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Abstract

This paper deals with the blow-up properties of positive solutions to a parabolic
system of two heat equations, defined on a ball in R"associatedwith coupled
Neumann boundary conditions of exponential type. The upper bounds of blow-up
rate estimates are derived. Moreover, it is proved that the blow-up in this problem
can only occur on the boundary.
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1. Introduction

In this paper, we consider the following parabolic system of two heat equations associated with
Neumann boundary conditions:

u; = Au, vy = Av, (x,t) € B x (0,7),
0 a
% = 1", % = 1,e%’, (x,t) € dBg % (0,T), (1)

u(x,0) = up(x), v(x,0) =vy(x), x € By,
where p,q > 1; 41,4, > 0; B is a ball in R™; n is the outward normal; u,, v, are both smooth
functions, radially symmetric, nonzero, nonnegative and satisfy the condition:
AuOiAuO = Ol uOT(lxDiUOT(lxD = 0' forx € ER )
and "a—lj;’ = M,e%s, "’a—’j;’ = J,e%, x € 0By @)
Since the last decades, many authors have studied the blow-up properties to solutions of parabolic
problems, defined on bounded domains [see for instance 1, 2]. One of the studied problems is the
system of two heat equations defined in a ball, associated with coupled Neumann boundary
conditions:

u; = Au, v = Av, (x,t) € B x (0,7),
0 d
o = f @), o = 9w, (x,1) € 9Bz x (0,T), (3

u(x,0) =uy(x), v(x,0)=vy(x), x€Bg,
This problem was previously studied [3-6] ; in case of the nonlinear functions f and g take one of
the two forms:
f)=vP, gw)=ul, pq>1. (4)
fw)=eP", g(u)=e, pq>0. (%)
For both cases, it was shown that if the initial data (u,, v,) are nonzero and nonnegative, then the
blow-up can only occur on the boundary.
In addition to that, with case 4, it was proved that the blow-up rate estimates take the form:
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p+1

¢ < maxu(x,t)(T —t)2a-0 < C, te (0,T),
xX€Q
q+1

c <maxv(x, t)(T —t)2e-0 < C, te€ (0, T)
xX€EQ

where ¢ and C are positive constants.
While, with case 5, it was proved that the blow-up rate estimates take the form:

1
C; < eTRO(T —1)2 < (,,
C3 < ePPRO(T—t)1/2 < ¢,
where C;, C,, C; and C, are positive constants.
In this paper, firstly, we show that the upper blow-up rate estimates for problem lare as follows
a
max u(x, t) <logC; — Elog(T —-t), 0<t<T,

Br
max v(x,t) < logC, — glog(T —-t), 0<t<T,
Br

where @ = 2L g = XL
rq-1 rq-1

Secondly, we prove that the blow-up in problem 1 can only occur on the boundary.
2. Preliminaries

It is well known that with any smooth initial functions (ug,v,), satisfying the compatibility
condition 2, there exists a unique local classical solution to problem 1 [7]. On the other hand, it is
easy to show that every nontrivial solution blows up simultaneously in finite time and that due to the
known blow-up results of problem 3 with 4 and the comparison principle [2,3].

The next lemma, which was previously proved [2], states some properties of the classical
solutions of problem1.
For simplicity, we denote u(r,t) = u(x, t).
Lemma 2.1 Let (u,v) be a classical solution to problem 1. Then

1. u, v are positive, radial. Moreover, u,., v, = 01in [0,R] X (0, T).

2. u,, vy > 01in By x (0, 7).
3. Blow —up Upper Rate Estimates

The next Lemmas and theorem, proved in other articles [5,8], will be used in this section to derive
the upper blow-up rate estimates for problem 1.
Lemma 3.1 [5]: Let A and B be positive and differentiable functions in [0, T),such that they satisfy
the two inequalities:

w05 O iy s AW
= T=¢ = T=¢t
fort € 0,7),

A(t) >+ orB(t) > 400 ast—->T7,
where p,q > 0,¢c > 0 and pq > 1.
Then there exists C > 0 such that
a B
A)<C(T—-t)z, Bt)<C(T—-t) 2 te][0,T),

where o = 2L g = 2L

pq-1 pq-1
Lemma 3.2 [6]: Letx € Bg. If 0 < a < n — 1. Then there existsC > 0 such that

dsy
st lx—=y|* <C

Theorem 3.3 (Jump relation, [8]) Let I'(x, t) be the fundamental solution of heat equation, namely

MG 1) = s exp[— 20 (6)
’ (4mt)(™/2) at
Let ¢ be a continuous function on S X [0,T]. Then for any x € Bg,x% € Sg,0<t; <t, <T,
for some T > 0, the function

2
U(x,t) = f f F(x—y,t—2)p(y, z)ds,dt
t, Jsg
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satisfies the jump relation

9 U(x,t) ! (Ot)+—a Ux°,t)
%—_
on X 2¢x' on X

asx — x.

Theorem 3.4 Let (u,v) be a blow-up solution to probleml, and T > 0Ois the blow-up time. Then
there exist two positive constants C;, C, such that

a
maxu(x,t) < logC; — Elog(T —t), 0<t<T,
BRr

maxv(x t) < logC, — Elog(T —-t), 0<t<T.

Proof: In order to prove thls theorem, we follow the technique used in a previous work [5].

Define the functions M and M,, as follows:
M(t) = maxu(x,t), andM,(t) = rr;axu(x, t).
Br R

Similarly,
N(t) = maxv(x,t), andN(t) = n}axv(x, t).
B R

R
Depending on Lemma 2.1, both of M, M,, are monotone increasing functions.
Since u is a solution of heat equation, it cannot attain interior maximum without being constant.
Therefore,
M(t) = My (t). Similarly N(t) = N (t).

Moreover, since u, v blow up simultaneously, we have
M(t) » 4+, N(t) > 4o ast—->T(7)
According to the second Green’s identity [5,7, 9], with considering the Green function:

G(x,y;z1,t) =T(x —y,t —z)for0 <z <t <Tandx € By,
where T is defined in 6, the integral equation to problem 1, with respect to u, takes the form:

t
ux,t) = T =yt =z u@z)dy + [, g Ae?" OO (x — y, t — T)ds, d;

t or
— I, Js, v D) oy (X~ .t~ D)dsydr,

By applying Theorem 3.3 on the third term in the right-hand side of the last equation and with
letting x — Sg, we obtain

1 t
Jute ) = o Tx—y,t —z)u(y,z)dy + [, [ Ae?’ OO (x — y, t — 1)ds, d;

t or
— I Js, v D) ooy (X .t~ D)5y,

forx € Sz, 0< 2z, <t<T.
Depending on Lemma 2.1, u, v are both radial and positive functions.
Therefore,

Jp, T = y,t = z)u(y, z1)dy > 0,
fztl fSR 2, OO (x — y, t — T)ds,d, = fztl A,e?PRD [fSR [(x —y,t —1)ds,]dt
This leads to
1 t
M) = f )lleNp(T)[f

z SR

_(x_yr )

[(x —y,t—1)dsy]dt — j M(71) U dsy] dt,
Zq SR

x €S 0<z; <t<T.
It is known that (see [8]) there existsC, > 0, such that I' satisfies
aor Co 1
‘%(x “yt-D|s (t — T)* ' |x — yl(n+1—2u—cr)'
x,y € Sg,0 € (0,1).
Choose 1 —% < u < 1, from Lemma 3.2, there existsC* > 0 such that

J‘ ds, c
< C".
Sk |x _ yl(n+1—2u—cr)

Moreover, for 0 < t; < t, and t, is closed tot,, there exists ¢ > 0, such that
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c
f [(x —y,t; —t)dsy =2 ——,
SR t; —t

1 t 1eNp('r) t M(‘L’)
—M(t)ZCf —dT—Cf _—
2 L, V-1 2 It =l
Sincefor 0 < z; <ty <t < T, it follows that M(t,) < M(t), thus the last equation becomes
1 t/lleNp(T)
EM(t) >c| ———=dt—C;M(t)|T — z,|*™*.
-7

z NT

Similarly, for 0 < z, <t < T, we have
t) qu(‘r)

22 4
Zy VT_T

CIT —z|"# <1/2, GIT —z,|' # < 1/2,

Thus

1
EN(t) >c T—C3N(O)|T — z,|*H.

Taking z;, z, so that

it follows
/lleNp(T)

M@©) = [f dr, N@©) = c [ 227 40 (8)
= TJzy T ’ = Tz, Tt )
Since M, Nare both increasing functions and by7, we can find T; € (0, T), such that
1 1

M(t) > q@, N(t)=peD, for T, <t<T.

Thus
eMI(D) > gaM®), oNP(D) > PN T* < ¢ < T,

Therefore, if we choose z;, z, in (T*, T), then 8 becomes

t/1 epN(‘r)
M(t) 1 =
e >c dr = I;(t),
z VI —7T
t 1, edM®
N(®) > z—d = I
e >c T = I,(t).
Zy VT - T
Clearly,
A, ePN® [P A,e™M®  cpo1d
L) =c= > 22 () =c= =

NT —t AT -t

L) < =MoL < -2 ©
(T-0)2 (T-t)2

t € (max{zy,2,},T).

On the other hand, with assuming that t is close to T, we have

t},ePN® N(ED t 1 N(EY)
L({t)=>c| ———dt = cAeP f dr = 2cA, (V2 — VT — teP
1( ) t* \/T—T 1 2t—T T—1 1( )

where t* =2t —T
Combining the last inequality with 9 yields
q+1

C 22a-1)(C

N < —
- _p+t 1 _a+t -
2c(V2 = 1)(T — t)2»@a-0"20  2¢(\2 — 1)(T — t*)2@a—D
It follows that, there exists a constant ¢; > 0 such that
q+1
eN(t*)(T _ t*)Z(pq—l) S Cl.
Similarly, we can find ¢, > 0 such that
p+1
eME)(T — t*)20a-D < c,.
This leads to, there exist Cy, C, > 0 such that
maxu(x,t) < loglC; — glog(T -t), , (10)
Br

maxv(x,t) < logC, — glog(T —-t) . (1)
Br
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for 0<t<T
4. Blow-up Set
In this section, we study the blow-up set for problem 1, showing that the blow-up can only occur on
the boundary. To prove this result, we recall the following lemma proved in a previous article [6].
Lemma 4.1. Let w be a continuous function on the domain By x [0, T) and satisfies

we = Aw, (x,t) € Bg x (0,7),

w(x,t) (x,t) € Sp x(0,T), m>0

SV
(T-om

Thenforany 0 < a < R,
supfw(x,t):0< x| £a,0<t <T} < co.

Proof: Set
h(x) = (R? —r?)2,r = |x|,
z(x,t) = gl

[A()+Co(T-D)™
We can show that:

m + 1)|Vh|?
Ah — % =8r?2 —4n(R?> —r%) — (m + 1)16r? = —4nR? — 16R*(m + 1),
and
oA Cim _ (m+D)|vh? Cym _ 2 _
Z— A2 = g a—ap (G2 H A ) 2 e, oo (G2 T ANR

16R%(m + 1)).
Let C, = 4nR? + 16R?>(m + 1) + 1, and take C, to be large such that
z(x,0) 2 w(x,0), x € Bg.
Let C; = C(C,)™, which implies that
z(x,t) =2 w(x,t) onSgx|[0,T).

Then from the maximum principle [10], it follows that

z(x,t) = w(x,t), (x,t) €Bgx(0,T)
and hence

sup{w(x,t):0 < |x| £a,0<t<T} < C(R*—a?)"M < oo,

for 0 <a<R.
Theorem 4.2 Let (u,v) be a blow-up solution to probleml, and T > 0 is the blow-up time.
Then(u, vcan only blow-up on the boundary.
Proof: By using equations10 and11, we obtain

C
uR,t) S ——, v(R,1) < 2

(T—-1t): (T —t)z

C2

fort € (0,T).
From Lemma 4.1, it follows that

sup{u(x,t): (x,t) € By X [0,T)} < C;(R? — a?)™% < oo,

sup{v(x,t): (x,t) € By x [0,T)} < C;(R? — a?)™F < oo,
for a < R. Therefore, if x € Bg, it cannot be a blow-up point.
5. Conclusions

This paper is concerned with the blow-up properties of positive solutions to a system of two heat

equations defined on a ball in R™ associated with coupled Neumann boundary conditions of
exponential type. Firstly, the upper bounds of blow-up rate estimates are derived. Secondly, the
blow-up set is considered. The main conclusion is that the blow-up in this problem only occurs on
the boundary.
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