

Synthsis and Structural Characterization of New Metal Complexes and Mixed Ligand Complexes of 2-N-(3, 4-DIHYDROXY BENZYLIDENE) BENZOTHIAZOLE

Ahlam J. Abdul-Ghani, and R. A. Majeed

Department of Chemistry, College of Science, University of Baghdad, Baghdad-Iraq. Received: 15/11/2003 Accepted: 21/1/2004

Abstract

The new Schiff base 2-N-(3,4-dihyroxy benzylidene) benzothiazole (H2L1) was prepeared from reaction of 2-aminobenzothiazol (2-ABT)and 3,4- dihdroxy benzaldehyde. Metal complexes of the new ligand with metal ions Co(II), Ni(II), Cu(II), Pd(II), Pt(IV), and Ru(III) were prepared by reacting H_2L_1 . (2 mmole) with the metal ions (1mmole) in presence and absence of triethylamine (Et₃N,2mmole) in ethanol . Mixed ligand complexes (ML'L₁) were synthesised by reacting H_2L_1 and other ligands L' acetylacetone, (acac). ethylene diamine (en), 2,2- bipyridyl (bipy), and the Schiff base HL_{II} that has been already prepared from 2-ABT and salicylaldehyde, with metal ions and ET₃N in a molar ratio of 1:1:1:2, respectively in ethanol. Structures of the new compounds were characterised by elemental and thermal analyses as well as i.r and u.v- visible spectra. The magnetic properties and electrical conductivities of metal complexes were also determined . Some complexes exhibted biological activities against two types of pathogenic bacteria.

الخلاصة

حضرت قاعدة شيف الجديدة 2-N-(3 و 4- ثنائي هيدروكسي بنزايلدين) بنزوثايازول (H2L1) من مفاعلة 2-أمينوينزوثايازول (ABT) مع 3 و 4- ثنائي هيدروكسي بنزالديهيد. حضرت معقدات الليكاند مع ايونات الفلزات :. الكوبلت (II) والنيكل (II) والنحاس (II) والبلاديوم(II) والروثينيوم (III) بمفاعلة (20ممول) H2L1 مع 1 ملمول من الايون باضافة او بدون اضافة ثلاثي اثيل امين (Et₃N) في الايثانول حضرت معقدات فلزية جديدة (ML1L) لخليط من HL مع ليكندات اخرى 'L (' = استيل اسيتون (acac) واثيلين ثنائي الامين (en) و 2و2- ثنائي البريديل (bipy) وقاعدة شيف اللها المحضرة سابقا من مفاعلة TAA-2 مع ساليسيل (en) و 2و2- ثنائي البريديل (bipy) وقاعدة شيف الله مفاعلة TAA-2 مع ساليسيل الديهيد). شخصت التراكيب الكيميائية للمركبات الجديدة باعتماد التحليل الدقيق للعناصر والتحاليل الحرارية فضلا عن اطياف الاشعة تحت الحمراء والاشعة فوق البنفسجية – المرئية. كما حددت الخصائص المغاطيسية والتوصيلية الكهربائية للمعقدات الفلزية . اظهرت بعض المعقدات فعالية بيولوجية ضد نوعين من البكتريا المرضية.

Introduction

The synthesis of Schiff bases from condensation of 2-ABT with different aldehydes have been reported earlier ¹⁻³. Some of these bases exhibited antimicrobial and anticancer activities^{1,2,4}. The biological activities were attributed mainly to azomethin group as well as to the biologically active thiazole ring ⁵⁻⁷. Some complexes of Schiff bases were found more

active than the parent ligands against bacteria and fungi ^{2,3} and as herbicides ⁸. Complexes containing more than one metal centre represent synthetic models of ferromagnetic interaction between metal centres which can explain oxidation-reduction processes in biological systems in addition to their catalytic and biological activities ⁹⁻¹¹. This gave us motives to synthesise new metal complexes of a new Schiff base 2-N-(3,4-dihydroxybenzylidene) benzothiazole (H₂L₁) and other complexes from a mixture of H₂L₁ and other ligands (acac, en, 2,2-bipy, and the previously prepared Schiff base HL_{II})³ to offer more binding sites that allow for binuclear, trinuclear complexation or more with metal ions.

Experimental

Melting points (uncorrected) were obtained by using Gallenkamp MF-600- 010F melting point apparatus. Elemental analyses were performed by using Elmental analyses-Perkin Elmer 240 B. Infrared spectra of H_2L_1 and its metal complexes were recored as KBr and CsI discs respectively on Perkin Elmer 983. GIP Pye Unicam SP₃-300 i.r. Spectrophotometer. Electronic spectra were recorded on u.v- visble Spectrophotometer Shimadzu u.v. -160 A. Thermal analyses by TG and DTG were obtaned by using Thermogravimetric analyser (TGA). A Du-Pont Thermobalance Model 951. Electrical conductivities of metal complexes at room temperature were measured by using Capacitor Analyser and Resistance Bridge type CRB₃. Magnetic susceptibility ($^{\mu}_{eff.}B.M$) of metal complexes were measured at room temperature by following Faraday's method using Bruker Magnet B.M.G. Metal contents were determined by using Schimadzu -680G atomic obsorption flame emission Spectrophotometer.

b) Materials and methods

Metal salts RuCl₃ $3H_2O$ 98%, H_2PtCl_6 . $6H_2O$, 83%, Ni(CH₃COO)₂. $4H_2O$ (Purum), PdCl₂ 60% (Fluka); CuCl₂. $2H_2O$. 98.5% (Hopkins):CoCl₂. $6H_2O$ (extra pure). (Merck) were used as received from suppliers. 3,4- Dihydroxy benzaldehyde 98%, benzonitrile (Puriss) (Fluka) and triethyl amine Et₃N, 99.5% (BDH) were used without further purification. Dimethyl formamide (DMF) and ethanol were dried and distilled prior to use^{12,13}. 2-ABT was purified by crystallisation from boiling water¹⁴. 2-Chlorobenzonitrile palladium (II) was prepared according to a previously published method¹⁵.

Preparation of H_2L_1 and HL_{11}: A solution of 2-ABT (1 mmole) in dry ethanol was added to 3,4-dihydroxy benzaldehyde or salicylaldehyde (1 mmole) dissolved in a minimum amount of dry ethanol. 3-4 drops of piperidine were added and the solution was heated in a water bath for 30 min. with continueous stirring at 70°C.

A precipitate was formed after cooling the mixture to room temperature. The product was filtered off, and washed with cold ethanol, followed by ether, crystallized from ethanol and then dried under vacuum.

Preparation of metal complexes of H_2L_1 (C₁-C₇):

A solution of a metal salt of Co(II), Ni(II), Cu_(II), Pd_(II), Pt_(IV), and Ru_(III) respectively in ethanol was added to a solution mixture of (H₂L₁) and Et₃N in absolute ethanol in a molar ratio of 1:2:2 respectively with continuous stirring.. Precipitation of C₃ and C₄ took place immediately, while precipitation of other complexes required heating under reflux for 1-1.5 hr. The products were filtered off, washed with cold ethanol, followed by ether and dried under vacuum.

Preparation of complexes of H₂L₁ (C₈-C₁₁):

These complexes were prepared following the same previously mentioned method without the addition of Et_3N . Precipitates were formed immediately. Each mixture was heated for 30 min to allow complete precipitation. The products were purified by the same previous manner.

Preparation of mixed ligand complexes (C_{12} - C_{16}):

An ethanolic solution of metal salts of the ions Co(II), Cu(II), Pd(II), Pt(IV), and Ru(III) was added to a mixture of (H_2L_1) and Et_3N and L' (acac, en, bipy, and $HL_{(11)}$) in absolute ethanol, with continueous stirring. The molar ratio of reactants was 2:1:1 except for C_{16} in which it was 3:3:1 respectively. Precipitation took place immediately. Each mixture was heated under reflux for 30 min to allow complete precipitation. The products were purified in the same previous manner.

Results and Discussions

a) Physical data and elemental analyses

Table (1) describes the physical properties of H_2L_1 and its metal complexes in absence and presence of other ligands, together with the elemental analyses. The suggested molecular formulae were further supported by thermal analyses and spectral studies.

Elemental analyses of few complexes showed less agreeable results in nitrogen contents. This may be attributed to incomplete combustion as well as instrumental errors. The suggested molecular formulae were further supported by thermal analysis and spectral studies.

Symbol Molecular formula (colour)	(m.p.C) Yield %	Elemen found	M% Found		
ling 2010 1979		С%	H%	N%	Calc.
H_2L_1 C ₁₄ H ₁₀ N ₂ SO ₂] 0.5 EtOH (brown)	(140- 143) decom 40	58.4 (59.32)	4.38 (4.43)	9.406 (9.55)	
C1 [Co (HL1)2 Cl(H2O) 2].3H2O (dark olive).	(>350) 62.9	37.43 37.02)	3.84 (4.1)	5.11 (6.17)	12.09 (12.98)
C ₂ [Ni(HL ₁) ₂ (H ₂ O) ₂] .2.5 H ₂ O 0.2 EtOH (dark boown).	·(>305) 30.9	4	Noria	8 5053	8.27 (8.54
C ₃ [Cu (L ₁)(HL ₁)Et ₃ N(H ₂ O)] 2H ₂ O 0.2 EtOH (dark olive).	(>305) 33.2	•			7.67 (7.47)
C_4 [Pd HL _I Cl] H ₂ O. 2Et ₃ N (Maroon).	(>305) 44.4	48.61 (49.39)	6.33 (6.49)	8.09 (8.87)	17.51 16.85)
C_5 [Pt (L _I)(HL _I) (H ₂ L _I)Cl]. 3H ₂ O (dark brown).	(>315) 27.8	45.95 (46.13)	3.66 (3.02)	7.46 (7.69)	17.27 (17.94)
C_6 [Ru L ₁ Cl(H ₂ O) ₂]. H ₂ O (dark brown).	(>300) .77.8		-	-	22.43 (22.03)
C7 [C0(H2L1) 2 Cl2 (H2O)2]. 3EtOH (dark brown).	(>310) 31.7	-	-	-	6.49 (9.97)

Table (1): Molecular formulae, physical properties and elemental	
analysis of H ₂ L ₁ and its metal complexes	

Symbol Molecular formula (colour)	(m.p. C) Yield %	: 104 194 년 영	Elemental analyses % found (calculated)				
		C%	H%	N%	(Cak.)		
C ₈ [Cu(H ₂ L ₁) ₂ Cl ₂ (H ₂ O) ₂]. 2.5H ₂ O (brown).	(>310) 34.8	-	-		7.48 (8.39)		
C9 [Pd H2L1 Cl2]. 2H2O (brown).	(>305) 39.9	35.0 · (34.37)	2.87 (2.89)	4.99 (5.79)	21•6 (22·01		
C ₁₀ Pt (H ₂ L ₄) ₂ CL ₄] 1.5 EtOH (dark brown).	(>300) 28.1	39.47 (39.29)	2.75 (3.06)	6.48 (5.92)	-		
C ₁₁ Ru (H ₂ L _l) ₂ Cl. H ₂ O dark brown	(>300) 33	-	-		13.13 (13.19)		
C ₁₂ [CoH ₂ L ₁ (acac) Cl(H ₂ O) ₂]. 2H ₂ O 2EtOH greenish brown	(>290) 37.2	43.7 (43.89)	4.05 (4.45)	4.17 (4.45)	9.65 (9.37)		
C_{13} $Co_2 L_1(en)_2 Cl_2 (H_2O)_3$ (greenish brown)	214-216 deeomp 59.1	35.08 (34.21)	4.24 (4.75)	12.29 (13.31)	22 <u>2</u>		
C ₁₄ [Pt ₂ HL ₁ (en) ₂ Cl ₄]. 2H ₂ O. 0.5 EtOH greenish brown	(>290) 52.8	24.6 (23.32)	2.88 (2.96)	8.07 (8.95)			
C ₁₅ [Cu ₃ (HL _I) ₂ (bipy) ₂ Cl ₄ (H ₂ O) ₂].2H ₂ O (greenish brown)	(>285) 31.9	45.12 (45.660	3.64 (3.33)	8.52 (8.88)	15.06 15.1		
C ₁₆ [RuHL _I L _{II} Cl]. 2H ₂ O.0.5 EtOH (dark brown)	(>300) 54.1	48.50 48.32	3.42 (3.47)	7.77 (7.77)	-		

b) Infrared spectra

The characteristic vibrations of important groups are described in Table (2). The most important stretching modes exhibited by H_2L_1 are represented by phenolic OH, azomethine group and thiazole ring. The appearance of

 v_{OH} at two positions indicates different environments ^{1,3}. Bands related to stretching vibrations of aromatic CH, and C=C as well as phenolic $v_{C-O} + \delta_{OH}$ appeared at 3020, 1550-1440, 1270-1230 and 1370 cm⁻¹ respectively. The spectrum exhibited additional bands related to lattice ethanol vibrations¹⁶.

The i.r spectra of H_2L_1 complexes (C₁-C₁₁) showed the disappearance of one band related to

 D_{OH} of H₂L₁ and the shift of the other to lower frequencies as in C_1 , C_2 , C_4 and C5. In the spectra of C3 and C6 both phenolic bands disappeared. In both cases v_{C-O} vibrations were shifted to higher frequencies. This suggest the coordination of metal ion to a hydroxy and phenoxy group of H_2L_1 in the formers and two phenoxy group in the latters ^{10,17}. Bands related to azomethine stretching vibrations of H₂L₁ were shifted in C₁, C₃, C₄, and C₆. Which is attributed to further coordination of metal ions to imino nitrogen of Schiff base 3,18 . The thiazole ring of C_3 , C_5 , C_8 and C_{11} exhibited a shift of $^{U}C=N$ to lower frequencies and of \mathcal{U}_{C-N} and \mathcal{U}_{C-S} to higher frequencies indicating the coordination of the two metal ions to nitrogen atom of thiazole ring²¹. Whereas that of C_9 exhibted the shift of all thiazole ring groups to higher frequencies which suggest the coordination of Pd(II) ion to sulfer atom²¹. All Complexes C₇-C₁₁ exhibited coordination of metal ions to azomethine group. Coordination to phenolic OH were excluded as the stretching vibrations of the latters were observed either in their positions or slightly shifted to higher frequencies because of decreased hydrogen bonding²¹.

As far as mixed ligand complexes $(C_{12}-C_{16})$ are concerned, the Co(II) complex C_{12} showed similar behaviour to that of C_1 . Additional bands appeared at 1535, 1270, 1260, 1195 and 430 cm⁻¹ and were attributed to

 $\upsilon_{C=C} + \upsilon_{C=O}, \delta_{C-H} + \upsilon_{C=C}, \upsilon_{C-CH3} +$

 $\mathcal{D}_{C=C}$ and \mathcal{D}_{Co-O} vibrations of coordinated acac ²¹. The spectrum of C_{13} showed the disappearance of v_{OH} as well as a shift of $\mathcal{U}_{C=N}$ of azomethine nitrogen of H₂L₁ indicating a bridge type bonding ¹⁸. New bands were observed at 1050, 1480, 2950-2840 and 490 cm⁻¹ and were assigned to $u_{\scriptscriptstyle C-N},\delta_{\scriptscriptstyle CH2},
u_{\scriptscriptstyle CH2}$ and $M - NH_2$ vibrations respectively together with assymmetric symmetric stretching vibrations and δNH_2 of coordinated en^{21} . The Pt(IV) complex C₁₄ showed similar behaviors to that of C₅ towards H_2L_1 with bridge type, coordination by azomethine group 18,19 . Vibrational modes of coordinated (en) showed the formation of Pt-NH2 and Pt-NH bonds²¹.

The Cu(II) complex, C₁₅ showed similar coordination behaviour to C₁₄ towards C=N groups of Schiff base and thiazole ring. New peaks appeared at 1595, 1480 and 270 cm⁻¹ were assigned to $\mathcal{U}_{C=N}$. $\mathcal{U}_{C=C}$ and \mathcal{U}_{Cu} of coordinated bipy ²¹.

bipy ²¹. The Ru(III) complex, C₁₆ exhibited the disappearance of one v_{OH} band of H₂L₁ and, the disappearance of v_{OH} of HL_{II} and the shift of the other v_{OH} band of H₂L₁ to lower frequencies.

The positions of $U_{C=N}$ of both Schiff bases were also shifted. This indicates a bridge type of polynuclear complexes. Bands related to M-N, M-O, M-S of all metal complexes are also given in table (2). The complexes C₁, and C₄-C₁₆ showed stretching modes of M-Cl. The position of those bands and their modes in C₇, C₉-₁₁ refer to cis^{21, 18, 31}, while those of C₁₀ and C₁₃-C₁₅ refer to trans configurations^{21, 22}.

C) Electronic Spectra, Magnetic Susceptibility and Conductivity Measurements.

The ligand H_2L_1 exhibited two high intensity bands in both ethanol and DMF. The first band appeared at 36364 and 38610 cm⁻¹ respectively $(\mathcal{E} \max = 18683 \text{ and } 27961 \quad \ell \mod^{-1}$ cm^{-1} respectively) and the second band appeared at 33333 and 31640 cm⁻¹ (\mathcal{E} max=15714 and 16191 $\ell \text{ mol}^{-1} \text{ cm}^{-1}$ respectively). The two bands were attributed to $\pi \rightarrow \pi^*$ transitions of the aromatic rings ^{16, 23} and to conjugated Schiff base system respectively. Bands related to $n \rightarrow \pi^*$ transition may be masked by the extended second band ¹⁶. Complexation of H_2L_1 with metal ions caused bathochromic shifts with the appearance of new bands in the visible and near i.r regions. These bands were attributed to M-L charge transfer and to ligand field transitions. Table (3) describes bands of maximum absorption of complexes in DMF with their assignments. All complexes exhibted spectral behaviours of octahedral geometries ²⁴⁻²⁸ except palladium (II) complexes which showed square planar behaviours ^{24, 25}. Magnetic moments (μ_{eff} BM) of Co(II), Ni(II) and Cu(II) complexes showed high spin paramagnetic character, and complexes of Pd(II) and Pt(IV) ions were diamagnetic, whereas Ru(III) complexes were low spin paramagenetic. Crystal field parametrers B',10Dq, 10Dq/B' and β) in Co(II), Ni(II) complexes and positions of absent bands were calculated by applying band ratios and energies of absorption bands on Tanaba Saugano diagrams^{24,25,27,28}.

Copper (II) complexes exhibited behaviours of Jahn Teller distrotion²¹. Bands observed in Ru(III) complexes were referred mainly to Ligand \rightarrow metal charge transfer which lie near intraligand $n \rightarrow \pi^*$ transition bands²⁴.

Conductivity mesurements in DMF $(10^{-3}M)$ showed that complexes were non electrolytes.

According to the above mentioned observations together with results obtained from CHN, atomic absorption, and thermal analyses and i.r spectra the stereochemical structures of the complexes were suggested as illustrated in scheme (1).

C) Thermal Analyses

Thermal decomposition stages and weight losses by TG and DTG techniques for some complexes of H_2L_1 and mixed ligand complexes are described in Table (4). Thermograms of some other complexes are shown in Figure (1). Results came in agreement with those obtained from elemental analyses. Complexes in which the metal ion is covalently bonded to phenoxy groups gave mainly metal oxides ^{29,30} as final products, while those bonded to azomethine groups only gave metal halides ²⁹.

d) Antibacterial activity

A preliminary study on biological activity of the prepared compounds in DMF (1mg/ml) on gram (-) <u>E.Coli</u> and gram (+) <u>B.Subt</u> was carried out using plate agar method³¹. No antibacterial action was exhibited by H_2L_1 . In contrast, complexes C₆, C₁₀ exhibited growth inhibition against E.Coli of 10-12 mm diameter. The Co(II) complex C₁₃ showed the same inhibition zone against both types. C₃, C₅ and C₁₄ showed growth inhibition diameter of > 12 mm and C₁₅ 19mm against <u>B.subtluse</u>.

	Azome thine	1	Thiazole v	vibrations	ν _{OH}	$v_{\rm H2O}$				
Symbol	$\upsilon_{C=N}$	υ _{C=N}	$\upsilon_{C\text{-}N}$	$v_{C=S}$	<u>Phenolic</u> (EtOH)	Lattice (coordinate)	$\upsilon_{C=N}$	υ _{M-O}	υ_{M-Cl}	υ _{C-O} (Others)
H_2L_I	1590	1520	1105	740	2910,2830 [*] (3580-3180)	-	-	-	-	1270 -1230
C ₁	1610	1520	1105	740	2815	3100-3620 (800 pr) (660pw)	(460sh) ^a	$(440)^{d}$ (290) ^e (118) ^f (415) ^g	345	1290
C ₂	1595	1520	1110	740	2890 (3500)	3380,3270 3140 H.b (660)	-	$(460)^{d}$ (280) ^e (920) ^f (370) ^g	-	1285
C ₃	1555	1485	1170	745	(3660-3500)	3500-3100 (865 pr) (805 pw)	(525) ^a (250) ^b (325) ^c	(460) ^d (385) ^b	-	1300
C ₄	1610	1520	1105	740	2900 (3620-3500)	3500-3030	(480) ^a	$(410)^{d}$ (295) ^e (1180) ^f	370	1290
C ₅	1590	1510	1115	745	2800	3660-3300	(240) ^b	$\begin{array}{c} (400)^{d} \\ (280)^{e} \\ (1170)^{f} \end{array}$	330	1300
C_6	1600-1560	1520	1105	740	-	3660-3160 (800p)(660w)	(480) ^a	(405) ^d (395) ^g	330	1310
C ₇	1550	1520	1105	740	2910,2830 (3580-3080)		(500) ^a	(400) ^g	360 330	-
C ₈	1630-1580	1505	1170	747	2910,2830	3660-3100 (850 pr) (665 pw)	(495) ^a	(370) ^g	350 330	-
C ₉	1590-1560	1535 1518	1115	755	2920,2850	3340-3160	(460) ^a	-	360 330	(380) v _{M-S}

Table (2): Characterterstic stretching vibrations v (cm⁻¹) of i.r spectra for Schiff bases H_2L_1 and metal complexes

Table (2): (Continued)

	Azome thine	<u>Th</u>	iazole vib	rations	υ _{OH}	$v_{\rm H2O}$				υ _{C-0}
Symbol	$\upsilon_{C=N}$	υ _{C=N}	υ _{C-N}	υ _{C=S}	<u>Phenolic</u> (EtOH)	Lattice (coordinate)	$\upsilon_{C=N}$	υ _{M-O}	υ_{M-Cl}	(Others)
C ₁₀	1610	1520	1105	745	2920,2830 (3580-3220)	-	(450) ^a (260) ^b	-	355sh 330	-
C ₁₁	1620	1500	1180	755	2930,2870	(660)	$(440)^{a}$ $(280)^{b}$	(410) ^g	360 330 300	-
C ₁₂	1560	1515	1105	740	2910,2830 (3640-3400)	3400-3150 (690 pr) (600 pw)	500 ^a	(360) ^j (430) ^k	290	(610) MO. Ring deform
C ₁₃	1620-1610	1520	1110	740	-	(690 pr) (600 pw)	(545) ^a (490) ^e	(510) ^g (460) ^j	360	
C ₁₄	1630	1480	1125	765	2780 3580-3380	3380-3300	$\begin{array}{c} (540)^{a} \\ (230)^{b} \\ (420)^{d} \\ (580)^{e} \end{array}$	$\begin{array}{c} (470)^{g} \\ (360)^{h} \\ (1180)^{I} \\ (420)^{j} \end{array}$	330	
C ₁₅	1650	1480	1150	750	2900,2840	3540-3140 (650)	$(550)^{a}$ $(220)^{b}$ $(270)^{f}$	$\begin{array}{c} (440)^{g} \\ (225)^{h} \\ (1050)^{I} \\ (1090)^{I} \\ (410)^{j} \end{array}$		
C ₁₆	1590-1550	1510	1115	740	2900 (3500-2840)	3500-3140 (880)	(570) ^a	$\begin{array}{c} (490)^{g} \\ (260)^{h} \\ (1160)^{i} \\ (460)^{j} \end{array}$	345	

v_{M-N} of: (a) Sciff base; (b) thiazole ring; (c) Et₃N; (d) NH₂ of en; (e) NH (en); (f) bipy

 v_{M-O} of: (g) H_2L_1 ; (h) OH; (i) δ_{MOH} ; (j) coord. H_2O ; (k) acac ;(*) affected by hydrogen bonding.

Table (3): Electronic Spectral data electrical conductivities (DMF 10 ⁻³), Magnetic susceptibilities (µeff, B.M) and suggested geometries for metal
complexes of H_2L_1 and Mixed ligands complexes.

Symbol	Maximum			B'		10Dq		Conductivity		Suggested
	absorrption ບ max(cm ⁻¹)	Band assignment	Dq/B́	(cm ⁻¹)	β	(cm ⁻¹)	υ ₂ /υ ₁	Scm ² mo ⁻¹	µeff BM	geometry
C ₁ (Co(II))	$v_15876(cal)$ v_212821 v_317680	${}^{4}\text{Tig} \rightarrow {}^{4}\text{T}_{2}g(F)$ ${}^{4}\text{Tig} \rightarrow {}^{4}\text{A}_{2}g(F)$ ${}^{4}\text{Tig} \rightarrow {}^{4}\text{T}_{1}g(P)$	0.76	858	0.88	6527	2.18	11.6	4.44	Octahedral
C ₂ (Ni(II))	$v_1 8207(cal)$ $v_2 13333$ $v_3 22222$	${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g(F)$ ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g(P)$	1.15		0.71	8384	1.62	11.9	4.04	Octahedral
C ₃ (Cu(II))	$v_1 13295$ $v_2 16666$ $v_3 21000$	${}^{2}B_{1}g \rightarrow {}^{2}A_{1}g$ ${}^{2}B_{1}g \rightarrow {}^{2}B_{2}g$ C.T., $\pi \rightarrow \pi *$	-	-	-	-	-	9.2	2.70	Octahedral
C ₄ (Pd(II))	$v_1 20492 v_2 25842$	$^{1}A_{1}g \rightarrow ^{1}B_{1}g$ $^{1}A_{1}g \rightarrow ^{1}Eg$	-	-	-	20492	-	10.9	Diamagnetie	Square planar
C ₅ (Pt(IV))	$v_1 22989$ $v_2 26525$	$^{1}A_{1}g \rightarrow ^{3}T_{1}g$ $^{1}A_{1}g \rightarrow ^{1}T_{1}g$	-	-	-	-	-	30.4	Diamagnetie	Octahedral
C ₆ (Ru(III))	$v_1 12346$ $v_2 18254$	${}^{2}T_{2}g \rightarrow {}^{4}T_{1}g$ ${}^{2}T_{2}g \rightarrow {}^{2}A_{2}g, {}^{2}T_{1}g$	-	-	-	-	-	15.5	1.39	Octahedral

Table (3): (Continued)

Symbol	Maximum	Band assignment	Dq/Bର୍	Bó		10Dq	v_2/v_1	Conductivity		Suggested
	absorrption			(cm ⁻¹)	β	(cm ⁻¹)		Scm ² mo ⁻¹	µeff BM	geometry
	vmax(cm ⁻¹)									
C ₇	v ₁ 6333(cal)	${}^{4}T_{1}g \rightarrow {}^{4}T_{2}g(F)$								
(Co(II))	v ₂ 13600	${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g(F)$	0.91	771	0.79	7017	2.15	15.7	5.33	Octahedral
	v ₃ 16965	${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g(P)$								
	$v_1 12048$	$^{2}B_{1}g \rightarrow ^{2}A_{1}g$								
C ₈	v ₂ 15646	$^{2}B_{1}g \rightarrow ^{2}B_{2}g$	-	-	-	-	-	42.8	2.72	Octahedral
(Cu(II))	v ₃ 18868	$^{2}B_{1}g \rightarrow ^{2}Eg$								
	v_4 22727	СТ								
C ₉	v ₁ 23256	$^{1}A_{1}g \rightarrow ^{1}B_{1}g$	-	-	-	23256	-	14.1	Diamagnetie	Square planar
(Pd(II))										
C ₁₀	$v_1 18868$	$^{1}A_{1}g \rightarrow ^{3}T_{1}g$							Diamagnetie	
(Pt(IV)	v_2 22222	$^{1}A_{1}g \rightarrow ^{3}T_{2}g$	-	-	-	-	-	40.5		Octahedral
	$v_3 27701$	$^{1}A_{1}g \rightarrow ^{1}T_{1}g$								
C ₁₁	v ₁ 13333	$^{2}T_{1}g \rightarrow ^{4}T_{1}g$								
(Ru(III))	v ₂ 18700	$^{2}T_{2}g \rightarrow ^{2}A_{2}g, ^{2}T_{1}g$	-	-	-	-	-	27.1	1.41	Octahedral
	v ₃ 25000	L→MCT								
C ₁₂	$v_16154(cal)$	${}^{4}T_{1}g \rightarrow {}^{4}T_{2}g(F)$								
Co(II)	$v_2 13333$	${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g(F)$	0.82	856	0.88	7016	2.17	3.4	5.54	Octahedral
	v ₃ 17969	${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g(P)$								

Table (3): (Continued)

Symbol	Maximum absorrption vmax(cm ⁻¹)	Band assignment	Dq/Bố	(cm ⁻¹) <u>B'</u>	β	10Dq (cm ⁻¹)	υ ₂ /υ ₁	Conductivity Scm ² mo ⁻¹	µeff BM	Suggested geometry
C ₁₃ Co(II)	$v_1 6459(cal)$ $v_2 13812$ $v_3 18750$ $v_3 26385$	${}^{4}T_{1}g \rightarrow {}^{4}T_{2}g (F)$ ${}^{4}T_{1}g \rightarrow {}^{4}A_{2}g (F)$ ${}^{4}T_{1}g \rightarrow {}^{4}T_{1}g (P)$ $M \rightarrow L CT$	0.76	897	0.93	6818	1.9	18.5	4.44	Octahedral
C ₁₄ Pt(IV)	$v_1 21739$ $v_2 25510$	$^{1}A_{1}g \rightarrow ^{3}T_{1}g$ $^{1}A_{1}g \rightarrow ^{1}T_{1}g$						39	Diamagnetie	Octahedral
C ₁₅ Cu(II)	$v_1 15873$ $v_2 19531$ $v_3 23866$	${}^{2}B_{1}g \rightarrow {}^{2}B_{2}g$ ${}^{2}B_{1}g \rightarrow {}^{2}Eg$ $CT, \pi \rightarrow \pi *$						35.3	2.24	Octahedral
C ₁₆ Ru(III)	$v_1 12346$ $v_2 20833$ $v_3 25316$	${}^{2}T_{2}g \rightarrow {}^{4}T_{2}g$ ${}^{2}T_{1}g \rightarrow {}^{2}A_{2}g, {}^{2}T_{1}g,$ $L \rightarrow M CT$						16.9	1.38	Octahedral

Scheme (1): Suggested stereochemical structures and names of H_2L_1 and mixed ligands metal complexes

 C_8

C₉

|Dichlorodiaquabis{N-2-(benzothiazolyl)-3,4-dihydroxy

benzylidene-iminato}copper(II)]

[Dichloro{N-2-(benzo-thiazolo-S)-3,4-dihydroxy benzylideneiminato}

palladium(II)|Water(2)

Water(2.5).

Scheme (1): (Continued)

Stable phase	Temp. range of	Peak temp at DTG	Weight loss % found (Calc.)
C ₇	decomp 'C	.c	and a second second to be a second to be a second
[Co (HL ₁) ₂ Cl(H ₂ O) ₂].3H ₂ O	1		
↓-EtOH	(75-150)	80	4.84
			(5.45)
↓-2EtOH	(150-205)	158	10.48
			(10.89)
↓-2H ₂ O	(205-250)	235	20.16
↓-2Ph			(20.13)
↓-H ₂ O	(250-320)	255	33.87
↓-2(OH)₂PhCHN		2.1.5	(34.43)
1-2NCS	(320-348)	345	14.11
CoCl ₂			(13.75) 6.45
			(6.86)
Table (4): (Continued)	1		(0.00)
and (4). (Continued)	Temp.	Peak temp	Weight loss %
Stable phase	range of	at DTG	found (Calc.)
~ more prese	decomp 'C	'C	iouna (carc.)
C ₈	L accomp C		
$[Cu(H_2L_1)_2Cl_2(H_2O)_2].2.$ 5 H ₂ O			
↓-H ₂ O	(55-235)	195	2.12
	A		(2.38)
↓-1.5 H ₂ O	(235-260)	255	3.38
\$ 115 M ₂ 0	(255-200)	255	
1.001			(3.57)
↓-2Ph	(260-310)	275,300	19.24
			(20.10)
↓-2(OH) ₂ Ph	(310-413	390	28.27
			(28.83)
↓-2H ₂ O	(413-455)	435	15.61
1-NCS			(16.02)
↓-HCN			(10.02)
and the second se			01.00
$Cl_2Cu \leftarrow N(NCS)CH$			31.22
	<u> </u>		(29.04)
C ₁₁			
$Ru(H_2L_I)_2 Cl_3.H_2O$			
↓-H ₂ O	(85-235)	282-9 4	2.72
			(2.23)
↓-2Ph	(235-390)	335	20.19
- -			(19.84)
↓-NCS	(200 470)	120 150	
	(390-470)	430,450	43.09
↓-2(OH) ₂ Ph CHN			(43.08)
Cl₃Ru ←NCS			33.77
		States and States and States	(34.47)

Table (4): Stages of thermal decomposition complexes of H_2L_1 and

Figure (1) : Thermograms of some metal complexes of H_2L_1 and mixed ligand complexes by TG and DTG.

References

- 1. Dash B. Mahapartra P. K. : Panda, R.C., and Patanik . J.M (**1984**)." Fungicidal Activities and Mass spectral Studies of Some Schiff Bases Derived from p.Hydroxybenzaldehyde and Their Derivatives" J. Indian Chem Soc. LXI,1061-64.
- Sahu, K.; Behera, R.K; Patanaik, R.C; Nayak A; and Behra, G.B. (1997), "Synthesis and Fungitoxicity of Complexes of the Schiff Bases Derived. From 2- Hydroxy-1-Naphthaldehyde and 2- Aminothiazoles" Indian J. Chem. 18B, 557-9.
- Dash, B. and Mahapartra, S.K. (1975), "Cobalt (II), Nickel (II), Copper(II) and Zinc(II) Complexes of Schiff Bases Derived from 4-Aryl- 2- amino Thiazole and Salicylaldehyde", J. Inorg. Nucl. Chem.., 37,271-75.
- Dash, B.; Patra, M.; Paharaj, S. (1980) "Synthesis and Biological Activity of Some Schiff Bases Derived from Thiazoles and Benzothiazoles" Indian J. Chem. 19B (10), 984-97.
- 5. Soni, R.R.; Saxena, J.P. (1982), " Heterocyclic Studies. Synthesis of 9-Hydroxybenzimidazol [2,1]. Benzothiazoles and their Quarternary Derivatives" Bull. Chem. Soc. JPN, 55(5), 1681-2.
- Imamura, A.; Hori, T.; Soito, T.; Nashimura, N.Oohashi, M.; Yashin, K. (1989), "Benzothiazole Derivatives and its Use for Treatement of Rheumatoid Arthritis" JPN Kokai Tokyo JP 01, 143, 863,7PP.
- Fliri, A.F. J.; Schnur, R., (1989). " Preparation of Aromatic and Heterocyclic Carboxamide as Antineoplastic Agents : 2-Aminobenzothiazole Derivatives" Eur. Pat Appl.343, 893,27pp.
- Sinha, A.I.P.; Manjin, B. (1988), "Metal Induced Hydrolysis of Some Herbicidal Schiff Bases and Formation of Mixed Ligand Complexes" Acta Cienc. Indica 14(1)5-20. cf. (1990) Chem.. Abs. vol.112(13)110704w.
- Sarojini, T.; Ramachandraiah, A. (1996), " Synthesis and Characterization of Copper(II), Cobalt(II), Nickel(II), Iron(II), and Oxovanadium (IV) Chelates of a New Pair of Schiff Bases Ligands Derived from 1,3-bis (aminomethyl) Cyclohexane", Indian J. Chem. Vol.35A, 940-45-10.
- 10. Patel, K.V.; Bhattacharya, P.K. (**1986**), " Study of Some Trinuclear Copper(II) Complexes Involving Catechol Aldehydes and Heteroaromatic. Nitrogen Bases",

Polyhedron 5(3), 731-34 .b) Abdul-Ghani, A.J.; Tapabashi, N.O.R. (2001), "Synthesis and Characterization of 2,4-Dimethoxy Benzylidene –2-Hydroxaniline and its Complexes with Some Transition Metal Ions" Iraqi.3.Chem. Vol.27(3)649-64.

- 11. Baghae, D.M.; Mohebi S.(**2002**), "Synthetic Characterization and Study of Vanadyl Tradentate Schiff Base Complexes as Selective Oxidation of Olefins", J. Molec. Calalysis A. Chem., 179, 41-51.
- b) Mansing , P.S.; Dash K.C. (**1995**)," Synthesis and Characterization of Complexes of Early Actinides with tridentate Schiff Base Ligands" Indian J. Chem. Vol 34, 904-7
- Perrin, D.D.; Armarego, W.L.F.; Perrin D.R. (1980): "Purification of Laboratiry Chemicals", 2nd Edn, Pergamon Press Oxford, New York, 224.
- Vogel, A. (1972), "Text Book of Practical Organic Chemistry" 3rd Edn Logman 167-69.
- Biddle, P.; Lane, E.S.; Williams, J.L. (1960), "Organic Complex Forming Agents for Metals-III, Some New Heterocyclic Complexes", J. Chem. Soc., 2369-70.
- 15. Rochom, E.G., (**1960**), *Dichloro-(1,4-Butadiene) Palaladium (II)* "., Inorganic Synthesis Vol.III 218-19.
- Silverstein R.M.; Bassler, C.G.; Morril T.C. (1974)." Spectrometric Identification of Organic Compounds" 3rd Edn., Jon Wiley and Sons Inc. New York.
- 17. Satapathy, S.; Sahoo, B.(**1970**), *"Salicyaldazinate Metal Chelates and Their i.r Spectra"* Nucl. Chem .321, 2223-28.
- Kovaeic, J.E. (1967), "The C=N Stretching Frequency in the Infrared Spectra of Shiff Base Complexes- I. Copper Complexes of Salicylidene Anilines", Spectrochimica Acta, 23A, 183-85.
- Giusti A.; Peyrnel G.; Gilberti, E. (1982)
 "Copper (I) and Silver (I) Complexes of 2-Aminothiazole" Spectrochimica Acta, 38A(II), 1185-7.
- 20. Mahapartra, S.C.; Ramana Rao, D.V. (**1980**) "Mixed Ligand Thiocyanato Complexes of Cobalt (II) – Coordination Number Six and Eight", J.Indian Chem. Soc LVII, 262-4.
- 21. Nakamoto K. (**1997**)," *Infrared and Raman Spectra of Inorganic and Coordination Compounds* "5th Edn , John Wiley and Sons Inc., New York.

- 22. Brugger K. (1967), "Coordination Chemistry: Experimental Methods", London, Butterworth.
- 23. Ebara, N. (**1960**)," Benzylideneaniline. I Structure and Ultraviolet Absorption Spectrum of Benzylideneaniline ", Bull Chem. Soc. Japan, 33, 534-7.
- 24. Figgis, B.N. (**1966**), "*Introduction to Ligand Fields*" Interscience Division of John Wiley and Sons, New York.
- 25. Lever, A.B.P. (**1968**), "Inorganic Electronic Spectroscopy", Elsevier Publishing Company, Amsterdam . London, New York.
- 26. Sutton, D. (**1968**), "Electronic Spectra of Transition Metal Complexes" 1st Edn. Mc Graw-Hill Publishing Company LTD., London, New York.
- 27. Huheey J.E. (**1972**), "*Inorganic Chemistry Principe Structures and Reactivity*", Harper International Edn., Harper and Row Publishers New York.
- 28. Greenwood, N. N.; Earnshaw A. (1980), "Chemistry of Elements" Pergamon Press, New York.
- 29. Duval, C. (**1963**), "Inorganic Thermogravimetric Analyses" 2nd Edn. Elsevier Publishing Company New York, London.
- 30. a) Buzus, I. (1975), "*Thermal Analysis*", vol (2), Organic and Macromolecular Chem.., Earth Science Akademiai Kiado, Budopest, b)ibid, vol(1). Inorganic Chem.
- 31. Washington, G.A. (**1980**), "Laboratory Procedures in Clinical Microbiology" Spinger-Verlag, New York, 299-302.