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Abstract 

     This paper deals with the blow-up properties of positive solutions to a parabolic 

system of two heat equations, defined on a ball in    associatedwith coupled 

Neumann boundary conditions of exponential type. The upper bounds of blow-up 

rate estimates are derived. Moreover, it is proved that the blow-up in this problem 

can only occur on the boundary.  
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1. Introduction 

     In this paper, we consider the following parabolic system of two heat equations associated with 

Neumann boundary conditions: 
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      where                   is a ball in      is the outward normal;       are both smooth 

functions, radially symmetric, nonzero, nonnegative and satisfy the condition:  
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     Since the last decades, many authors have studied the blow-up properties to solutions of parabolic 

problems, defined on bounded domains [see for instance 1, 2]. One of the studied problems is the 

system of two heat equations defined in a ball, associated with coupled Neumann boundary 

conditions: 
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}                           (3) 

     This problem was previously studied [3-6] ; in case of the nonlinear functions   and   take one of 

the two forms: 

 ( )          ( )                                                          (4) 

 ( )           ( )                                                              (5) 

     For both cases, it was shown that if the initial data (     ) are nonzero and nonnegative, then the 

blow-up can only occur on the boundary. 

     In addition to that, with case 4, it was proved that the blow-up rate estimates take the form: 
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where    and   are positive constants. 

While, with case 5, it was proved that the blow-up rate estimates take the form: 
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where           and    are positive constants. 

      In this paper, firstly, we show that the upper blow-up rate estimates for problem 1are as follows  
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     Secondly, we prove that the blow-up in problem 1 can only occur on the boundary. 

2. Preliminaries 

     It is well known that with any smooth initial functions (     )  satisfying the compatibility 

condition 2, there exists a unique local classical solution to problem 1 [7]. On the other hand, it is 

easy to show that every nontrivial solution blows up simultaneously in finite time and that due to the 

known blow-up results of problem 3 with 4 and the comparison principle [2,3]. 

     The next lemma, which was previously proved [2], states some properties of the classical 

solutions of problem1.  

For simplicity, we denote  (   )   (   )  
Lemma 2.1 Let (   ) be a classical solution to problem 1. Then  

    1.      are positive, radial. Moreover,         in ,   -  (   )  

    2.          in    (   )  
3. Blow –up Upper Rate Estimates 

     The next Lemmas and theorem, proved in other articles [5,8], will be used in this section to derive 

the upper blow-up rate estimates for problem 1. 

Lemma 3.1 [5]: Let   and   be positive and differentiable functions in ,   ) such that they satisfy 

the two inequalities:  
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Lemma 3.2 [6]: Let       If          Then there exists    such that 

 ∫  
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  Theorem 3.3 (Jump relation, [8]) Let  (   ) be the fundamental solution of heat equation, namely  
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     Let   be a continuous function on    ,   -  Then for any                       
for some      the function  
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satisfies the jump relation 
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Theorem 3.4 Let (   ) be a blow-up solution to problem1, and    is the blow-up time. Then 

there exist two positive constants       such that 
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Proof: In order to prove this theorem, we follow the technique used in a previous work [5]. 

 

Define the functions   and    as follows: 

 ( )     
  

 (   )           ( )     
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Similarly,  

 ( )     
  

 (   )           ( )     
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Depending on Lemma 2.1, both of      are monotone increasing functions. 

     Since   is a solution of heat equation, it cannot attain interior maximum without being constant. 

Therefore,  

 ( )    ( )                     ( )    ( )  
Moreover, since     blow up simultaneously, we have  

 ( )          ( )                (7) 

According to the second Green’s identity [5,7, 9], with considering the Green function:  

  (        )   (        ) for          and       
where   is defined in 6, the integral equation to problem 1, with respect to  , takes the form: 
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     By applying Theorem 3.3 on the third term in the right-hand side of the last equation and with 

letting     , we obtain 
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Depending on Lemma 2.1,     are both radial and positive functions. 

Therefore, 
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 It is known that (see [8]) there exists      such that   satisfies  
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      from Lemma 3.2, there exists     such that  
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Moreover, for         and    is closed to    there exists      such that  
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∫  
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Since for              it follows that  (  )   ( )  thus the last equation becomes  
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it follows  
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Since    are both increasing functions and by7, we can find    (   )  such that  
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Thus  
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By Lemma 3.1, it follows that  
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 On the other hand, with assuming that   is close to  , we have 
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where         

Combining the last inequality with 9 yields  
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It follows that, there exists a constant      such that  
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Similarly, we can find      such that 
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 This leads to, there exist         such that  
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for        

4. Blow-up Set 

In this section, we study the blow-up set for problem 1, showing that the blow-up can only occur on 

the boundary. To prove this result, we recall the following lemma proved in a previous article [6]. 

Lemma 4.1. Let   be a continuous function on the domain    ,   ) and satisfies 
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We can show that:  
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Let             (   )   ,   and take    to be large such that  
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   which implies that  
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Then from the maximum principle [10], it follows that  
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and hence  
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 for         
Theorem 4.2 Let (   ) be a blow-up solution to problem1, and     is the blow-up time. 

Then(   can only blow-up on the boundary.  

Proof: By using equations10 and11, we obtain 

 (   )  
  

(   )
 

 

      (   )  
  

(   )
 

 

    

for   (   )  
From Lemma 4.1, it follows that  

   * (   ) (   )     ,   )+    ( 
    )      

   * (   ) (   )     ,   )+    ( 
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for       Therefore, if     , it cannot be a blow-up point. 

5. Conclusions 

     This paper is concerned with the blow-up properties of positive solutions to a system of two heat 

equations defined on a ball in    associated with coupled Neumann boundary conditions of 

exponential type. Firstly, the upper bounds of blow-up rate estimates are derived. Secondly, the 

blow-up set is considered. The main conclusion is that the blow-up in this problem only occurs on 

the boundary. 
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