalization. The process of normalizing
activations in intermediary layers aids in preventing overfitting and speeds up training.
Learnable parameters known as gamma and beta are used to accomplish scaling and offsetting.
A linear modification that is applied to the output of the previous layer during inference is the
batch normalization; this layer is usually a convolution. Introducing randomness and noise to
the layer inputs may also serve as a regularization for artificial neural networks. Normalization
is the first step in BN's process, including rescaling and compensation.

Batch normalization has many benefits. It can minimize internal covariate shifts, which
speeds up learning. It can regularize the model by adding a small amount of noise. It can enable
greater learning rates and serve as a smart initialization for supervised learning tasks like
classification and regression. Batch normalization (BN) increases margins by introducing a
random jitter perturbation to the decision boundary, which helps the model learn boundaries
with larger margins to the nearest training samples. This can improve batch normalization. For
example, adjusting the noise strength and the standard deviation of batch normalization
parameters can help further control the margin of the decision boundary. One of the main
reasons for developing BN was to reduce internal covariate shift (ICS). This reduction is widely
considered the key factor behind the success of batch normalization [15-17].

3.2.2 Skip layer

With the use of shortcut connections, sometimes called skip connections, lower levels of a
network may instantly join higher ones. The fact that this allows data to travel beyond defined
levels is what the word "skipping" alludes to. To address the domain shift effectively at both
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the image and instance levels, the skip layer modifies the multilayer domain in Domain
Adaptive (DA) Faster R-CNN9. The domain classifier takes advantage of the convolutional
layer's top-level feature maps despite their low resolution. Additionally, the high-resolution
feature maps at lower levels are ignored. Because the domain classifiers do not take into
account lower and higher feature maps, the adaptive model can't generalize as well. Multi-label
classification techniques enable the effective analysis of complex medical images, such as chest
X-rays, for cardiomegaly prediction. These deep learning models identify multiple
abnormalities within a single image, improving prediction accuracy and enabling personalized
treatment strategies based on the multifaceted nature of cardiovascular diseases [18].
Classifiers for domains that use just high-level feature maps will not be able to mitigate the
distribution bias between the two domains. The Skip-Layer Network was developed to augment
the data used by domain classifiers in light of these difficulties. One of the primary methods
used by modern neural networks to address the issue of disappearing gradients is the usage of
skip connections. In backpropagation, when a network employs skip connections to provide
shorter pathways, the loss calculated at the output may have a greater impact on the layers that
came before it. The benefits of skip connections are, therefore, as follows [19, 20]:

1. ResNet improves deep neural networks' accuracy by avoiding the training-related vanishing
gradient problem.

2. Tore-create pictures at a super-resolution, CNNs use skip connections with groups of layers.
3. Skip connections with CNNs were implemented to address the issue of fading gradients.

4. Skip connections allow CNNs to need fewer filters and weights, in contrast to architectures
like VGG that do not use them.

3.2.3 Dropout

To avoid the problem of overfitting while training neural network models, dropout
regularization is widely utilized in academic settings. Among the many methods that make use
of it are feedforward, convolutional, recurrent neural network, and transformer-based
approaches, as well as AutoDrop Dropout (Attention Drop), Max Dropout, and Drop Block.
Further study is necessary to thoroughly investigate the potential of dropout methods, and the
selection of the best one 1s dependent on the particular situation and architecture. In deep
learning models, dropout has been successful in reducing overfitting and enhancing
performance [21]. Important difficulties in learning multi-layer neural networks, particularly
in deep learning, include overfitting and lengthy training durations. It is well-known that
regularization may be used to address these problems. Although dropout improves deep
learning in its special way, it may cause convergence time to rise. Working with CNNs on
dropouts requires care. One way to prevent overfitting, which (CNN) and many other DL
models use, is the dropout layer. This layer is similar to that, where during the training of the
network it randomly turns off some neurons, thus activating the network to interiorize more
robust features [22].

3.3 The Proportional Caputo Derivative

Specifically, the Caputo derivative, a fractional derivative, is suitable for modeling
processes having memory and hereditary properties and, consequently, is well matched to the
complexity found in CMR image data. In contrast to integer order derivatives that focus only
on local changes, the Caputo derivative can include non-local correlations in the data, yielding
improved feature extraction through the retention of the information from the spatially
distributed patterns in CMR images. In comparison to standard optimization heuristics such as
the gradient descent or L-BFGS, the Caputo derivative enhances the sensitivity to small
perturbations in image features that are fundamental in discriminating HCM vs. non HCM.
Fractional calculus based method Caputo derivative improves the performance of neural
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networks, more specifically in image classification tasks. Inside neural network activation
functions, especially MLPs scientists use Caputo and other fractional derivative operations.
Training stability and model generalization performances improve using fractional derivatives,
according to research. The Caputo derivative, a type of fractional derivative, is defined as [23]:

a _dffo_ 1 AR C))
CD%f(O) = — 5= - ). (t_x)a_n+1dx (1)
Where,
. n=[a](the ceiling of a),

e [I'(+) is the Gamma function,
e« is the fractional order (0<a<l1).

The importance of Caputo's derivative with neural networks:

e Enhanced Generalization: Fractional activation functions, such as those derived from
Caputo's approach, enhance the generalization capabilities of neural networks, thereby
reducing the risk of overfitting.

e Adaptability to Complex Patterns: Caputo activation functions enable networks to handle
complex data patterns, such as medical images, more effectively than traditional activation
functions.

e Accelerated Convergence: The application of the Caputo derivative facilitates faster model
convergence, thereby reducing the training time and enhancing the model's classification
efficiency.

3.3.1 Modified Convolution with Caputo Derivative

The best model performance, particularly in a medical image classification, combines
Caputo’s derivative and Neural Networks. Let X (i, j) represent a pixel in the input feature map
and W (k, 1) the corresponding filter weight. The fractional convolution operation can be

expressed as [23]: PERG— k=D
Vi) =) ) W) ———— e
1

k

a
Where dng is the Caputo derivative applied along spatial dimensions. This operation allows the
filter to consider non-local spatial dependencies, effectively capturing nuanced relationships in
the input data.

3.3.2 Advantages in Feature Extraction
The proposed improvement stems from the derivative's capacity to regulate the activation
function's behavior through the fractional parameter. The main highlights are:

e Control over Model Behavior: A fractional parameter is incorporated into the activation
function behavior through the Caputo derivative. The control makes the model more responsive
to data and improves generalization.

e The Caputo derivatives are demonstrated to reduce overfitting, thereby enhancing model
performance across a broad range of datasets. This enhances the model’s generalization ability.
e Improved Stability: The derivatives are subsequently utilized to enhance training stability,
accelerate convergence, and improve classification accuracy within the model.

e Computational Efficiency: Comparison to traditional activation functions showed that
Caputo based derivative models are computationally faster when finding optimal solutions.
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Thus, it is quite preferable to construct robust and efficient neural network models for
medical image classification using a Caputo derivative [23].

3.3.3 Numerical Implementation
The finite differences approximation of the Caputo derivatives is used for computational
efficiency. For an input sequence x[n] [23]:

dx[n] N (D" (@+1)
dts " LT+ DI (@—m+1D) x

This discrete representation is incorporated into the backpropagation algorithm, ensuring
compatibility with standard gradient-based optimization techniques.

[n —m] (3)

3.4 Transfer learning

The convolution neural network CNN based models are performing better in image
processing and classification tasks, and thus, they are not only responsible for revolutionizing
medical imaging but also critical to the diagnosis and treatment of sickness. Transfer Learning
(TL) presents an effective option to overcome difficulties in working with small datasets
because developers can use pre-trained CNN models. TL is a way to teach a model to solve
one problem and then apply that to another. Training a new model is better than starting from
scratch when extracting features for it because it can use the existing model. Despite the CNN
significant success, CNNs exhibit inductive biases, such as equivariance of the regional
responsive field in translation, which limits their ability to learn long-range information [24].

In general, TL models are trained with a large dataset, such as ImageNet. It is possible to
use the model's parameters to build a custom neural network, which has several potential
applications. These models may be used directly to make predictions about new tasks. Batch
normalization is a popular approach to addressing the overfitting issue, dropout, and transfer
learning. A synopsis of TL's key arguments is as follows:

1. When learning new information, it is vital to build on one's present skills.

2. A more efficient and accurate learning process is possible, or fewer training datasets are
required.

While many more transfer learning strategies will certainly be explored, the optimal approach
to utilize such models in image categorization will depend on the size and similarity of the
dataset. CNN development requires substantial computing power yet merging pre-trained
models with transfer learning makes diagnosis stronger while lowering cost. When TL
influences the use of additional training and testing samples, faster and more efficient results
are obtained. As an improvement tool, TL may assist with the modeling performance of a
secondary task. There are three distinct contexts for TL approaches due to variations in the
domains of origin, destination, and tasks.

Regarding the contributions of transfer learning in the medical sciences, medical imaging and
MRI play a crucial role in daily clinical diagnosis and treatment. MRI distinguishes between
healthy and diseased tissue. With the knowledge of machine learning and transfer learning,
medical researchers can more effectively identify diseases. However, extensive training data
can be costly to use. Therefore, transfer learning leverages medical imaging, making CNNs
highly effective in analyzing medical images and refining medical imaging protocols [25, 26].

3.4.1 EfficientNetV2S§
By adjusting depth, breadth, and resolution in equal measure, EfficientNet can achieve great
accuracy while maintaining processing economy. The design is that of a CNN, or convolutional
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neural network. In terms of efficient feature extraction, this newer model shows better
performance than EfficientNetV1 across all important benchmarks. According to the authors,
EfficientNet models have several drawbacks:

e Training takes much longer when it works with big image files.

e Using depth-wise convolutions causes a delay in the first layers.

e Scaling consistently throughout all stages is not desirable.

The EfficientNetV2 network family aims to solve these problems. Training needs to
optimize criteria for better performance accuracy, speed, and parameter size. These networks
employ Fused-MBConv in combination with MBConv, they also make use of training-aware
Neural Architecture Search (NAS) and scaling. Compared to EfficientNetV1 models, the
resulting networks train four times faster and employ 6.8 times fewer parameters, as stated by
the study's authors. In addition, as the size of the images increases, they use progressive
learning techniques to systematically enhance data regularization and augmentation, leading to
better model performance and efficiency. Unlike its predecessor, EfficientNetV2 extensively
uses MBConv and Fused-MBConv in the first layers with a lower MBConv expansion ratio to
minimize memory access demands. EfficientNetV2 has risen to the top of the convolutional
classification network category thanks to its Fused-MBConv operation and small but
painstaking optimization efforts. In the EfficientNetV2 family, there are three main models:
EfficientNetV2 includes three network models: S, M, and L, they are: EfficientNetV2S,
EfficientNetV2M, and EfficientNetV2L. The S model has two scaled-down versions, the M
and the L. EfficientNetV2S is one in the family of EfficientNetV2 network models [27, 28].

4. Proposed Model

In this work, two novel CNNs based models and transfer learning architectures are
presented. Then, present a CNN model based on Caputo's derivative, a fractional calculus style
that grants the models more ability to recognize complex patterns and dependencies in the data.
The application of the Caputo derivative leads to improved processing of non-local
information, enabling the use of more robust models in addressing a number of challenges
faced by traditional differential methods. This study explores the interaction between these
advanced techniques in order to improve performance, efficiency, and accuracy of the proposed
models, which can be applied to a variety of complex applications, including image processing
and signal analysis, etc. Before constructing these architectures, the following mutual steps are
included in the suggested system:
1- Reading images from the dataset.
2- Based on the directory for each image, create a class label.
3- In Python, utilize the TensorFlow bunch:
e Image files reading.
e Image decoding (so that the content of the image file is converted into a three-dimensional
tensor: width, height, color channels (where color channel = three).
4- Pre-processing steps:
e Image resizing to (300 by 300) fix square size.
e Image augmentation using two methods: Randomly flip an image horizontally and
vertically. These are medical images and any change in them affects the prediction decision.
Therefore, the authenticity of the image must be ensured, and the images must be generated
without changing the structure or content. Therefore, other methods cannot be used.
5- Dataset splitting using 80:20 training and testing datasets, respectively.
6- The two proposed architectural models are built one by one.
7- As part of the training process, compile, and fitting the model on the training data.
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8- Predictions are made using the trained model, and assess the model's accuracy, recall,
precision, F1-score, MCC, and AUC measurements.

e New CNN Architecture Based on Blocks Technique

The first proposed model for detecting hypertrophic cardiomyopathy (HCM) is based on CNN
layers arranged in blocks, as shown in Figure 3. Each block consists of the following
components:

1- Batch normalization layer followed by convolution layer with a filter size of (1, 1) and N
filters.

2- Batch normalization layer followed by convolution layer with a filter size of (3, 3) and (1.5
* N) filters.

3- The batch normalization layer followed the convolution layer with a filter size of (1, 1) and
N filters.

4- Skip the connection layer to avoid the vanishing gradient problem and extract additional
features and knowledge at deeper layers.

MI

Leaky-Relu

e

Skip layer

BN fayer $ BN [ayer BN layer
N filter 1N N filter

i) fiter (3.3 i)

f . nd . rd .
2D convolution layer 2 2D convelution layer 3 2D convolution layer

Figure 3: The CNN identity block

The general CNN model used for feature engineering based on the blocks shown in Figure 3
and constructed as shown in Figure 4, with the following steps:

1- 2D convolution layer with 32 filters and a size of (3, 3) followed by batch normalization
layer.

2- 2D convolution layer with 64 filters followed by 2D max pooling layer with a size of (2, 2)
and batch normalization layer.

3- 2D convolution layer with 128 filters.

4- Calling the CNN block with 128 filters followed by a 2D max pooling layer with a size of
(2, 2) and batch normalization layer.

5- 2D convolution layer with 256 filters.

6- Calling the CNN block with 256 filters followed by a 2D max pooling layer with a size of
(2, 2) and batch normalization layer.

7- 2D convolution layer with 512 filters.

8- Calling the CNN block with 512 filters.
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Figure 4: The proposed CNN architecture.

The feature engineering process of CNN is now complete. As depicted in Figure 5, the CNN
architecture serves as the basis for the entire proposed classification model. It will be structured
using the CNN feature extraction and an additional ANN for classification purposes. The steps
are as follows:

1- Refer to the proposed block-based CNN in Figure 4 as the feature extraction network.

2- After adding a dense layer with 512 units, use leaky ReLU activation then add dropout at
rate 0.5.

3- After adding another dense layer containing 256 units and a leaky ReLU activation function,
a dropout layer with rate (0.3) is included.

5- Finally, add an output layer with a dense layer with one unit and a sigmoid activation
function.
$ $ 512 Unit $ e * 256 Unit
CNN :
Model Dense layer Dense layer
leaky_Relu leaky_Relu
activation function activation function

> Hom_

— Drt;paout $ 1 Unit

——> Healthy

output Dense layer
sigmoid
activation function

Figure 5: The proposed classification model using block-based CNN.
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4.2 A New CNN Architecture Utilizing Transfer Learning

In this work, the EfficientNetV2S is used as a feature-engineering network followed by an
ANN (Artificial Neural Network) classifier for HCM detection, as in Figure 6. The architecture
of this model consists of:

1- Utilizing EfficientNetV2S with convolution layers, excluding the top classifier. Only
the top 400 layers are trainable.

2- Additional layers are added and connected to the EfficientNetV2S shallow neural
network as follows:

o Add a dense layer with 512 units and a leaky ReLU activation function, then a dropout
layer with a rate of 0.5.

. A dense layer for output using one unit and a sigmoid activation function.

EfficientNetV2S Dropat | |

with 400 Top layer 512 Unit 05 256 Unit Dropout 0.3/
without classifier '
o _ Dense layer Dense layer
input image with size leaky _Relu leaky _Relu
(300,300 activation function activation function
e
HCM
1 Unit
Healthy

output Dense layer
sigmoid
activation function

Figure 6: The second proposed classification model based on efficientNetV2S.

4.3 The Proposed CNN Based on a Caputo Derivative Layer Model

The third model maintains the same architecture as the first, with one significant
modification: a Caputo derivative layer is integrated after the second block, as illustrated in
Figure 7. To test new methods to improve the performance of the CNN, this layer was added
to the network. The incorporation of Caputo derivative technology helps the model better
recognize and process complex patterns within the data.
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$ ayer 32 ayer 64 (V)] derivative

filters filters
(3,3) (3,3) 2D max pool

2D convolution layer 2D convolution layer

N=128 Pool size $ BN I $
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Figure 7: The suggested architecture for the convolutional neural network incorporates the
Caputo derivative.

5. Evaluation Metrics

Binary classification is a typical application of machine learning and computational
statistics. As researchers use confusion matrices to quantify binary classification issues, it is
vital to provide a consistent statistical rate that appropriately depicts the quality of a binary
prediction. Depending on the goal of the experiment, researchers may use various statistical
rates to assign values to binary classifications and the confusion matrices that go along with
them. Although it is a significant problem in ML, no consensus has been achieved about this.
Accuracy and F1 scores computed using confusion matrices are two often used metrics for
binary classification issues. Matthews Correlation Coefficient (MCC) rates items correctly
while considering the number of positives and negatives in available data. It earns a high score
only if the prediction does well in all four categories of the confusion matrix: true positives,
true negatives, false positives, and false negatives. An important evaluation tool, especially
when we only know one confusion matrix threshold is the area under the receiver operating
characteristic curve, which is also called ROC AUC or AUROC [28-30]. To produce a forecast
about the category of the data case, the classification model assigns a positive or negative label
to each sample. After the classification procedure is finished, there are four potential results for
each sample, as shown in Figure 8.
* Actual positives that are correctly predicted; true positives (TP).
* Actual negatives that are correctly predicted; true negatives (TN).
* Actual negatives that are wrongly predicted; false positives (FP).
* Actual positives that are wrongly predicted; false negatives (FN).
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Figure 8: The basic structure of a confusion matrix.
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1
AUC = jTPR(FPR)d(FPR)
0
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. . TP
TPR(True Positive Rate) is calculated as: TPR = P
FPR (False Positive Rate) is calculated as: FPR = FPI:_I;N

TNx TP—FNxXFP

J(TP+FP).(TP+FN).(TN+FP).(TN+FN) 9
This evaluation metrics in Eques. (4 to 9), including accuracy, precision, recall, F1-score,
AUC, and MCC, are critical in understanding the model's performance, particularly for
hypertrophic cardiomyopathy (HCM) diagnosis. Each metric offers unique insights, and their
significance in the context of HCM is as follows:

1. Accuracy: To understand model performance accuracy, results can lose accuracy when
used with datasets that contain an unbalanced number of classes. However, in conjunction with
other metrics, it offers a baseline understanding of prediction success

2. Precision: Precision highlights the proportion of correctly identified HCM cases among
all samples predicted as HCM. At the level of clinic workflow, this corresponds directly to the
minimization of false positives (FP), which is imperative to avoid unnecessary anxiety, further
examinations as well as potential overtreatment of HCM negative patients.

3. Recall (Sensitivity): The model's ability to correctly identify actual HCM cases is called
recall. This is important to ensure that the false negatives (FN), where true HCM cases are
missed, are minimized, which can delay a diagnosis and treatment, leading to worsening patient
outcomes.

4. F1-Score: is the harmonic mean between precision and recall, which makes a
reasonable form of tradeoff between false positives and false negatives a good metric. This is

MCC: MCC =
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especially true when under diagnosis (FN) as well as over diagnosis (FP) has severe subsequent
consequences.

5. AUC (Area Under the ROC Curve): The model’s ability to classify HCM and non HCM
cases across different decision thresholds is quantified by the AUC. It means a high AUC
results in a strong discriminative ability, thus maintaining robustness in clinical settings.

6. MCC (Matthews Correlation Coefficient): The MCC is a holistic measure of all four
components of confusion matrix (TP, FP, TN, FN). Especially for imbalanced datasets, it gives
a reliable way to understand how well the model can predict correctly.

Clinical implications of false positives and false negatives must be carefully managed in HCM
diagnosis since the tradeoffs between them are different. Missed diagnoses, including false
negative results (FN), are correlated with miss diagnosis and can lead to delayed treatment and
worsened outcomes for patients with HCM. This indicates that the recall has to be high. False
positives (FP), however, can result in uselessly pursued follow-up tests and procedures, which
increases healthcare costs and leads to an increase in patient stress. As mentioned, trading these
off is balanced with metrics like F1 score and MCC, as these metrics give us a better picture of
how the model performs. This points towards the need for fine tuning the thresholds to bridge
the gap between model predictions and clinical priorities and comparative diagnostic sensitivity
and specificity.

6. Results and Discussion

The remainder of this paper includes a detailed analysis of the test results from the HCM
dataset. The evaluation of the effectiveness and performance of the proposed classification
models is the main objective. Each classification model's results are explained in detail for a
complete comparison. The importance of adding a Caputo derivative layer to the convolutional
neural network (CNN) based model will be drawn out in this comparison. This analysis shows
how this novel contribution changes the overall classification accuracy and robustness of the
approach.

The classification employed in this research paper is binary classification. The dataset
utilized comprises 59,145 images of the human heart, divided into 37,290 images from healthy
individuals and 21,855 images from patients with hypertrophic cardiomyopathy. Figure 9
illustrates the distribution of the dataset.

count

Figure 9: Distribution of samples on two classes of dataset.
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The data set was separated into training and testing, with a ratio of (8:2), and the function
(stratify=dataset) is used to be able to maintain the division ratio for healthy people (label 0 for
health) and patients (label 1 for sick) in the data set, in both, as shown in Figure 10.

count
count

(a) Training data set. Label 0:29832, and (b) Testing data set. Label 0:7458, and
Label 1:17484. Label 1:4371.

Figure 10: (a) Ratio of healthy and sick people in the training dataset, (b) Ratio of healthy and
sick people in the testing dataset.

6.1 Performance Results of Block-Based CNN Model

Based on the presented results, it is clear that the CNN-based model achieved 91.60%
accuracy in epoch 10, as in Figure 11, demonstrating the stability and superior performance of
the model in less time. Figure 12 shows the confusion matrix to visualize the performance
results of the proposed model, where the true positive (TP) achieved by the proposed block-
based CNN model is 7000 samples and the true negative (TN) is 3800, the analysis summary
of the model in this work is shown in Table 1.

- 7000
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0.8 4 - 6000
o - Je+03
0.7 4 5000
0.6 1 4000
0.5 1
3000
0.4 1
— loss — 2000
039 — accuracy
—— val_loss 1000
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o] 1

o 2 4 ] 8

Figure 11: CNN training results with Figure 12 :Confusion matrix of the first
augmentation method proposed CNN-based block model

The results shown in Table 1 were achieved by:

* Performing experiments under consistent computational conditions.

* Ensuring that the model is tested on data that was not used for training to avoid any potential
bias.
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Table 1: Results of analysis of the proposed CNN model.
Model Accuracy Precision Recall F1 Score AUC MCC

CNN 91.60 90.25 86.40 88.36 90.45 81.71

6.2 Performance Results of EfficientNetV2S Model

For the second model based on EfficientNetV2S, the training was performed for 5 epochs,
which was enough for the model to reach a stable state with minimal error and achieve its
highest accuracy of 98.62%. The same augmentation techniques were applied for the first
CNN-based model to make a fair comparison. Figure 13 shows the training results of the
EfficientNetV2S model. Based on the results provided, it is evident that the EfficientNetV2S
model achieved the highest accuracy of 98.62%. It reached a stable state with this peak
accuracy and minimal error by epoch 5. In contrast, the initial CNN-based model attained an
accuracy of 91.60% by epoch 10, highlighting the stability and superior performance of the
EfficientNetV2S model in a shorter timeframe. Figure 14 shows the confusion matrix to
visualize the performance results of the proposed model EfficientNetV2S, where the true
positive (TP) achieved by the EfficientNetV2S model is 7400 samples and the true negative
(TN) is 4300.
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0.8
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Figure 13: EfficientNetV2S training Figure 14 :Confusion matrix of the second
results with augmentation method proposed EfficientNetV2S model

Table 2: Results of the analysis of the second proposed model EfficientNetV2S.

Model Accuracy Precision Recall F1 Score AUC MCC

EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03

Table 3 presents a comparison between the CNN model and the EfficientNetV2S model. The
EfficientNetV2S model's ability to extract deeper and more complex features through its pre-
trained network architecture accounts for its superior performance compared to the simpler
CNN-based model. In other words, the second proposed model resulted in fewer misclassified
samples, leading to improvements in all evaluation metrics utilized. This enhancement is
attributed to the EfficientNetV2S model's capacity to extract deeper features and patterns,
which were instrumental in decision-making through the robust pre-trained EfficientNetV2S
network.
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Table 3: Summary of the comparative analysis of the two proposed models (CNN and
EfficientNetV2S)

Model Accuracy  Precision Recall F1 Score AUC MCC
N 91.60 90.25 86.40 88.36 90.45 81.71
EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03

6.3 Performance Results of Block-Based CNN Model with Caputo Layer

This section presents a comprehensive analysis of the results obtained from the proposed
model following the introduction of the Caputo layer. This addition has significantly improved
the model's performance. Specifically, the effectiveness of the original CNN model will be
highlighted, showing how this modification enhances its performance. Table 4 presents the
results of incorporating the Caputo layer into the original CNN model. The results of this model
are visualized in Figure 15.

Table 4: Summary of the analysis results of the proposed CNN model with the Caputo layer.

Model Accuracy Precision Recall F1 Score AUC MCC

CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76
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Figure 15: Confusion matrix of the proposed CNN model with Caputo layer

Table 5 presents a comparison between the traditional CNN model and the modified CNN
model that utilizes the relative Caputo derivative. The results indicate that the CNN model
incorporating the Caputo derivative achieved superior accuracy, precision, F1 score, AUC, and
MCC compared to the traditional CNN model. However, it is noteworthy that the recall was
slightly lower in the modified CNN model than in the traditional model. This comparison
demonstrates that incorporating the Caputo derivative into the CNN model led to
improvements in most metrics, suggesting that this modification is effective in enhancing the
model's accuracy in classifying hypertrophic cardiomyopathy. To optimize the randomly
initialized weights of neural networks (NNs), the fractional-order derivative technique can be
applied to activation functions. Innovative adaptation strategies aimed at improving
convergence, enhancing generative characteristics, and accelerating training are emerging in
computer-assisted research fields due to the development of hybrid fractional-order derivative
definitions. Signal processing and machine learning increasingly utilize gradient descent
algorithms and fractional-order derivatives iteratively.
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Table 5: Comparison of CNN and CNN with Caputo Derivative for HCM Classification

Model Accuracy Precision Recall F1 Score AUC MCC
CNN without Caputo 91.60 90.25 86.40 88.36 9045 8171
CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76

The results indicated that incorporating the Caputo derivative with the convolutional neural
network (CNN) significantly improved the model's performance across various evaluation
metrics compared to the model that did not utilize the Caputo derivative. The Caputo derivative
is particularly effective at capturing temporal and structural relationships within the data,
thereby enhancing the model's capacity to represent complex patterns in cardiac CMR images.

In order to identify the more effective model, Table 6 presents the results of all proposed
models and works as a comparative analysis. After checking, it was found that the better
performing model via all assessment metrics used in this study is the second model,
EfficientNetV2S.

Table 6: Comparison analysis of all proposed models.

Model Accuracy Precision Recall F1 Score AUC MCC
CINN 91.60 90.25 86.40 88.36 90.45 8171
EfficientNetV2S 98.62 98.50 97.82 98.21 98.45 97.03
CNN with Caputo 92.47 93.57 85.68 89.36 91.14 83.76

6.4 Evaluation and Comparison

In this section, a comparison study of the proposed classification models and the
hypertrophy detection formerly studied is presented. It also discusses the utilized classifiers
and the classification accuracy. Table 7 compares the classification performance of the
suggested model with that of similar studies. While some models demonstrate competitive
performance, the EfficientNetV2S model outperforms most others in terms of accuracy and
generalizability. It is important to note that some referenced studies employed augmentation
techniques on the entire dataset before splitting the data, which may introduce bias in testing
performance. In contrast, the proposed approach strictly applied augmentation after the dataset
was split, ensuring that the test set remained unseen by the model. This method provides a more
accurate reflection of real-world performance and generalizability. The newly proposed second
classification technique demonstrates improved accuracy when compared to the methods
referenced in Table 7. While Model 1 achieves a higher recall than the third proposed model
and has an accuracy level comparable to that of the third model, it employs data augmentation
on the original dataset before splitting the data into training and testing sets. Consequently, the
testing dataset includes augmented images, which introduces bias since the model is evaluated
on samples it has already encountered during training. As a result, Technique 1 lacks
generalizability and realism in its testing performance. Therefore, the proposed technique is
superior in terms of generalizability.
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Table 7: The comparison between the proposed classification models and previous works

Ref. Year Classifier Accuracy  Precision Recall F1 Score AUC MCC
[1] | 2021  Deep CNN 98.53 / 98.70 / / /
[6] | 2022  Deep CNN / / 78.05 / 0'569 /
o] | 2023 CNNTLIVGG- (9421, (94.28, (94.00, (94.00, ) )

19, ResNet-50)  96.81) 95.00) 95.28) 94.85)
[5] | 2024 CNN 94.71 96.97 91.21 94.85 / /
[71 | 2024 CNN/T.L 93.37 93.66 93.37 93.42 / /
8] | 2024 CNN / / / / 9‘20 /
CNN-block 91.60 90.25 86.40 88.36 N4 g1 71
Propose 5
d EfficientNetV2 98.4
Models S 98.62 98.50 97.82 98.21 S 97.03
CNN with 92.47 93.57 85.68 89.36 LT g3 76
Caputo 4

6.4 Practical Implications and Real-World Deployment

The integration of deep learning models, such as the Caputo derivative-based CNN and
EfficientNetV2S, into clinical workflows offers promising avenues for advancing healthcare
diagnostics, particularly in the detection of hypertrophic cardiomyopathy (HCM) using CMR
imaging. These models provide accurate and efficient classification, potentially serving as
supplementary diagnostic tools for cardiologists.

These models will make real-world deployment possible by integrating into electronic

health record (EHR) systems to access patient data and associated diagnostic results.
Furthermore, these models could be easily included in picture archiving and communication
systems (PACS) so that the analysis of medical images is streamlined within existing clinical
infrastructure. Nevertheless, these concepts need to be addressed in real-world implementation.
It is essential to ensure that the model remains robust to various imaging protocol variants,
different scanner types, and patient demographics and adheres to regulations, including Health
Insurance Portability and Accountability Act (HIPAA) for data security and patient privacy,
General Data Protection Regulation (GDPR), and so on. However, more validation is needed
with multicenter trials to confirm AI models for clinical adoption, as they need to be validated
across various populations and imaging set up.
These models can achieve high accuracy and handle augmented datasets, indicating they have
the potential to minimize diagnostic errors, to discriminate between subtle features of HCM.
These models integrate advanced preprocessing techniques and employ the Caputo derivative
for improved generalization and form a building block to design scalable and interoperable
solutions in healthcare. Future research will further extend their versatility to serve other
medical imaging modalities and further expand disease classification capabilities for wider
clinical impact.

7. Conclusion

The objective of this research paper is to classify hypertrophic cardiomyopathy using
cardiac magnetic resonance (CMR) imaging. The system was developed and evaluated using a
deep learning architecture. Image scaling, normalization, and data augmentation techniques
were applied in the pre-processing phase to improve the quality of the dataset. Three basic
models were used to classify CMR images of cardiomyopathy: A Caputo derivative-based
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model and a CNN-based model for comparison with the EfficientNetV2S-based model. The
results show that the CNN model optimized with Caputo performed better compared with the
standard CNN model. Key metrics for the CNN model without the Caputo derivative were as
follows: Accuracy = 91.60, Precision = 90.25, Recall = 86.40, F1-Score = 88.36, AUC =90.45,
and MCC = 81.71. In comparison, the CNN model with the Caputo derivative achieved
improved metrics: Accuracy = 92.47, Precision = 93.57, Recall = 85.68, F1-Score = 89.36,
AUC =91.14, and MCC = 83.76. In this work, it is shown that the use of fractional calculus,
e.g., Caputo derivative increases the performance of deep learning-based models for medical
image classification. Overall, the EfficientNetV2S-based model had very good performance,
achieving metrics such as Accuracy = 98.62, Precision = 98.50, Recall = 97.82, F1-Score =
98.21, AUC =98.45, and MCC = 97.03, surpassing both CNN-based variants. In future work,
CNNs will be generalized to other medical imaging modalities such as electrocardiograms
(ECGs), echocardiography, computed tomography, X-ray, and results will be increased by
using Caputo derivative developments to increase the number of patients the models can be
applied to. Real integration of these models with electronic health records and other diagnostic
tools is further suggested for the complete patient evaluation. Yet, the trend will extend to other
kinds of cardiomyopathy (restrictive, dilated cardiomyopathy).
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